blob: 1f5d26c4dad4b830b53d952f962557f8ee627857 [file] [log] [blame]
/*
* Copyright (C) 2013 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "OpenGLRenderer"
#include <math.h>
#include <utils/Log.h>
#include <utils/Vector.h>
#include "AmbientShadow.h"
#include "Vertex.h"
namespace android {
namespace uirenderer {
/**
* Calculate the shadows as a triangle strips while alpha value as the
* shadow values.
*
* @param vertices The shadow caster's polygon, which is represented in a Vector3
* array.
* @param vertexCount The length of caster's polygon in terms of number of
* vertices.
* @param rays The number of rays shooting out from the centroid.
* @param layers The number of rings outside the polygon.
* @param strength The darkness of the shadow, the higher, the darker.
* @param heightFactor The factor showing the higher the object, the lighter the
* shadow.
* @param geomFactor The factor scaling the geometry expansion along the normal.
*
* @param shadowVertexBuffer Return an floating point array of (x, y, a)
* triangle strips mode.
*/
void AmbientShadow::createAmbientShadow(const Vector3* vertices, int vertexCount,
int rays, int layers, float strength, float heightFactor, float geomFactor,
VertexBuffer& shadowVertexBuffer) {
// Validate the inputs.
if (strength <= 0 || heightFactor <= 0 || layers <= 0 || rays <= 0
|| geomFactor <= 0) {
#if DEBUG_SHADOW
ALOGE("Invalid input for createAmbientShadow(), early return!");
#endif
return;
}
int rings = layers + 1;
int size = rays * rings;
Vector2 centroid;
calculatePolygonCentroid(vertices, vertexCount, centroid);
Vector<Vector2> dir; // TODO: use C++11 unique_ptr
dir.setCapacity(rays);
float rayDist[rays];
float rayHeight[rays];
calculateRayDirections(rays, dir.editArray());
// Calculate the length and height of the points along the edge.
//
// The math here is:
// Intersect each ray (starting from the centroid) with the polygon.
for (int i = 0; i < rays; i++) {
int edgeIndex;
float edgeFraction;
float rayDistance;
calculateIntersection(vertices, vertexCount, centroid, dir[i], edgeIndex,
edgeFraction, rayDistance);
rayDist[i] = rayDistance;
if (edgeIndex < 0 || edgeIndex >= vertexCount) {
#if DEBUG_SHADOW
ALOGE("Invalid edgeIndex!");
#endif
edgeIndex = 0;
}
float h1 = vertices[edgeIndex].z;
float h2 = vertices[((edgeIndex + 1) % vertexCount)].z;
rayHeight[i] = h1 + edgeFraction * (h2 - h1);
}
// The output buffer length basically is roughly rays * layers, but since we
// need triangle strips, so we need to duplicate vertices to accomplish that.
const int shadowVertexCount = (2 + rays + ((layers) * 2 * (rays + 1)));
AlphaVertex* shadowVertices = shadowVertexBuffer.alloc<AlphaVertex>(shadowVertexCount);
// Calculate the vertex of the shadows.
//
// The math here is:
// Along the edges of the polygon, for each intersection point P (generated above),
// calculate the normal N, which should be perpendicular to the edge of the
// polygon (represented by the neighbor intersection points) .
// Shadow's vertices will be generated as : P + N * scale.
int currentIndex = 0;
for (int r = 0; r < layers; r++) {
int firstInLayer = currentIndex;
for (int i = 0; i < rays; i++) {
Vector2 normal(1.0f, 0.0f);
calculateNormal(rays, i, dir.array(), rayDist, normal);
float opacity = strength * (0.5f) / (1 + rayHeight[i] / heightFactor);
// The vertex should be start from rayDist[i] then scale the
// normalizeNormal!
Vector2 intersection = dir[i] * rayDist[i] + centroid;
// Use 2 rings' vertices to complete one layer's strip
for (int j = r; j < (r + 2); j++) {
float jf = j / (float)(rings - 1);
float expansionDist = rayHeight[i] / heightFactor * geomFactor * jf;
AlphaVertex::set(&shadowVertices[currentIndex],
intersection.x + normal.x * expansionDist,
intersection.y + normal.y * expansionDist,
(1 - jf) * opacity);
currentIndex++;
}
}
// From one layer to the next, we need to duplicate the vertex to
// continue as a single strip.
shadowVertices[currentIndex] = shadowVertices[firstInLayer];
currentIndex++;
shadowVertices[currentIndex] = shadowVertices[firstInLayer + 1];
currentIndex++;
}
// After all rings are done, we need to jump into the polygon.
