blob: ad171da0511c24a105af0d10620a80733e8d5a7f [file] [log] [blame]
#include "Collation.h"
#include "atoms_info_writer.h"
#if !defined(STATS_SCHEMA_LEGACY)
#include "java_writer.h"
#endif
#include "java_writer_q.h"
#include "utils.h"
#include "frameworks/base/cmds/statsd/src/atoms.pb.h"
#include <map>
#include <set>
#include <vector>
#include <getopt.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
using namespace google::protobuf;
using namespace std;
namespace android {
namespace stats_log_api_gen {
using android::os::statsd::Atom;
static int write_stats_log_cpp(FILE *out, const Atoms &atoms, const AtomDecl &attributionDecl,
const string& moduleName, const string& cppNamespace,
const string& importHeader) {
// Print prelude
fprintf(out, "// This file is autogenerated\n");
fprintf(out, "\n");
fprintf(out, "#include <mutex>\n");
fprintf(out, "#include <chrono>\n");
fprintf(out, "#include <thread>\n");
fprintf(out, "#ifdef __ANDROID__\n");
fprintf(out, "#include <cutils/properties.h>\n");
fprintf(out, "#endif\n");
fprintf(out, "#include <stats_event_list.h>\n");
fprintf(out, "#include <log/log.h>\n");
fprintf(out, "#include <%s>\n", importHeader.c_str());
fprintf(out, "#include <utils/SystemClock.h>\n");
fprintf(out, "\n");
write_namespace(out, cppNamespace);
fprintf(out, "// the single event tag id for all stats logs\n");
fprintf(out, "const static int kStatsEventTag = 1937006964;\n");
fprintf(out, "#ifdef __ANDROID__\n");
fprintf(out, "const static bool kStatsdEnabled = property_get_bool(\"ro.statsd.enable\", true);\n");
fprintf(out, "#else\n");
fprintf(out, "const static bool kStatsdEnabled = false;\n");
fprintf(out, "#endif\n");
fprintf(out, "int64_t lastRetryTimestampNs = -1;\n");
fprintf(out, "const int64_t kMinRetryIntervalNs = NS_PER_SEC * 60 * 20; // 20 minutes\n");
fprintf(out, "static std::mutex mLogdRetryMutex;\n");
// Print write methods
fprintf(out, "\n");
for (auto signature_to_modules_it = atoms.signatures_to_modules.begin();
signature_to_modules_it != atoms.signatures_to_modules.end(); signature_to_modules_it++) {
if (!signature_needed_for_module(signature_to_modules_it->second, moduleName)) {
continue;
}
vector<java_type_t> signature = signature_to_modules_it->first;
int argIndex;
fprintf(out, "int\n");
fprintf(out, "try_stats_write(int32_t code");
argIndex = 1;
for (vector<java_type_t>::const_iterator arg = signature.begin();
arg != signature.end(); arg++) {
if (*arg == JAVA_TYPE_ATTRIBUTION_CHAIN) {
for (auto chainField : attributionDecl.fields) {
if (chainField.javaType == JAVA_TYPE_STRING) {
fprintf(out, ", const std::vector<%s>& %s",
cpp_type_name(chainField.javaType),
chainField.name.c_str());
} else {
fprintf(out, ", const %s* %s, size_t %s_length",
cpp_type_name(chainField.javaType),
chainField.name.c_str(), chainField.name.c_str());
}
}
} else if (*arg == JAVA_TYPE_KEY_VALUE_PAIR) {
fprintf(out, ", const std::map<int, int32_t>& arg%d_1, "
"const std::map<int, int64_t>& arg%d_2, "
"const std::map<int, char const*>& arg%d_3, "
"const std::map<int, float>& arg%d_4",
argIndex, argIndex, argIndex, argIndex);
} else {
fprintf(out, ", %s arg%d", cpp_type_name(*arg), argIndex);
}
argIndex++;
}
fprintf(out, ")\n");
fprintf(out, "{\n");
argIndex = 1;
fprintf(out, " if (kStatsdEnabled) {\n");
fprintf(out, " stats_event_list event(kStatsEventTag);\n");
fprintf(out, " event << android::elapsedRealtimeNano();\n\n");
fprintf(out, " event << code;\n\n");
for (vector<java_type_t>::const_iterator arg = signature.begin();
arg != signature.end(); arg++) {
if (*arg == JAVA_TYPE_ATTRIBUTION_CHAIN) {
for (const auto &chainField : attributionDecl.fields) {
if (chainField.javaType == JAVA_TYPE_STRING) {
fprintf(out, " if (%s_length != %s.size()) {\n",
attributionDecl.fields.front().name.c_str(), chainField.name.c_str());
fprintf(out, " return -EINVAL;\n");
fprintf(out, " }\n");
}
}
fprintf(out, "\n event.begin();\n");
fprintf(out, " for (size_t i = 0; i < %s_length; ++i) {\n",
attributionDecl.fields.front().name.c_str());
fprintf(out, " event.begin();\n");
for (const auto &chainField : attributionDecl.fields) {
if (chainField.javaType == JAVA_TYPE_STRING) {
fprintf(out, " if (%s[i] != NULL) {\n", chainField.name.c_str());
fprintf(out, " event << %s[i];\n", chainField.name.c_str());
fprintf(out, " } else {\n");
fprintf(out, " event << \"\";\n");
fprintf(out, " }\n");
} else {
fprintf(out, " event << %s[i];\n", chainField.name.c_str());
}
}
fprintf(out, " event.end();\n");
fprintf(out, " }\n");
fprintf(out, " event.end();\n\n");
} else if (*arg == JAVA_TYPE_KEY_VALUE_PAIR) {
fprintf(out, " event.begin();\n\n");
fprintf(out, " for (const auto& it : arg%d_1) {\n", argIndex);
fprintf(out, " event.begin();\n");
fprintf(out, " event << it.first;\n");
fprintf(out, " event << it.second;\n");
