blob: ded2b06fb3cf7d5fdbe7299a10a9f6731952a8ba [file] [log] [blame]
/*
* Copyright (C) 2017 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "CacheManager.h"
#include "DeviceInfo.h"
#include "Layer.h"
#include "Properties.h"
#include "RenderThread.h"
#include "pipeline/skia/ATraceMemoryDump.h"
#include "pipeline/skia/ShaderCache.h"
#include "pipeline/skia/SkiaMemoryTracer.h"
#include "renderstate/RenderState.h"
#include "thread/CommonPool.h"
#include <utils/Trace.h>
#include <GrContextOptions.h>
#include <SkExecutor.h>
#include <SkGraphics.h>
#include <SkMathPriv.h>
#include <math.h>
#include <set>
namespace android {
namespace uirenderer {
namespace renderthread {
// This multiplier was selected based on historical review of cache sizes relative
// to the screen resolution. This is meant to be a conservative default based on
// that analysis. The 4.0f is used because the default pixel format is assumed to
// be ARGB_8888.
#define SURFACE_SIZE_MULTIPLIER (12.0f * 4.0f)
#define BACKGROUND_RETENTION_PERCENTAGE (0.5f)
CacheManager::CacheManager()
: mMaxSurfaceArea(DeviceInfo::getWidth() * DeviceInfo::getHeight())
, mMaxResourceBytes(mMaxSurfaceArea * SURFACE_SIZE_MULTIPLIER)
, mBackgroundResourceBytes(mMaxResourceBytes * BACKGROUND_RETENTION_PERCENTAGE)
// This sets the maximum size for a single texture atlas in the GPU font cache. If
// necessary, the cache can allocate additional textures that are counted against the
// total cache limits provided to Skia.
, mMaxGpuFontAtlasBytes(GrNextSizePow2(mMaxSurfaceArea))
// This sets the maximum size of the CPU font cache to be at least the same size as the
// total number of GPU font caches (i.e. 4 separate GPU atlases).
, mMaxCpuFontCacheBytes(
std::max(mMaxGpuFontAtlasBytes * 4, SkGraphics::GetFontCacheLimit()))
, mBackgroundCpuFontCacheBytes(mMaxCpuFontCacheBytes * BACKGROUND_RETENTION_PERCENTAGE) {
SkGraphics::SetFontCacheLimit(mMaxCpuFontCacheBytes);
}
void CacheManager::reset(sk_sp<GrDirectContext> context) {
if (context != mGrContext) {
destroy();
}
if (context) {
mGrContext = std::move(context);
mGrContext->setResourceCacheLimit(mMaxResourceBytes);
}
}
void CacheManager::destroy() {
// cleanup any caches here as the GrContext is about to go away...
mGrContext.reset(nullptr);
}
class CommonPoolExecutor : public SkExecutor {
public:
virtual void add(std::function<void(void)> func) override { CommonPool::post(std::move(func)); }
};
static CommonPoolExecutor sDefaultExecutor;
void CacheManager::configureContext(GrContextOptions* contextOptions, const void* identity,
ssize_t size) {
contextOptions->fAllowPathMaskCaching = true;
contextOptions->fGlyphCacheTextureMaximumBytes = mMaxGpuFontAtlasBytes;
contextOptions->fExecutor = &sDefaultExecutor;
auto& cache = skiapipeline::ShaderCache::get();
cache.initShaderDiskCache(identity, size);
contextOptions->fPersistentCache = &cache;
contextOptions->fGpuPathRenderers &= ~GpuPathRenderers::kCoverageCounting;
}
void CacheManager::trimMemory(TrimMemoryMode mode) {
if (!mGrContext) {
return;
}
// flush and submit all work to the gpu and wait for it to finish
mGrContext->flushAndSubmit(/*syncCpu=*/true);
switch (mode) {
case TrimMemoryMode::Complete:
mGrContext->freeGpuResources();
SkGraphics::PurgeAllCaches();
break;
case TrimMemoryMode::UiHidden:
// Here we purge all the unlocked scratch resources and then toggle the resources cache
// limits between the background and max amounts. This causes the unlocked resources
// that have persistent data to be purged in LRU order.
