blob: c82b0c44e5c598a2266de8a0645d198595f12e01 [file] [log] [blame]
/*
* Copyright (C) 2010 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// #define LOG_NDEBUG 0
#undef LOG_TAG
#define LOG_TAG "HWComposer"
#define ATRACE_TAG ATRACE_TAG_GRAPHICS
#include <inttypes.h>
#include <math.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/types.h>
#include <utils/Errors.h>
#include <utils/misc.h>
#include <utils/NativeHandle.h>
#include <utils/String8.h>
#include <utils/Thread.h>
#include <utils/Trace.h>
#include <utils/Vector.h>
#include <ui/GraphicBuffer.h>
#include <hardware/hardware.h>
#include <hardware/hwcomposer.h>
#include <android/configuration.h>
#include <cutils/log.h>
#include <cutils/properties.h>
#include "HWComposer.h"
#include "HWC2On1Adapter.h"
#include "HWC2.h"
#include "../Layer.h" // needed only for debugging
#include "../SurfaceFlinger.h"
namespace android {
#define MIN_HWC_HEADER_VERSION HWC_HEADER_VERSION
// ---------------------------------------------------------------------------
HWComposer::HWComposer(const sp<SurfaceFlinger>& flinger)
: mFlinger(flinger),
mAdapter(),
mHwcDevice(),
mDisplayData(2),
mFreeDisplaySlots(),
mHwcDisplaySlots(),
mCBContext(),
mEventHandler(nullptr),
mVSyncCounts(),
mRemainingHwcVirtualDisplays(0)
{
for (size_t i=0 ; i<HWC_NUM_PHYSICAL_DISPLAY_TYPES ; i++) {
mLastHwVSync[i] = 0;
mVSyncCounts[i] = 0;
}
loadHwcModule();
}
HWComposer::~HWComposer() {}
void HWComposer::setEventHandler(EventHandler* handler)
{
if (handler == nullptr) {
ALOGE("setEventHandler: Rejected attempt to clear handler");
return;
}
bool wasNull = (mEventHandler == nullptr);
mEventHandler = handler;
if (wasNull) {
auto hotplugHook = std::bind(&HWComposer::hotplug, this,
std::placeholders::_1, std::placeholders::_2);
mHwcDevice->registerHotplugCallback(hotplugHook);
auto invalidateHook = std::bind(&HWComposer::invalidate, this,
std::placeholders::_1);
mHwcDevice->registerRefreshCallback(invalidateHook);
auto vsyncHook = std::bind(&HWComposer::vsync, this,
std::placeholders::_1, std::placeholders::_2);
mHwcDevice->registerVsyncCallback(vsyncHook);
}
}
// Load and prepare the hardware composer module. Sets mHwc.