fprintf(out, " event.end();\n");
fprintf(out, " }\n");
fprintf(out, " for (const auto& it : arg%d_2) {\n", argIndex);
fprintf(out, " event.begin();\n");
fprintf(out, " event << it.first;\n");
fprintf(out, " event << it.second;\n");
fprintf(out, " event.end();\n");
fprintf(out, " }\n");
fprintf(out, " for (const auto& it : arg%d_3) {\n", argIndex);
fprintf(out, " event.begin();\n");
fprintf(out, " event << it.first;\n");
fprintf(out, " event << it.second;\n");
fprintf(out, " event.end();\n");
fprintf(out, " }\n");
fprintf(out, " for (const auto& it : arg%d_4) {\n", argIndex);
fprintf(out, " event.begin();\n");
fprintf(out, " event << it.first;\n");
fprintf(out, " event << it.second;\n");
fprintf(out, " event.end();\n");
fprintf(out, " }\n");
fprintf(out, " event.end();\n\n");
} else if (*arg == JAVA_TYPE_BYTE_ARRAY) {
fprintf(out,
" event.AppendCharArray(arg%d.arg, "
"arg%d.arg_length);\n",
argIndex, argIndex);
} else {
if (*arg == JAVA_TYPE_STRING) {
fprintf(out, " if (arg%d == NULL) {\n", argIndex);
fprintf(out, " arg%d = \"\";\n", argIndex);
fprintf(out, " }\n");
}
fprintf(out, " event << arg%d;\n", argIndex);
}
argIndex++;
}
fprintf(out, " return event.write(LOG_ID_STATS);\n");
fprintf(out, " } else {\n");
fprintf(out, " return 1;\n");
fprintf(out, " }\n");
fprintf(out, "}\n");
fprintf(out, "\n");
}
for (auto signature_to_modules_it = atoms.signatures_to_modules.begin();
signature_to_modules_it != atoms.signatures_to_modules.end(); signature_to_modules_it++) {
if (!signature_needed_for_module(signature_to_modules_it->second, moduleName)) {
continue;
}
vector<java_type_t> signature = signature_to_modules_it->first;
int argIndex;
fprintf(out, "int\n");
fprintf(out, "stats_write(int32_t code");
argIndex = 1;
for (vector<java_type_t>::const_iterator arg = signature.begin();
arg != signature.end(); arg++) {
if (*arg == JAVA_TYPE_ATTRIBUTION_CHAIN) {
for (auto chainField : attributionDecl.fields) {
if (chainField.javaType == JAVA_TYPE_STRING) {
fprintf(out, ", const std::vector<%s>& %s",
cpp_type_name(chainField.javaType),
chainField.name.c_str());
} else {
fprintf(out, ", const %s* %s, size_t %s_length",
cpp_type_name(chainField.javaType),
chainField.name.c_str(), chainField.name.c_str());
}
}
} else if (*arg == JAVA_TYPE_KEY_VALUE_PAIR) {
fprintf(out,
", const std::map<int, int32_t>& arg%d_1, "
"const std::map<int, int64_t>& arg%d_2, "
"const std::map<int, char const*>& arg%d_3, "
"const std::map<int, float>& arg%d_4",
argIndex, argIndex, argIndex, argIndex);
} else {
fprintf(out, ", %s arg%d", cpp_type_name(*arg), argIndex);
}
argIndex++;
}
fprintf(out, ")\n");
fprintf(out, "{\n");
fprintf(out, " int ret = 0;\n");
fprintf(out, " for(int retry = 0; retry < 2; ++retry) {\n");
fprintf(out, " ret = try_stats_write(code");
argIndex = 1;
for (vector<java_type_t>::const_iterator arg = signature.begin();
arg != signature.end(); arg++) {
if (*arg == JAVA_TYPE_ATTRIBUTION_CHAIN) {
for (auto chainField : attributionDecl.fields) {
if (chainField.javaType == JAVA_TYPE_STRING) {
fprintf(out, ", %s",
chainField.name.c_str());
} else {
fprintf(out, ", %s, %s_length",
chainField.name.c_str(), chainField.name.c_str());
}
}
} else if (*arg == JAVA_TYPE_KEY_VALUE_PAIR) {
fprintf(out, ", arg%d_1, arg%d_2, arg%d_3, arg%d_4", argIndex,
argIndex, argIndex, argIndex);
} else {
fprintf(out, ", arg%d", argIndex);
}
argIndex++;
}
fprintf(out, ");\n");
fprintf(out, " if (ret >= 0) { break; }\n");
fprintf(out, " {\n");
fprintf(out, " std::lock_guard<std::mutex> lock(mLogdRetryMutex);\n");
fprintf(out, " if ((android::elapsedRealtimeNano() - lastRetryTimestampNs) <= "
"kMinRetryIntervalNs) break;\n");
fprintf(out, " lastRetryTimestampNs = android::elapsedRealtimeNano();\n");
fprintf(out, " }\n");
fprintf(out, " std::this_thread::sleep_for(std::chrono::milliseconds(10));\n");
fprintf(out, " }\n");
fprintf(out, " if (ret < 0) {\n");
fprintf(out, " note_log_drop(ret, code);\n");
fprintf(out, " }\n");
fprintf(out, " return ret;\n");
fprintf(out, "}\n");
fprintf(out, "\n");
}
for (auto signature_it = atoms.non_chained_signatures_to_modules.begin();
signature_it != atoms.non_chained_signatures_to_modules.end(); signature_it++) {
if (!signature_needed_for_module(signature_it->second, moduleName)) {
continue;
}
vector<java_type_t> signature = signature_it->first;
int argIndex;
fprintf(out, "int\n");
fprintf(out, "try_stats_write_non_chained(int32_t code");
argIndex = 1;
for (vector<java_type_t>::const_iterator arg = signature.begin();
arg != signature.end(); arg++) {
fprintf(out, ", %s arg%d", cpp_type_name(*arg), argIndex);
argIndex++;
}
fprintf(out, ")\n");
fprintf(out, "{\n");
argIndex = 1;
fprintf(out, " if (kStatsdEnabled) {\n");
fprintf(out, " stats_event_list event(kStatsEventTag);\n");
fprintf(out, " event << android::elapsedRealtimeNano();\n\n");