mGrContext->purgeUnlockedResources(true);
mGrContext->setResourceCacheLimit(mBackgroundResourceBytes);
mGrContext->setResourceCacheLimit(mMaxResourceBytes);
SkGraphics::SetFontCacheLimit(mBackgroundCpuFontCacheBytes);
SkGraphics::SetFontCacheLimit(mMaxCpuFontCacheBytes);
break;
}
}
void CacheManager::trimStaleResources() {
if (!mGrContext) {
return;
}
mGrContext->flushAndSubmit();
mGrContext->purgeResourcesNotUsedInMs(std::chrono::seconds(30));
}
void CacheManager::getMemoryUsage(size_t* cpuUsage, size_t* gpuUsage) {
*cpuUsage = 0;
*gpuUsage = 0;
if (!mGrContext) {
return;
}
skiapipeline::SkiaMemoryTracer cpuTracer("category", true);
SkGraphics::DumpMemoryStatistics(&cpuTracer);
*cpuUsage += cpuTracer.total();
skiapipeline::SkiaMemoryTracer gpuTracer("category", true);
mGrContext->dumpMemoryStatistics(&gpuTracer);
*gpuUsage += gpuTracer.total();
}
void CacheManager::dumpMemoryUsage(String8& log, const RenderState* renderState) {
if (!mGrContext) {
log.appendFormat("No valid cache instance.\n");
return;
}
std::vector<skiapipeline::ResourcePair> cpuResourceMap = {
{"skia/sk_resource_cache/bitmap_", "Bitmaps"},
{"skia/sk_resource_cache/rrect-blur_", "Masks"},
{"skia/sk_resource_cache/rects-blur_", "Masks"},
{"skia/sk_resource_cache/tessellated", "Shadows"},
{"skia/sk_glyph_cache", "Glyph Cache"},
};
skiapipeline::SkiaMemoryTracer cpuTracer(cpuResourceMap, false);
SkGraphics::DumpMemoryStatistics(&cpuTracer);
if (cpuTracer.hasOutput()) {
log.appendFormat("CPU Caches:\n");
cpuTracer.logOutput(log);
log.appendFormat(" Glyph Count: %d \n", SkGraphics::GetFontCacheCountUsed());
log.appendFormat("Total CPU memory usage:\n");
cpuTracer.logTotals(log);
}
skiapipeline::SkiaMemoryTracer gpuTracer("category", true);
mGrContext->dumpMemoryStatistics(&gpuTracer);
if (gpuTracer.hasOutput()) {
log.appendFormat("GPU Caches:\n");
gpuTracer.logOutput(log);
}
if (renderState && renderState->mActiveLayers.size() > 0) {
log.appendFormat("Layer Info:\n");
const char* layerType = Properties::getRenderPipelineType() == RenderPipelineType::SkiaGL
? "GlLayer"
: "VkLayer";
size_t layerMemoryTotal = 0;
for (std::set<Layer*>::iterator it = renderState->mActiveLayers.begin();
it != renderState->mActiveLayers.end(); it++) {
const Layer* layer = *it;
log.appendFormat(" %s size %dx%d\n", layerType, layer->getWidth(),
layer->getHeight());
layerMemoryTotal += layer->getWidth() * layer->getHeight() * 4;
}
log.appendFormat(" Layers Total %6.2f KB (numLayers = %zu)\n",
layerMemoryTotal / 1024.0f, renderState->mActiveLayers.size());
}
log.appendFormat("Total GPU memory usage:\n");
gpuTracer.logTotals(log);
}
void CacheManager::onFrameCompleted() {
if (ATRACE_ENABLED()) {
static skiapipeline::ATraceMemoryDump tracer;
tracer.startFrame();
SkGraphics::DumpMemoryStatistics(&tracer);
if (mGrContext) {
mGrContext->dumpMemoryStatistics(&tracer);
}
tracer.logTraces();
}
}
void CacheManager::performDeferredCleanup(nsecs_t cleanupOlderThanMillis) {
if (mGrContext) {
mGrContext->performDeferredCleanup(
std::chrono::milliseconds(cleanupOlderThanMillis),
/* scratchResourcesOnly */true);
}
}
} /* namespace renderthread */
} /* namespace uirenderer */
} /* namespace android */