void HWComposer::loadHwcModule()
{
ALOGV("loadHwcModule");
#ifdef BYPASS_IHWC
hw_module_t const* module;
if (hw_get_module(HWC_HARDWARE_MODULE_ID, &module) != 0) {
ALOGE("%s module not found, aborting", HWC_HARDWARE_MODULE_ID);
abort();
}
hw_device_t* device = nullptr;
int error = module->methods->open(module, HWC_HARDWARE_COMPOSER, &device);
if (error != 0) {
ALOGE("Failed to open HWC device (%s), aborting", strerror(-error));
abort();
}
uint32_t majorVersion = (device->version >> 24) & 0xF;
if (majorVersion == 2) {
mHwcDevice = std::make_unique<HWC2::Device>(
reinterpret_cast<hwc2_device_t*>(device));
} else {
mAdapter = std::make_unique<HWC2On1Adapter>(
reinterpret_cast<hwc_composer_device_1_t*>(device));
uint8_t minorVersion = mAdapter->getHwc1MinorVersion();
if (minorVersion < 1) {
ALOGE("Cannot adapt to HWC version %d.%d",
static_cast<int32_t>((minorVersion >> 8) & 0xF),
static_cast<int32_t>(minorVersion & 0xF));
abort();
}
mHwcDevice = std::make_unique<HWC2::Device>(
static_cast<hwc2_device_t*>(mAdapter.get()));
}
#else
mHwcDevice = std::make_unique<HWC2::Device>();
#endif
mRemainingHwcVirtualDisplays = mHwcDevice->getMaxVirtualDisplayCount();
}
bool HWComposer::hasCapability(HWC2::Capability capability) const
{
return mHwcDevice->getCapabilities().count(capability) > 0;
}
bool HWComposer::isValidDisplay(int32_t displayId) const {
return static_cast<size_t>(displayId) < mDisplayData.size() &&
mDisplayData[displayId].hwcDisplay;
}
void HWComposer::validateChange(HWC2::Composition from, HWC2::Composition to) {
bool valid = true;
switch (from) {
case HWC2::Composition::Client:
valid = false;
break;
case HWC2::Composition::Device:
case HWC2::Composition::SolidColor:
valid = (to == HWC2::Composition::Client);
break;
case HWC2::Composition::Cursor:
case HWC2::Composition::Sideband:
valid = (to == HWC2::Composition::Client ||
to == HWC2::Composition::Device);
break;
default:
break;
}
if (!valid) {
ALOGE("Invalid layer type change: %s --> %s", to_string(from).c_str(),
to_string(to).c_str());
}
}
void HWComposer::hotplug(const std::shared_ptr<HWC2::Display>& display,
HWC2::Connection connected) {
ALOGV("hotplug: %" PRIu64 ", %s", display->getId(),
to_string(connected).c_str());
int32_t disp = 0;
if (!mDisplayData[0].hwcDisplay) {
ALOGE_IF(connected != HWC2::Connection::Connected, "Assumed primary"
" display would be connected");
mDisplayData[0].hwcDisplay = display;
mHwcDisplaySlots[display->getId()] = 0;
disp = DisplayDevice::DISPLAY_PRIMARY;
} else {
// Disconnect is handled through HWComposer::disconnectDisplay via
// SurfaceFlinger's onHotplugReceived callback handling
if (connected == HWC2::Connection::Connected) {
mDisplayData[1].hwcDisplay = display;
mHwcDisplaySlots[display->getId()] = 1;
}
disp = DisplayDevice::DISPLAY_EXTERNAL;
}
mEventHandler->onHotplugReceived(disp,
connected == HWC2::Connection::Connected);
}
void HWComposer::invalidate(const std::shared_ptr<HWC2::Display>& /*display*/) {
mFlinger->repaintEverything();
}
void HWComposer::vsync(const std::shared_ptr<HWC2::Display>& display,
int64_t timestamp) {
auto displayType = HWC2::DisplayType::Invalid;
auto error = display->getType(&displayType);
if (error != HWC2::Error::None) {
ALOGE("vsync: Failed to determine type of display %" PRIu64,
display->getId());
return;
}
if (displayType == HWC2::DisplayType::Virtual) {
ALOGE("Virtual display %" PRIu64 " passed to vsync callback",
display->getId());
return;
}
if (mHwcDisplaySlots.count(display->getId()) == 0) {
ALOGE("Unknown physical display %" PRIu64 " passed to vsync callback",
display->getId());
return;
}
int32_t disp = mHwcDisplaySlots[display->getId()];
{
Mutex::Autolock _l(mLock);
// There have been reports of HWCs that signal several vsync events
// with the same timestamp when turning the display off and on. This
// is a bug in the HWC implementation, but filter the extra events
// out here so they don't cause havoc downstream.