fprintf(out, " event << code;\n\n");
for (vector<java_type_t>::const_iterator arg = signature.begin();
arg != signature.end(); arg++) {
if (argIndex == 1) {
fprintf(out, " event.begin();\n\n");
fprintf(out, " event.begin();\n");
}
if (*arg == JAVA_TYPE_STRING) {
fprintf(out, " if (arg%d == NULL) {\n", argIndex);
fprintf(out, " arg%d = \"\";\n", argIndex);
fprintf(out, " }\n");
}
if (*arg == JAVA_TYPE_BYTE_ARRAY) {
fprintf(out,
" event.AppendCharArray(arg%d.arg, "
"arg%d.arg_length);",
argIndex, argIndex);
} else {
fprintf(out, " event << arg%d;\n", argIndex);
}
if (argIndex == 2) {
fprintf(out, " event.end();\n\n");
fprintf(out, " event.end();\n\n");
}
argIndex++;
}
fprintf(out, " return event.write(LOG_ID_STATS);\n");
fprintf(out, " } else {\n");
fprintf(out, " return 1;\n");
fprintf(out, " }\n");
fprintf(out, "}\n");
fprintf(out, "\n");
}
for (auto signature_it = atoms.non_chained_signatures_to_modules.begin();
signature_it != atoms.non_chained_signatures_to_modules.end(); signature_it++) {
if (!signature_needed_for_module(signature_it->second, moduleName)) {
continue;
}
vector<java_type_t> signature = signature_it->first;
int argIndex;
fprintf(out, "int\n");
fprintf(out, "stats_write_non_chained(int32_t code");
argIndex = 1;
for (vector<java_type_t>::const_iterator arg = signature.begin();
arg != signature.end(); arg++) {
fprintf(out, ", %s arg%d", cpp_type_name(*arg), argIndex);
argIndex++;
}
fprintf(out, ")\n");
fprintf(out, "{\n");
fprintf(out, " int ret = 0;\n");
fprintf(out, " for(int retry = 0; retry < 2; ++retry) {\n");
fprintf(out, " ret = try_stats_write_non_chained(code");
argIndex = 1;
for (vector<java_type_t>::const_iterator arg = signature.begin();
arg != signature.end(); arg++) {
fprintf(out, ", arg%d", argIndex);
argIndex++;
}
fprintf(out, ");\n");
fprintf(out, " if (ret >= 0) { break; }\n");
fprintf(out, " {\n");
fprintf(out, " std::lock_guard<std::mutex> lock(mLogdRetryMutex);\n");
fprintf(out, " if ((android::elapsedRealtimeNano() - lastRetryTimestampNs) <= "
"kMinRetryIntervalNs) break;\n");
fprintf(out, " lastRetryTimestampNs = android::elapsedRealtimeNano();\n");
fprintf(out, " }\n");
fprintf(out, " std::this_thread::sleep_for(std::chrono::milliseconds(10));\n");
fprintf(out, " }\n");
fprintf(out, " if (ret < 0) {\n");
fprintf(out, " note_log_drop(ret, code);\n");
fprintf(out, " }\n");
fprintf(out, " return ret;\n\n");
fprintf(out, "}\n");
fprintf(out, "\n");
}
// Print footer
fprintf(out, "\n");
write_closing_namespace(out, cppNamespace);
return 0;
}
static void write_cpp_method_header(
FILE* out,
const string& method_name,
const map<vector<java_type_t>, set<string>>& signatures_to_modules,
const AtomDecl &attributionDecl, const string& moduleName) {
for (auto signature_to_modules_it = signatures_to_modules.begin();
signature_to_modules_it != signatures_to_modules.end(); signature_to_modules_it++) {
// Skip if this signature is not needed for the module.
if (!signature_needed_for_module(signature_to_modules_it->second, moduleName)) {
continue;
}
vector<java_type_t> signature = signature_to_modules_it->first;
fprintf(out, "int %s(int32_t code", method_name.c_str());
int argIndex = 1;
for (vector<java_type_t>::const_iterator arg = signature.begin();
arg != signature.end(); arg++) {
if (*arg == JAVA_TYPE_ATTRIBUTION_CHAIN) {
for (auto chainField : attributionDecl.fields) {
if (chainField.javaType == JAVA_TYPE_STRING) {
fprintf(out, ", const std::vector<%s>& %s",
cpp_type_name(chainField.javaType), chainField.name.c_str());
} else {
fprintf(out, ", const %s* %s, size_t %s_length",
cpp_type_name(chainField.javaType),
chainField.name.c_str(), chainField.name.c_str());
}
}
} else if (*arg == JAVA_TYPE_KEY_VALUE_PAIR) {
fprintf(out, ", const std::map<int, int32_t>& arg%d_1, "
"const std::map<int, int64_t>& arg%d_2, "
"const std::map<int, char const*>& arg%d_3, "
"const std::map<int, float>& arg%d_4",
argIndex, argIndex, argIndex, argIndex);
} else {
fprintf(out, ", %s arg%d", cpp_type_name(*arg), argIndex);
}
argIndex++;
}
fprintf(out, ");\n");
}
}
static int
write_stats_log_header(FILE* out, const Atoms& atoms, const AtomDecl &attributionDecl,
const string& moduleName, const string& cppNamespace)
{
// Print prelude
fprintf(out, "// This file is autogenerated\n");
fprintf(out, "\n");
fprintf(out, "#pragma once\n");
fprintf(out, "\n");
fprintf(out, "#include <stdint.h>\n");
fprintf(out, "#include <vector>\n");
fprintf(out, "#include <map>\n");
fprintf(out, "#include <set>\n");
fprintf(out, "\n");
write_namespace(out, cppNamespace);
fprintf(out, "\n");
fprintf(out, "/*\n");
fprintf(out, " * API For logging statistics events.\n");
fprintf(out, " */\n");
fprintf(out, "\n");
write_native_atom_constants(out, atoms, attributionDecl, moduleName);
// Print constants for the enum values.
fprintf(out, "//\n");
fprintf(out, "// Constants for enum values\n");
fprintf(out, "//\n\n");
for (set<AtomDecl>::const_iterator atom = atoms.decls.begin();
atom != atoms.decls.end(); atom++) {
// Skip if the atom is not needed for the module.
if (!atom_needed_for_module(*atom, moduleName)) {
continue;
}
for (vector<AtomField>::const_iterator field = atom->fields.begin();
field != atom->fields.end(); field++) {
if (field->javaType == JAVA_TYPE_ENUM) {
fprintf(out, "// Values for %s.%s\n", atom->message.c_str(),
field->name.c_str());
for (map<int, string>::const_iterator value = field->enumValues.begin();
value != field->enumValues.end(); value++) {
fprintf(out, "const int32_t %s__%s__%s = %d;\n",
make_constant_name(atom->message).c_str(),
make_constant_name(field->name).c_str(),
make_constant_name(value->second).c_str(),
value->first);
}
fprintf(out, "\n");
}
}
}
fprintf(out, "struct BytesField {\n");
fprintf(out,
" BytesField(char const* array, size_t len) : arg(array), "
"arg_length(len) {}\n");
fprintf(out, " char const* arg;\n");
fprintf(out, " size_t arg_length;\n");
fprintf(out, "};\n");
fprintf(out, "\n");
// Print write methods
fprintf(out, "//\n");
fprintf(out, "// Write methods\n");
fprintf(out, "//\n");
write_cpp_method_header(out, "stats_write", atoms.signatures_to_modules, attributionDecl,
moduleName);
fprintf(out, "//\n");
fprintf(out, "// Write flattened methods\n");
fprintf(out, "//\n");
write_cpp_method_header(out, "stats_write_non_chained", atoms.non_chained_signatures_to_modules,
attributionDecl, moduleName);
fprintf(out, "\n");
write_closing_namespace(out, cppNamespace);
return 0;
}
// Hide the JNI write helpers that are not used in the new schema.
// TODO(b/145100015): Remove this and other JNI related functionality once StatsEvent migration is
// complete.
#if defined(STATS_SCHEMA_LEGACY)
// JNI helpers.
static const char*
jni_type_name(java_type_t type)
{
switch (type) {
case JAVA_TYPE_BOOLEAN:
return "jboolean";
case JAVA_TYPE_INT:
case JAVA_TYPE_ENUM:
return "jint";
case JAVA_TYPE_LONG:
return "jlong";
case JAVA_TYPE_FLOAT:
return "jfloat";
case JAVA_TYPE_DOUBLE:
return "jdouble";
case JAVA_TYPE_STRING:
return "jstring";
case JAVA_TYPE_BYTE_ARRAY:
return "jbyteArray";
default:
return "UNKNOWN";
}
}
static const char*
jni_array_type_name(java_type_t type)
{
switch (type) {
case JAVA_TYPE_INT:
return "jintArray";
case JAVA_TYPE_FLOAT:
return "jfloatArray";
case JAVA_TYPE_STRING:
return "jobjectArray";
default:
return "UNKNOWN";
}
}
static string
jni_function_name(const string& method_name, const vector<java_type_t>& signature)
{
string result("StatsLog_" + method_name);
for (vector<java_type_t>::const_iterator arg = signature.begin();
arg != signature.end(); arg++) {
switch (*arg) {
case JAVA_TYPE_BOOLEAN:
result += "_boolean";
break;
case JAVA_TYPE_INT:
case JAVA_TYPE_ENUM:
result += "_int";
break;
case JAVA_TYPE_LONG:
result += "_long";
break;
case JAVA_TYPE_FLOAT:
result += "_float";
break;
case JAVA_TYPE_DOUBLE:
result += "_double";
break;
case JAVA_TYPE_STRING:
result += "_String";
break;
case JAVA_TYPE_ATTRIBUTION_CHAIN:
result += "_AttributionChain";
break;
case JAVA_TYPE_KEY_VALUE_PAIR:
result += "_KeyValuePairs";
break;
case JAVA_TYPE_BYTE_ARRAY:
result += "_bytes";
break;
default:
result += "_UNKNOWN";
break;
}
}
return result;
}
static const char*
java_type_signature(java_type_t type)
{
switch (type) {
case JAVA_TYPE_BOOLEAN:
return "Z";
case JAVA_TYPE_INT:
case JAVA_TYPE_ENUM:
return "I";
case JAVA_TYPE_LONG:
return "J";
case JAVA_TYPE_FLOAT:
return "F";
case JAVA_TYPE_DOUBLE:
return "D";
case JAVA_TYPE_STRING:
return "Ljava/lang/String;";
case JAVA_TYPE_BYTE_ARRAY:
return "[B";
default:
return "UNKNOWN";
}
}
static string
jni_function_signature(const vector<java_type_t>& signature, const AtomDecl &attributionDecl)
{
string result("(I");
for (vector<java_type_t>::const_iterator arg = signature.begin();
arg != signature.end(); arg++) {
if (*arg == JAVA_TYPE_ATTRIBUTION_CHAIN) {
for (auto chainField : attributionDecl.fields) {
result += "[";
result += java_type_signature(chainField.javaType);
}
} else if (*arg == JAVA_TYPE_KEY_VALUE_PAIR) {
result += "Landroid/util/SparseArray;";
} else {
result += java_type_signature(*arg);
}
}
result += ")I";
return result;
}
static void write_key_value_map_jni(FILE* out) {
fprintf(out, " std::map<int, int32_t> int32_t_map;\n");
fprintf(out, " std::map<int, int64_t> int64_t_map;\n");
fprintf(out, " std::map<int, float> float_map;\n");
fprintf(out, " std::map<int, char const*> string_map;\n\n");
fprintf(out, " jclass jmap_class = env->FindClass(\"android/util/SparseArray\");\n");
fprintf(out, " jmethodID jget_size_method = env->GetMethodID(jmap_class, \"size\", \"()I\");\n");