if (timestamp == mLastHwVSync[disp]) {
ALOGW("Ignoring duplicate VSYNC event from HWC (t=%" PRId64 ")",
timestamp);
return;
}
mLastHwVSync[disp] = timestamp;
}
char tag[16];
snprintf(tag, sizeof(tag), "HW_VSYNC_%1u", disp);
ATRACE_INT(tag, ++mVSyncCounts[disp] & 1);
mEventHandler->onVSyncReceived(disp, timestamp);
}
status_t HWComposer::allocateVirtualDisplay(uint32_t width, uint32_t height,
android_pixel_format_t* format, int32_t *outId) {
if (mRemainingHwcVirtualDisplays == 0) {
ALOGE("allocateVirtualDisplay: No remaining virtual displays");
return NO_MEMORY;
}
std::shared_ptr<HWC2::Display> display;
auto error = mHwcDevice->createVirtualDisplay(width, height, format,
&display);
if (error != HWC2::Error::None) {
ALOGE("allocateVirtualDisplay: Failed to create HWC virtual display");
return NO_MEMORY;
}
size_t displaySlot = 0;
if (!mFreeDisplaySlots.empty()) {
displaySlot = *mFreeDisplaySlots.begin();
mFreeDisplaySlots.erase(displaySlot);
} else if (mDisplayData.size() < INT32_MAX) {
// Don't bother allocating a slot larger than we can return
displaySlot = mDisplayData.size();
mDisplayData.resize(displaySlot + 1);
} else {
ALOGE("allocateVirtualDisplay: Unable to allocate a display slot");
return NO_MEMORY;
}
mDisplayData[displaySlot].hwcDisplay = display;
--mRemainingHwcVirtualDisplays;
*outId = static_cast<int32_t>(displaySlot);
return NO_ERROR;
}
std::shared_ptr<HWC2::Layer> HWComposer::createLayer(int32_t displayId) {
if (!isValidDisplay(displayId)) {
ALOGE("Failed to create layer on invalid display %d", displayId);
return nullptr;
}
auto display = mDisplayData[displayId].hwcDisplay;
std::shared_ptr<HWC2::Layer> layer;
auto error = display->createLayer(&layer);
if (error != HWC2::Error::None) {
ALOGE("Failed to create layer on display %d: %s (%d)", displayId,
to_string(error).c_str(), static_cast<int32_t>(error));
return nullptr;
}
return layer;
}
nsecs_t HWComposer::getRefreshTimestamp(int32_t displayId) const {
// this returns the last refresh timestamp.
// if the last one is not available, we estimate it based on
// the refresh period and whatever closest timestamp we have.
Mutex::Autolock _l(mLock);
nsecs_t now = systemTime(CLOCK_MONOTONIC);
auto vsyncPeriod = getActiveConfig(displayId)->getVsyncPeriod();
return now - ((now - mLastHwVSync[displayId]) % vsyncPeriod);
}
bool HWComposer::isConnected(int32_t displayId) const {
if (!isValidDisplay(displayId)) {
ALOGE("isConnected: Attempted to access invalid display %d", displayId);
return false;
}
return mDisplayData[displayId].hwcDisplay->isConnected();
}
std::vector<std::shared_ptr<const HWC2::Display::Config>>
HWComposer::getConfigs(int32_t displayId) const {
if (!isValidDisplay(displayId)) {
ALOGE("getConfigs: Attempted to access invalid display %d", displayId);
return {};
}
auto& displayData = mDisplayData[displayId];
auto configs = mDisplayData[displayId].hwcDisplay->getConfigs();
if (displayData.configMap.empty()) {
for (size_t i = 0; i < configs.size(); ++i) {
displayData.configMap[i] = configs[i];
}
}
return configs;
}
std::shared_ptr<const HWC2::Display::Config>
HWComposer::getActiveConfig(int32_t displayId) const {
if (!isValidDisplay(displayId)) {
ALOGV("getActiveConfigs: Attempted to access invalid display %d",