fprintf(out, " jmethodID jget_key_method = env->GetMethodID(jmap_class, \"keyAt\", \"(I)I\");\n");
fprintf(out, " jmethodID jget_value_method = env->GetMethodID(jmap_class, \"valueAt\", \"(I)Ljava/lang/Object;\");\n\n");
fprintf(out, " std::vector<std::unique_ptr<ScopedUtfChars>> scoped_ufs;\n\n");
fprintf(out, " jclass jint_class = env->FindClass(\"java/lang/Integer\");\n");
fprintf(out, " jclass jlong_class = env->FindClass(\"java/lang/Long\");\n");
fprintf(out, " jclass jfloat_class = env->FindClass(\"java/lang/Float\");\n");
fprintf(out, " jclass jstring_class = env->FindClass(\"java/lang/String\");\n");
fprintf(out, " jmethodID jget_int_method = env->GetMethodID(jint_class, \"intValue\", \"()I\");\n");
fprintf(out, " jmethodID jget_long_method = env->GetMethodID(jlong_class, \"longValue\", \"()J\");\n");
fprintf(out, " jmethodID jget_float_method = env->GetMethodID(jfloat_class, \"floatValue\", \"()F\");\n\n");
fprintf(out, " jint jsize = env->CallIntMethod(value_map, jget_size_method);\n");
fprintf(out, " for(int i = 0; i < jsize; i++) {\n");
fprintf(out, " jint key = env->CallIntMethod(value_map, jget_key_method, i);\n");
fprintf(out, " jobject jvalue_obj = env->CallObjectMethod(value_map, jget_value_method, i);\n");
fprintf(out, " if (jvalue_obj == NULL) { continue; }\n");
fprintf(out, " if (env->IsInstanceOf(jvalue_obj, jint_class)) {\n");
fprintf(out, " int32_t_map[key] = env->CallIntMethod(jvalue_obj, jget_int_method);\n");
fprintf(out, " } else if (env->IsInstanceOf(jvalue_obj, jlong_class)) {\n");
fprintf(out, " int64_t_map[key] = env->CallLongMethod(jvalue_obj, jget_long_method);\n");
fprintf(out, " } else if (env->IsInstanceOf(jvalue_obj, jfloat_class)) {\n");
fprintf(out, " float_map[key] = env->CallFloatMethod(jvalue_obj, jget_float_method);\n");
fprintf(out, " } else if (env->IsInstanceOf(jvalue_obj, jstring_class)) {\n");
fprintf(out, " std::unique_ptr<ScopedUtfChars> utf(new ScopedUtfChars(env, (jstring)jvalue_obj));\n");
fprintf(out, " if (utf->c_str() != NULL) { string_map[key] = utf->c_str(); }\n");
fprintf(out, " scoped_ufs.push_back(std::move(utf));\n");
fprintf(out, " }\n");
fprintf(out, " }\n");
}
static int
write_stats_log_jni_method(FILE* out, const string& java_method_name, const string& cpp_method_name,
const map<vector<java_type_t>, set<string>>& signatures_to_modules,
const AtomDecl &attributionDecl) {
// Print write methods
for (auto signature_to_modules_it = signatures_to_modules.begin();
signature_to_modules_it != signatures_to_modules.end(); signature_to_modules_it++) {
vector<java_type_t> signature = signature_to_modules_it->first;
int argIndex;
fprintf(out, "static int\n");
fprintf(out, "%s(JNIEnv* env, jobject clazz UNUSED, jint code",
jni_function_name(java_method_name, signature).c_str());
argIndex = 1;
for (vector<java_type_t>::const_iterator arg = signature.begin();
arg != signature.end(); arg++) {
if (*arg == JAVA_TYPE_ATTRIBUTION_CHAIN) {
for (auto chainField : attributionDecl.fields) {
fprintf(out, ", %s %s", jni_array_type_name(chainField.javaType),
chainField.name.c_str());
}
} else if (*arg == JAVA_TYPE_KEY_VALUE_PAIR) {
fprintf(out, ", jobject value_map");
} else {
fprintf(out, ", %s arg%d", jni_type_name(*arg), argIndex);
}
argIndex++;
}
fprintf(out, ")\n");
fprintf(out, "{\n");
// Prepare strings
argIndex = 1;
bool hadStringOrChain = false;
bool isKeyValuePairAtom = false;
for (vector<java_type_t>::const_iterator arg = signature.begin();
arg != signature.end(); arg++) {
if (*arg == JAVA_TYPE_STRING) {
hadStringOrChain = true;
fprintf(out, " const char* str%d;\n", argIndex);
fprintf(out, " if (arg%d != NULL) {\n", argIndex);
fprintf(out, " str%d = env->GetStringUTFChars(arg%d, NULL);\n",
argIndex, argIndex);
fprintf(out, " } else {\n");
fprintf(out, " str%d = NULL;\n", argIndex);
fprintf(out, " }\n");
} else if (*arg == JAVA_TYPE_BYTE_ARRAY) {
hadStringOrChain = true;
fprintf(out, " jbyte* jbyte_array%d;\n", argIndex);
fprintf(out, " const char* str%d;\n", argIndex);
fprintf(out, " int str%d_length = 0;\n", argIndex);
fprintf(out,
" if (arg%d != NULL && env->GetArrayLength(arg%d) > "
"0) {\n",
argIndex, argIndex);
fprintf(out,
" jbyte_array%d = "
"env->GetByteArrayElements(arg%d, NULL);\n",
argIndex, argIndex);
fprintf(out,
" str%d_length = env->GetArrayLength(arg%d);\n",
argIndex, argIndex);
fprintf(out,
" str%d = "
"reinterpret_cast<char*>(env->GetByteArrayElements(arg%"
"d, NULL));\n",
argIndex, argIndex);
fprintf(out, " } else {\n");
fprintf(out, " jbyte_array%d = NULL;\n", argIndex);
fprintf(out, " str%d = NULL;\n", argIndex);
fprintf(out, " }\n");
fprintf(out,
" android::util::BytesField bytesField%d(str%d, "
"str%d_length);",
argIndex, argIndex, argIndex);
} else if (*arg == JAVA_TYPE_ATTRIBUTION_CHAIN) {
hadStringOrChain = true;
for (auto chainField : attributionDecl.fields) {
fprintf(out, " size_t %s_length = env->GetArrayLength(%s);\n",
chainField.name.c_str(), chainField.name.c_str());
if (chainField.name != attributionDecl.fields.front().name) {
fprintf(out, " if (%s_length != %s_length) {\n",
chainField.name.c_str(),
attributionDecl.fields.front().name.c_str());
fprintf(out, " return -EINVAL;\n");
fprintf(out, " }\n");
}
if (chainField.javaType == JAVA_TYPE_INT) {
fprintf(out, " jint* %s_array = env->GetIntArrayElements(%s, NULL);\n",
chainField.name.c_str(), chainField.name.c_str());
} else if (chainField.javaType == JAVA_TYPE_STRING) {
fprintf(out, " std::vector<%s> %s_vec;\n",
cpp_type_name(chainField.javaType), chainField.name.c_str());
fprintf(out, " std::vector<ScopedUtfChars*> scoped_%s_vec;\n",
chainField.name.c_str());
fprintf(out, " for (size_t i = 0; i < %s_length; ++i) {\n",
chainField.name.c_str());
fprintf(out, " jstring jstr = "
"(jstring)env->GetObjectArrayElement(%s, i);\n",
chainField.name.c_str());
fprintf(out, " if (jstr == NULL) {\n");
fprintf(out, " %s_vec.push_back(NULL);\n",
chainField.name.c_str());
fprintf(out, " } else {\n");
fprintf(out, " ScopedUtfChars* scoped_%s = "
"new ScopedUtfChars(env, jstr);\n",
chainField.name.c_str());
fprintf(out, " %s_vec.push_back(scoped_%s->c_str());\n",
chainField.name.c_str(), chainField.name.c_str());
fprintf(out, " scoped_%s_vec.push_back(scoped_%s);\n",
chainField.name.c_str(), chainField.name.c_str());
fprintf(out, " }\n");
fprintf(out, " }\n");
}
fprintf(out, "\n");
}
} else if (*arg == JAVA_TYPE_KEY_VALUE_PAIR) {
isKeyValuePairAtom = true;
}
argIndex++;
}
// Emit this to quiet the unused parameter warning if there were no strings or attribution
// chains.
if (!hadStringOrChain && !isKeyValuePairAtom) {
fprintf(out, " (void)env;\n");
}
if (isKeyValuePairAtom) {
write_key_value_map_jni(out);
}
// stats_write call
argIndex = 1;
fprintf(out, "\n int ret = android::util::%s(code",
cpp_method_name.c_str());
for (vector<java_type_t>::const_iterator arg = signature.begin();
arg != signature.end(); arg++) {
if (*arg == JAVA_TYPE_ATTRIBUTION_CHAIN) {
for (auto chainField : attributionDecl.fields) {
if (chainField.javaType == JAVA_TYPE_INT) {
fprintf(out, ", (const %s*)%s_array, %s_length",
cpp_type_name(chainField.javaType),
chainField.name.c_str(), chainField.name.c_str());
} else if (chainField.javaType == JAVA_TYPE_STRING) {
fprintf(out, ", %s_vec", chainField.name.c_str());
}
}
} else if (*arg == JAVA_TYPE_KEY_VALUE_PAIR) {
fprintf(out, ", int32_t_map, int64_t_map, string_map, float_map");
} else if (*arg == JAVA_TYPE_BYTE_ARRAY) {
fprintf(out, ", bytesField%d", argIndex);
} else {
const char* argName =
(*arg == JAVA_TYPE_STRING) ? "str" : "arg";
fprintf(out, ", (%s)%s%d", cpp_type_name(*arg), argName, argIndex);
}
argIndex++;
}
fprintf(out, ");\n");
fprintf(out, "\n");
// Clean up strings
argIndex = 1;
for (vector<java_type_t>::const_iterator arg = signature.begin();
arg != signature.end(); arg++) {
if (*arg == JAVA_TYPE_STRING) {
fprintf(out, " if (str%d != NULL) {\n", argIndex);
fprintf(out, " env->ReleaseStringUTFChars(arg%d, str%d);\n",
argIndex, argIndex);
fprintf(out, " }\n");
} else if (*arg == JAVA_TYPE_BYTE_ARRAY) {
fprintf(out, " if (str%d != NULL) { \n", argIndex);
fprintf(out,
" env->ReleaseByteArrayElements(arg%d, "
"jbyte_array%d, 0);\n",
argIndex, argIndex);
fprintf(out, " }\n");
} else if (*arg == JAVA_TYPE_ATTRIBUTION_CHAIN) {
for (auto chainField : attributionDecl.fields) {
if (chainField.javaType == JAVA_TYPE_INT) {
fprintf(out, " env->ReleaseIntArrayElements(%s, %s_array, 0);\n",
chainField.name.c_str(), chainField.name.c_str());
} else if (chainField.javaType == JAVA_TYPE_STRING) {
fprintf(out, " for (size_t i = 0; i < scoped_%s_vec.size(); ++i) {\n",
chainField.name.c_str());
fprintf(out, " delete scoped_%s_vec[i];\n", chainField.name.c_str());
fprintf(out, " }\n");
}
}
}
argIndex++;
}
fprintf(out, " return ret;\n");
fprintf(out, "}\n");
fprintf(out, "\n");
}
return 0;
}
void write_jni_registration(FILE* out, const string& java_method_name,
const map<vector<java_type_t>, set<string>>& signatures_to_modules,
const AtomDecl &attributionDecl) {
for (auto signature_to_modules_it = signatures_to_modules.begin();
signature_to_modules_it != signatures_to_modules.end(); signature_to_modules_it++) {
vector<java_type_t> signature = signature_to_modules_it->first;
fprintf(out, " { \"%s\", \"%s\", (void*)%s },\n",
java_method_name.c_str(),
jni_function_signature(signature, attributionDecl).c_str(),
jni_function_name(java_method_name, signature).c_str());
}
}
#endif // JNI helpers.
static int
#if defined(STATS_SCHEMA_LEGACY)
write_stats_log_jni(FILE* out, const Atoms& atoms, const AtomDecl &attributionDecl)
#else
// Write empty JNI file that doesn't contain any JNI methods.