displayId);
return nullptr;
}
std::shared_ptr<const HWC2::Display::Config> config;
auto error = mDisplayData[displayId].hwcDisplay->getActiveConfig(&config);
if (error == HWC2::Error::BadConfig) {
ALOGE("getActiveConfig: No config active, returning null");
return nullptr;
} else if (error != HWC2::Error::None) {
ALOGE("getActiveConfig failed for display %d: %s (%d)", displayId,
to_string(error).c_str(), static_cast<int32_t>(error));
return nullptr;
} else if (!config) {
ALOGE("getActiveConfig returned an unknown config for display %d",
displayId);
return nullptr;
}
return config;
}
std::vector<android_color_mode_t> HWComposer::getColorModes(int32_t displayId) const {
std::vector<android_color_mode_t> modes;
if (!isValidDisplay(displayId)) {
ALOGE("getColorModes: Attempted to access invalid display %d",
displayId);
return modes;
}
const std::shared_ptr<HWC2::Display>& hwcDisplay =
mDisplayData[displayId].hwcDisplay;
auto error = hwcDisplay->getColorModes(&modes);
if (error != HWC2::Error::None) {
ALOGE("getColorModes failed for display %d: %s (%d)", displayId,
to_string(error).c_str(), static_cast<int32_t>(error));
return std::vector<android_color_mode_t>();
}
return modes;
}
status_t HWComposer::setActiveColorMode(int32_t displayId, android_color_mode_t mode) {
if (!isValidDisplay(displayId)) {
ALOGE("setActiveColorMode: Display %d is not valid", displayId);
return BAD_INDEX;
}
auto& displayData = mDisplayData[displayId];
auto error = displayData.hwcDisplay->setColorMode(mode);
if (error != HWC2::Error::None) {
ALOGE("setActiveConfig: Failed to set color mode %d on display %d: "
"%s (%d)", mode, displayId, to_string(error).c_str(),
static_cast<int32_t>(error));
return UNKNOWN_ERROR;
}
return NO_ERROR;
}
void HWComposer::setVsyncEnabled(int32_t displayId, HWC2::Vsync enabled) {
if (displayId < 0 || displayId >= HWC_DISPLAY_VIRTUAL) {
ALOGD("setVsyncEnabled: Ignoring for virtual display %d", displayId);
return;
}
if (!isValidDisplay(displayId)) {
ALOGE("setVsyncEnabled: Attempted to access invalid display %d",
displayId);
return;
}
// NOTE: we use our own internal lock here because we have to call
// into the HWC with the lock held, and we want to make sure
// that even if HWC blocks (which it shouldn't), it won't
// affect other threads.
Mutex::Autolock _l(mVsyncLock);
auto& displayData = mDisplayData[displayId];
if (enabled != displayData.vsyncEnabled) {
ATRACE_CALL();
auto error = displayData.hwcDisplay->setVsyncEnabled(enabled);
if (error == HWC2::Error::None) {
displayData.vsyncEnabled = enabled;
char tag[16];
snprintf(tag, sizeof(tag), "HW_VSYNC_ON_%1u", displayId);
ATRACE_INT(tag, enabled == HWC2::Vsync::Enable ? 1 : 0);
} else {
ALOGE("setVsyncEnabled: Failed to set vsync to %s on %d/%" PRIu64
": %s (%d)", to_string(enabled).c_str(), displayId,
mDisplayData[displayId].hwcDisplay->getId(),
to_string(error).c_str(), static_cast<int32_t>(error));
}
}
}
status_t HWComposer::setClientTarget(int32_t displayId,
const sp<Fence>& acquireFence, const sp<GraphicBuffer>& target,
android_dataspace_t dataspace) {
if (!isValidDisplay(displayId)) {
return BAD_INDEX;
}
ALOGV("setClientTarget for display %d", displayId);