// TODO(b/145100015): remove this function and all JNI autogen code once StatsEvent migration is
// complete.
write_stats_log_jni(FILE* out)
#endif
{
// Print prelude
fprintf(out, "// This file is autogenerated\n");
fprintf(out, "\n");
#if defined(STATS_SCHEMA_LEGACY)
fprintf(out, "#include <statslog.h>\n");
fprintf(out, "\n");
fprintf(out, "#include <nativehelper/JNIHelp.h>\n");
fprintf(out, "#include <nativehelper/ScopedUtfChars.h>\n");
fprintf(out, "#include <utils/Vector.h>\n");
#endif
fprintf(out, "#include \"core_jni_helpers.h\"\n");
fprintf(out, "#include \"jni.h\"\n");
fprintf(out, "\n");
#if defined(STATS_SCHEMA_LEGACY)
fprintf(out, "#define UNUSED __attribute__((__unused__))\n");
fprintf(out, "\n");
#endif
fprintf(out, "namespace android {\n");
fprintf(out, "\n");
#if defined(STATS_SCHEMA_LEGACY)
write_stats_log_jni_method(out, "write", "stats_write", atoms.signatures_to_modules, attributionDecl);
write_stats_log_jni_method(out, "write_non_chained", "stats_write_non_chained",
atoms.non_chained_signatures_to_modules, attributionDecl);
#endif
// Print registration function table
fprintf(out, "/*\n");
fprintf(out, " * JNI registration.\n");
fprintf(out, " */\n");
fprintf(out, "static const JNINativeMethod gRegisterMethods[] = {\n");
#if defined(STATS_SCHEMA_LEGACY)
write_jni_registration(out, "write", atoms.signatures_to_modules, attributionDecl);
write_jni_registration(out, "write_non_chained", atoms.non_chained_signatures_to_modules,
attributionDecl);
#endif
fprintf(out, "};\n");
fprintf(out, "\n");
// Print registration function
fprintf(out, "int register_android_util_StatsLogInternal(JNIEnv* env) {\n");
fprintf(out, " return RegisterMethodsOrDie(\n");
fprintf(out, " env,\n");
fprintf(out, " \"android/util/StatsLogInternal\",\n");
fprintf(out, " gRegisterMethods, NELEM(gRegisterMethods));\n");
fprintf(out, "}\n");
fprintf(out, "\n");
fprintf(out, "} // namespace android\n");
return 0;
}
static void
print_usage()
{
fprintf(stderr, "usage: stats-log-api-gen OPTIONS\n");
fprintf(stderr, "\n");
fprintf(stderr, "OPTIONS\n");
fprintf(stderr, " --cpp FILENAME the header file to output for write helpers\n");
fprintf(stderr, " --header FILENAME the cpp file to output for write helpers\n");
fprintf(stderr,
" --atomsInfoCpp FILENAME the header file to output for statsd metadata\n");
fprintf(stderr, " --atomsInfoHeader FILENAME the cpp file to output for statsd metadata\n");
fprintf(stderr, " --help this message\n");
fprintf(stderr, " --java FILENAME the java file to output\n");
fprintf(stderr, " --jni FILENAME the jni file to output\n");
fprintf(stderr, " --module NAME optional, module name to generate outputs for\n");
fprintf(stderr, " --namespace COMMA,SEP,NAMESPACE required for cpp/header with module\n");
fprintf(stderr, " comma separated namespace of the files\n");
fprintf(stderr," --importHeader NAME required for cpp/jni to say which header to import "
"for write helpers\n");
fprintf(stderr," --atomsInfoImportHeader NAME required for cpp to say which header to import "
"for statsd metadata\n");
fprintf(stderr, " --javaPackage PACKAGE the package for the java file.\n");
fprintf(stderr, " required for java with module\n");
fprintf(stderr, " --javaClass CLASS the class name of the java class.\n");
fprintf(stderr, " Optional for Java with module.\n");
fprintf(stderr, " Default is \"StatsLogInternal\"\n");}
/**
* Do the argument parsing and execute the tasks.
*/
static int
run(int argc, char const*const* argv)
{
string cppFilename;
string headerFilename;
string javaFilename;
string jniFilename;
string atomsInfoCppFilename;
string atomsInfoHeaderFilename;
string moduleName = DEFAULT_MODULE_NAME;
string cppNamespace = DEFAULT_CPP_NAMESPACE;
string cppHeaderImport = DEFAULT_CPP_HEADER_IMPORT;
string atomsInfoCppHeaderImport = DEFAULT_ATOMS_INFO_CPP_HEADER_IMPORT;
string javaPackage = DEFAULT_JAVA_PACKAGE;
string javaClass = DEFAULT_JAVA_CLASS;
int index = 1;
while (index < argc) {
if (0 == strcmp("--help", argv[index])) {
print_usage();
return 0;
} else if (0 == strcmp("--cpp", argv[index])) {
index++;
if (index >= argc) {
print_usage();
return 1;
}
cppFilename = argv[index];
} else if (0 == strcmp("--header", argv[index])) {
index++;
if (index >= argc) {
print_usage();
return 1;
}
headerFilename = argv[index];
} else if (0 == strcmp("--java", argv[index])) {
index++;
if (index >= argc) {
print_usage();
return 1;
}
javaFilename = argv[index];
} else if (0 == strcmp("--jni", argv[index])) {
index++;
if (index >= argc) {
print_usage();
return 1;
}
jniFilename = argv[index];
} else if (0 == strcmp("--module", argv[index])) {
index++;
if (index >= argc) {
print_usage();
return 1;
}
moduleName = argv[index];
} else if (0 == strcmp("--namespace", argv[index])) {
index++;
if (index >= argc) {
print_usage();
return 1;
}
cppNamespace = argv[index];
} else if (0 == strcmp("--importHeader", argv[index])) {
index++;
if (index >= argc) {
print_usage();
return 1;
}
cppHeaderImport = argv[index];
} else if (0 == strcmp("--javaPackage", argv[index])) {
index++;
if (index >= argc) {
print_usage();