auto& hwcDisplay = mDisplayData[displayId].hwcDisplay;
buffer_handle_t handle = nullptr;
if ((target != nullptr) && target->getNativeBuffer()) {
handle = target->getNativeBuffer()->handle;
}
auto error = hwcDisplay->setClientTarget(handle, acquireFence, dataspace);
if (error != HWC2::Error::None) {
ALOGE("Failed to set client target for display %d: %s (%d)", displayId,
to_string(error).c_str(), static_cast<int32_t>(error));
return BAD_VALUE;
}
return NO_ERROR;
}
status_t HWComposer::prepare(DisplayDevice& displayDevice) {
ATRACE_CALL();
Mutex::Autolock _l(mDisplayLock);
auto displayId = displayDevice.getHwcDisplayId();
if (displayId == DisplayDevice::DISPLAY_ID_INVALID) {
ALOGV("Skipping HWComposer prepare for non-HWC display");
return NO_ERROR;
}
if (!isValidDisplay(displayId)) {
return BAD_INDEX;
}
auto& displayData = mDisplayData[displayId];
auto& hwcDisplay = displayData.hwcDisplay;
if (!hwcDisplay->isConnected()) {
return NO_ERROR;
}
uint32_t numTypes = 0;
uint32_t numRequests = 0;
auto error = hwcDisplay->validate(&numTypes, &numRequests);
if (error != HWC2::Error::None && error != HWC2::Error::HasChanges) {
ALOGE("prepare: validate failed for display %d: %s (%d)", displayId,
to_string(error).c_str(), static_cast<int32_t>(error));
return BAD_INDEX;
}
std::unordered_map<std::shared_ptr<HWC2::Layer>, HWC2::Composition>
changedTypes;
changedTypes.reserve(numTypes);
error = hwcDisplay->getChangedCompositionTypes(&changedTypes);
if (error != HWC2::Error::None) {
ALOGE("prepare: getChangedCompositionTypes failed on display %d: "
"%s (%d)", displayId, to_string(error).c_str(),
static_cast<int32_t>(error));
return BAD_INDEX;
}
displayData.displayRequests = static_cast<HWC2::DisplayRequest>(0);
std::unordered_map<std::shared_ptr<HWC2::Layer>, HWC2::LayerRequest>
layerRequests;
layerRequests.reserve(numRequests);
error = hwcDisplay->getRequests(&displayData.displayRequests,
&layerRequests);
if (error != HWC2::Error::None) {
ALOGE("prepare: getRequests failed on display %d: %s (%d)", displayId,
to_string(error).c_str(), static_cast<int32_t>(error));
return BAD_INDEX;
}
displayData.hasClientComposition = false;
displayData.hasDeviceComposition = false;
for (auto& layer : displayDevice.getVisibleLayersSortedByZ()) {
auto hwcLayer = layer->getHwcLayer(displayId);
if (changedTypes.count(hwcLayer) != 0) {
// We pass false so we only update our state and don't call back
// into the HWC device
validateChange(layer->getCompositionType(displayId),
changedTypes[hwcLayer]);
layer->setCompositionType(displayId, changedTypes[hwcLayer], false);
}
switch (layer->getCompositionType(displayId)) {
case HWC2::Composition::Client:
displayData.hasClientComposition = true;
break;
case HWC2::Composition::Device:
case HWC2::Composition::SolidColor:
case HWC2::Composition::Cursor:
case HWC2::Composition::Sideband:
displayData.hasDeviceComposition = true;
break;
default:
break;
}
if (layerRequests.count(hwcLayer) != 0 &&
layerRequests[hwcLayer] ==
HWC2::LayerRequest::ClearClientTarget) {
layer->setClearClientTarget(displayId, true);
} else {
if (layerRequests.count(hwcLayer) != 0) {
ALOGE("prepare: Unknown layer request: %s",
to_string(layerRequests[hwcLayer]).c_str());
}
layer->setClearClientTarget(displayId, false);
}
}
error = hwcDisplay->acceptChanges();
if (error != HWC2::Error::None) {
ALOGE("prepare: acceptChanges failed: %s", to_string(error).c_str());
return BAD_INDEX;
}
return NO_ERROR;
}
bool HWComposer::hasDeviceComposition(int32_t displayId) const {
if (displayId == DisplayDevice::DISPLAY_ID_INVALID) {
// Displays without a corresponding HWC display are never composed by
// the device
return false;
}
if (!isValidDisplay(displayId)) {
ALOGE("hasDeviceComposition: Invalid display %d", displayId);
return false;
}
return mDisplayData[displayId].hasDeviceComposition;
}
bool HWComposer::hasClientComposition(int32_t displayId) const {
if (displayId == DisplayDevice::DISPLAY_ID_INVALID) {
// Displays without a corresponding HWC display are always composed by
// the client
return true;
}
if (!isValidDisplay(displayId)) {
ALOGE("hasClientComposition: Invalid display %d", displayId);
return true;
}
return mDisplayData[displayId].hasClientComposition;
}
sp<Fence> HWComposer::getPresentFence(int32_t displayId) const {
if (!isValidDisplay(displayId)) {
ALOGE("getPresentFence failed for invalid display %d", displayId);
return Fence::NO_FENCE;
}
return mDisplayData[displayId].lastPresentFence;
}
bool HWComposer::retireFenceRepresentsStartOfScanout() const {
return mAdapter ? false : true;
}
sp<Fence> HWComposer::getLayerReleaseFence(int32_t displayId,
const std::shared_ptr<HWC2::Layer>& layer) const {
if (!isValidDisplay(displayId)) {
ALOGE("getLayerReleaseFence: Invalid display");
return Fence::NO_FENCE;
}
auto displayFences = mDisplayData[displayId].releaseFences;
if (displayFences.count(layer) == 0) {
ALOGV("getLayerReleaseFence: Release fence not found");
return Fence::NO_FENCE;
}
return displayFences[layer];
}
status_t HWComposer::presentAndGetReleaseFences(int32_t displayId) {
ATRACE_CALL();
if (!isValidDisplay(displayId)) {
return BAD_INDEX;
}
auto& displayData = mDisplayData[displayId];
auto& hwcDisplay = displayData.hwcDisplay;
auto error = hwcDisplay->present(&displayData.lastPresentFence);
if (error != HWC2::Error::None) {
ALOGE("presentAndGetReleaseFences: failed for display %d: %s (%d)",
displayId, to_string(error).c_str(), static_cast<int32_t>(error));
return UNKNOWN_ERROR;
}
std::unordered_map<std::shared_ptr<HWC2::Layer>, sp<Fence>> releaseFences;
error = hwcDisplay->getReleaseFences(&releaseFences);
if (error != HWC2::Error::None) {
ALOGE("presentAndGetReleaseFences: Failed to get release fences "
"for display %d: %s (%d)",
displayId, to_string(error).c_str(),
static_cast<int32_t>(error));
return UNKNOWN_ERROR;
}
displayData.releaseFences = std::move(releaseFences);
return NO_ERROR;
}
status_t HWComposer::setPowerMode(int32_t displayId, int32_t intMode) {
ALOGV("setPowerMode(%d, %d)", displayId, intMode);
if (!isValidDisplay(displayId)) {
ALOGE("setPowerMode: Bad display");
return BAD_INDEX;
}
if (displayId >= VIRTUAL_DISPLAY_ID_BASE) {
ALOGE("setPowerMode: Virtual display %d passed in, returning",
displayId);
return BAD_INDEX;
}
auto mode = static_cast<HWC2::PowerMode>(intMode);
if (mode == HWC2::PowerMode::Off) {
setVsyncEnabled(displayId, HWC2::Vsync::Disable);
}
auto& hwcDisplay = mDisplayData[displayId].hwcDisplay;
switch (mode) {
case HWC2::PowerMode::Off:
case HWC2::PowerMode::On:
ALOGV("setPowerMode: Calling HWC %s", to_string(mode).c_str());
{
auto error = hwcDisplay->setPowerMode(mode);
if (error != HWC2::Error::None) {
ALOGE("setPowerMode: Unable to set power mode %s for "
"display %d: %s (%d)", to_string(mode).c_str(),
displayId, to_string(error).c_str(),
static_cast<int32_t>(error));
}
}
break;
case HWC2::PowerMode::Doze:
case HWC2::PowerMode::DozeSuspend:
ALOGV("setPowerMode: Calling HWC %s", to_string(mode).c_str());
{
bool supportsDoze = false;
auto error = hwcDisplay->supportsDoze(&supportsDoze);
if (error != HWC2::Error::None) {
ALOGE("setPowerMode: Unable to query doze support for "
"display %d: %s (%d)", displayId,
to_string(error).c_str(),
static_cast<int32_t>(error));
}
if (!supportsDoze) {
mode = HWC2::PowerMode::On;
}
error = hwcDisplay->setPowerMode(mode);
if (error != HWC2::Error::None) {
ALOGE("setPowerMode: Unable to set power mode %s for "
"display %d: %s (%d)", to_string(mode).c_str(),
displayId, to_string(error).c_str(),
static_cast<int32_t>(error));
}
}
break;
default:
ALOGV("setPowerMode: Not calling HWC");
break;
}
return NO_ERROR;
}
status_t HWComposer::setActiveConfig(int32_t displayId, size_t configId) {
if (!isValidDisplay(displayId)) {
ALOGE("setActiveConfig: Display %d is not valid", displayId);
return BAD_INDEX;
}
auto& displayData = mDisplayData[displayId];
if (displayData.configMap.count(configId) == 0) {
ALOGE("setActiveConfig: Invalid config %zd", configId);
return BAD_INDEX;
}
auto error = displayData.hwcDisplay->setActiveConfig(
displayData.configMap[configId]);
if (error != HWC2::Error::None) {
ALOGE("setActiveConfig: Failed to set config %zu on display %d: "
"%s (%d)", configId, displayId, to_string(error).c_str(),
static_cast<int32_t>(error));
return UNKNOWN_ERROR;
}
return NO_ERROR;
}
status_t HWComposer::setColorTransform(int32_t displayId,
const mat4& transform) {
if (!isValidDisplay(displayId)) {
ALOGE("setColorTransform: Display %d is not valid", displayId);
return BAD_INDEX;
}
auto& displayData = mDisplayData[displayId];
bool isIdentity = transform == mat4();
auto error = displayData.hwcDisplay->setColorTransform(transform,
isIdentity ? HAL_COLOR_TRANSFORM_IDENTITY :
HAL_COLOR_TRANSFORM_ARBITRARY_MATRIX);
if (error != HWC2::Error::None) {
ALOGE("setColorTransform: Failed to set transform on display %d: "
"%s (%d)", displayId, to_string(error).c_str(),
static_cast<int32_t>(error));
return UNKNOWN_ERROR;
}
return NO_ERROR;
}
void HWComposer::disconnectDisplay(int displayId) {
LOG_ALWAYS_FATAL_IF(displayId < 0);
auto& displayData = mDisplayData[displayId];
auto displayType = HWC2::DisplayType::Invalid;
auto error = displayData.hwcDisplay->getType(&displayType);
if (error != HWC2::Error::None) {
ALOGE("disconnectDisplay: Failed to determine type of display %d",
displayId);
return;
}
// If this was a virtual display, add its slot back for reuse by future
// virtual displays
if (displayType == HWC2::DisplayType::Virtual) {
mFreeDisplaySlots.insert(displayId);
++mRemainingHwcVirtualDisplays;
}
auto hwcId = displayData.hwcDisplay->getId();
mHwcDisplaySlots.erase(hwcId);
displayData.reset();
}
status_t HWComposer::setOutputBuffer(int32_t displayId,