return 1;
}
javaPackage = argv[index];
} else if (0 == strcmp("--javaClass", argv[index])) {
index++;
if (index >= argc) {
print_usage();
return 1;
}
javaClass = argv[index];
} else if (0 == strcmp("--atomsInfoHeader", argv[index])) {
index++;
if (index >= argc) {
print_usage();
return 1;
}
atomsInfoHeaderFilename = argv[index];
} else if (0 == strcmp("--atomsInfoCpp", argv[index])) {
index++;
if (index >= argc) {
print_usage();
return 1;
}
atomsInfoCppFilename = argv[index];
} else if (0 == strcmp("--atomsInfoImportHeader", argv[index])) {
index++;
if (index >= argc) {
print_usage();
return 1;
}
atomsInfoCppHeaderImport = argv[index];
}
index++;
}
if (cppFilename.size() == 0
&& headerFilename.size() == 0
&& javaFilename.size() == 0
&& jniFilename.size() == 0
&& atomsInfoHeaderFilename.size() == 0
&& atomsInfoCppFilename.size() == 0) {
print_usage();
return 1;
}
// Collate the parameters
Atoms atoms;
int errorCount = collate_atoms(Atom::descriptor(), &atoms);
if (errorCount != 0) {
return 1;
}
AtomDecl attributionDecl;
vector<java_type_t> attributionSignature;
collate_atom(android::os::statsd::AttributionNode::descriptor(),
&attributionDecl, &attributionSignature);
// Write the atoms info .cpp file
if (atomsInfoCppFilename.size() != 0) {
FILE* out = fopen(atomsInfoCppFilename.c_str(), "w");
if (out == NULL) {
fprintf(stderr, "Unable to open file for write: %s\n", atomsInfoCppFilename.c_str());
return 1;
}
errorCount = android::stats_log_api_gen::write_atoms_info_cpp(
out, atoms, cppNamespace, atomsInfoCppHeaderImport, cppHeaderImport);
fclose(out);
}
// Write the atoms info .h file
if (atomsInfoHeaderFilename.size() != 0) {
FILE* out = fopen(atomsInfoHeaderFilename.c_str(), "w");
if (out == NULL) {
fprintf(stderr, "Unable to open file for write: %s\n", atomsInfoHeaderFilename.c_str());
return 1;
}
errorCount = android::stats_log_api_gen::write_atoms_info_header(out, atoms, cppNamespace);
fclose(out);
}
// Write the .cpp file
if (cppFilename.size() != 0) {
FILE* out = fopen(cppFilename.c_str(), "w");
if (out == NULL) {
fprintf(stderr, "Unable to open file for write: %s\n", cppFilename.c_str());
return 1;
}
// If this is for a specific module, the namespace must also be provided.
if (moduleName != DEFAULT_MODULE_NAME && cppNamespace == DEFAULT_CPP_NAMESPACE) {
fprintf(stderr, "Must supply --namespace if supplying a specific module\n");
return 1;
}
// If this is for a specific module, the header file to import must also be provided.
if (moduleName != DEFAULT_MODULE_NAME && cppHeaderImport == DEFAULT_CPP_HEADER_IMPORT) {
fprintf(stderr, "Must supply --headerImport if supplying a specific module\n");
return 1;
}
errorCount = android::stats_log_api_gen::write_stats_log_cpp(
out, atoms, attributionDecl, moduleName, cppNamespace, cppHeaderImport);
fclose(out);
}
// Write the .h file
if (headerFilename.size() != 0) {
FILE* out = fopen(headerFilename.c_str(), "w");
if (out == NULL) {
fprintf(stderr, "Unable to open file for write: %s\n", headerFilename.c_str());
return 1;
}
// If this is for a specific module, the namespace must also be provided.
if (moduleName != DEFAULT_MODULE_NAME && cppNamespace == DEFAULT_CPP_NAMESPACE) {
fprintf(stderr, "Must supply --namespace if supplying a specific module\n");
}
errorCount = android::stats_log_api_gen::write_stats_log_header(
out, atoms, attributionDecl, moduleName, cppNamespace);
fclose(out);
}
// Write the .java file
if (javaFilename.size() != 0) {
FILE* out = fopen(javaFilename.c_str(), "w");
if (out == NULL) {
fprintf(stderr, "Unable to open file for write: %s\n", javaFilename.c_str());
return 1;
}
// If this is for a specific module, the java package must also be provided.
if (moduleName != DEFAULT_MODULE_NAME && javaPackage== DEFAULT_JAVA_PACKAGE) {
fprintf(stderr, "Must supply --javaPackage if supplying a specific module\n");
return 1;
}
#if defined(STATS_SCHEMA_LEGACY)
if (moduleName == DEFAULT_MODULE_NAME) {
errorCount = android::stats_log_api_gen::write_stats_log_java_q(
out, atoms, attributionDecl);
} else {
errorCount = android::stats_log_api_gen::write_stats_log_java_q_for_module(
out, atoms, attributionDecl, moduleName, javaClass, javaPackage);
}
#else
if (moduleName == DEFAULT_MODULE_NAME) {
javaClass = "StatsLogInternal";
javaPackage = "android.util";
}
errorCount = android::stats_log_api_gen::write_stats_log_java(
out, atoms, attributionDecl, moduleName, javaClass, javaPackage);
#endif
fclose(out);
}
// Write the jni file
if (jniFilename.size() != 0) {
FILE* out = fopen(jniFilename.c_str(), "w");
if (out == NULL) {
fprintf(stderr, "Unable to open file for write: %s\n", jniFilename.c_str());
return 1;
}
#if defined(STATS_SCHEMA_LEGACY)
errorCount = android::stats_log_api_gen::write_stats_log_jni(
out, atoms, attributionDecl);
#else
errorCount = android::stats_log_api_gen::write_stats_log_jni(out);
#endif
fclose(out);
}
return errorCount;
}
} // namespace stats_log_api_gen
} // namespace android
/**
* Main.
*/
int
main(int argc, char const*const* argv)
{
GOOGLE_PROTOBUF_VERIFY_VERSION;
return android::stats_log_api_gen::run(argc, argv);
}