const sp<Fence>& acquireFence, const sp<GraphicBuffer>& buffer) {
if (!isValidDisplay(displayId)) {
ALOGE("setOutputBuffer: Display %d is not valid", displayId);
return BAD_INDEX;
}
auto& hwcDisplay = mDisplayData[displayId].hwcDisplay;
auto displayType = HWC2::DisplayType::Invalid;
auto error = hwcDisplay->getType(&displayType);
if (error != HWC2::Error::None) {
ALOGE("setOutputBuffer: Failed to determine type of display %d",
displayId);
return NAME_NOT_FOUND;
}
if (displayType != HWC2::DisplayType::Virtual) {
ALOGE("setOutputBuffer: Display %d is not virtual", displayId);
return INVALID_OPERATION;
}
error = hwcDisplay->setOutputBuffer(buffer, acquireFence);
if (error != HWC2::Error::None) {
ALOGE("setOutputBuffer: Failed to set buffer on display %d: %s (%d)",
displayId, to_string(error).c_str(),
static_cast<int32_t>(error));
return UNKNOWN_ERROR;
}
return NO_ERROR;
}
void HWComposer::clearReleaseFences(int32_t displayId) {
if (!isValidDisplay(displayId)) {
ALOGE("clearReleaseFences: Display %d is not valid", displayId);
return;
}
mDisplayData[displayId].releaseFences.clear();
}
std::unique_ptr<HdrCapabilities> HWComposer::getHdrCapabilities(
int32_t displayId) {
if (!isValidDisplay(displayId)) {
ALOGE("getHdrCapabilities: Display %d is not valid", displayId);
return nullptr;
}
auto& hwcDisplay = mDisplayData[displayId].hwcDisplay;
std::unique_ptr<HdrCapabilities> capabilities;
auto error = hwcDisplay->getHdrCapabilities(&capabilities);
if (error != HWC2::Error::None) {
ALOGE("getOutputCapabilities: Failed to get capabilities on display %d:"
" %s (%d)", displayId, to_string(error).c_str(),
static_cast<int32_t>(error));
return nullptr;
}
return capabilities;
}
// Converts a PixelFormat to a human-readable string. Max 11 chars.
// (Could use a table of prefab String8 objects.)
/*
static String8 getFormatStr(PixelFormat format) {
switch (format) {
case PIXEL_FORMAT_RGBA_8888: return String8("RGBA_8888");
case PIXEL_FORMAT_RGBX_8888: return String8("RGBx_8888");
case PIXEL_FORMAT_RGB_888: return String8("RGB_888");
case PIXEL_FORMAT_RGB_565: return String8("RGB_565");
case PIXEL_FORMAT_BGRA_8888: return String8("BGRA_8888");
case HAL_PIXEL_FORMAT_IMPLEMENTATION_DEFINED:
return String8("ImplDef");
default:
String8 result;
result.appendFormat("? %08x", format);
return result;
}
}
*/
void HWComposer::dump(String8& result) const {
// TODO: In order to provide a dump equivalent to HWC1, we need to shadow
// all the state going into the layers. This is probably better done in
// Layer itself, but it's going to take a bit of work to get there.
result.append(mHwcDevice->dump().c_str());
}
// ---------------------------------------------------------------------------
HWComposer::DisplayData::DisplayData()
: hasClientComposition(false),
hasDeviceComposition(false),
hwcDisplay(),
lastPresentFence(Fence::NO_FENCE),
outbufHandle(nullptr),
outbufAcquireFence(Fence::NO_FENCE),
vsyncEnabled(HWC2::Vsync::Disable) {
ALOGV("Created new DisplayData");
}
HWComposer::DisplayData::~DisplayData() {
}
void HWComposer::DisplayData::reset() {
ALOGV("DisplayData reset");
*this = DisplayData();
}
// ---------------------------------------------------------------------------
}; // namespace android