// In order to keep everything in a strip, we need to duplicate the last one
// of the rings and the first one inside the polygon.
int lastInRings = currentIndex - 1;
shadowVertices[currentIndex] = shadowVertices[lastInRings];
currentIndex++;
// We skip one and fill it back after we finish the internal triangles.
currentIndex++;
int firstInternal = currentIndex;
// Combine the internal area of the polygon into a triangle strip, too.
// The basic idea is zig zag between the intersection points.
// 0 -> (n - 1) -> 1 -> (n - 2) ...
for (int k = 0; k < rays; k++) {
int i = k / 2;
if ((k & 1) == 1) { // traverse the inside in a zig zag pattern for strips
i = rays - i - 1;
}
float cast = rayDist[i] * (1 + rayHeight[i] / heightFactor);
float opacity = strength * (0.5f) / (1 + rayHeight[i] / heightFactor);
float t = rayDist[i];
AlphaVertex::set(&shadowVertices[currentIndex], dir[i].x * t + centroid.x,
dir[i].y * t + centroid.y, opacity);
currentIndex++;
}
currentIndex = firstInternal - 1;
shadowVertices[currentIndex] = shadowVertices[firstInternal];
}
/**
* Calculate the centroid of a given polygon.
*
* @param vertices The shadow caster's polygon, which is represented in a
* straight Vector3 array.
* @param vertexCount The length of caster's polygon in terms of number of vertices.
*
* @param centroid Return the centroid of the polygon.
*/
void AmbientShadow::calculatePolygonCentroid(const Vector3* vertices, int vertexCount,
Vector2& centroid) {
float sumx = 0;
float sumy = 0;
int p1 = vertexCount - 1;
float area = 0;
for (int p2 = 0; p2 < vertexCount; p2++) {
float x1 = vertices[p1].x;
float y1 = vertices[p1].y;
float x2 = vertices[p2].x;
float y2 = vertices[p2].y;
float a = (x1 * y2 - x2 * y1);
sumx += (x1 + x2) * a;
sumy += (y1 + y2) * a;
area += a;
p1 = p2;
}
if (area == 0) {
#if DEBUG_SHADOW
ALOGE("Area is 0!");
#endif
centroid.x = vertices[0].x;
centroid.y = vertices[0].y;
} else {
centroid.x = sumx / (3 * area);
centroid.y = sumy / (3 * area);
}
}
/**
* Generate an array of rays' direction vectors.
*
* @param rays The number of rays shooting out from the centroid.
* @param dir Return the array of ray vectors.
*/
void AmbientShadow::calculateRayDirections(int rays, Vector2* dir) {
float deltaAngle = 2 * M_PI / rays;
for (int i = 0; i < rays; i++) {
dir[i].x = sinf(deltaAngle * i);
dir[i].y = cosf(deltaAngle * i);
}
}
/**
* Calculate the intersection of a ray hitting the polygon.
*
* @param vertices The shadow caster's polygon, which is represented in a
* Vector3 array.
* @param vertexCount The length of caster's polygon in terms of number of vertices.
* @param start The starting point of the ray.
* @param dir The direction vector of the ray.
*
* @param outEdgeIndex Return the index of the segment (or index of the starting
* vertex) that ray intersect with.
* @param outEdgeFraction Return the fraction offset from the segment starting
* index.
* @param outRayDist Return the ray distance from centroid to the intersection.
*/
void AmbientShadow::calculateIntersection(const Vector3* vertices, int vertexCount,
const Vector2& start, const Vector2& dir, int& outEdgeIndex,
float& outEdgeFraction, float& outRayDist) {
float startX = start.x;
float startY = start.y;
float dirX = dir.x;
float dirY = dir.y;
// Start the search from the last edge from poly[len-1] to poly[0].
int p1 = vertexCount - 1;
for (int p2 = 0; p2 < vertexCount; p2++) {
float p1x = vertices[p1].x;
float p1y = vertices[p1].y;
float p2x = vertices[p2].x;
float p2y = vertices[p2].y;
// The math here is derived from:
// f(t, v) = p1x * (1 - t) + p2x * t - (startX + dirX * v) = 0;
// g(t, v) = p1y * (1 - t) + p2y * t - (startY + dirY * v) = 0;
float div = (dirX * (p1y - p2y) + dirY * p2x - dirY * p1x);
if (div != 0) {
float t = (dirX * (p1y - startY) + dirY * startX - dirY * p1x) / (div);
if (t > 0 && t <= 1) {
float t2 = (p1x * (startY - p2y)
+ p2x * (p1y - startY)
+ startX * (p2y - p1y)) / div;
if (t2 > 0) {
outEdgeIndex = p1;
outRayDist = t2;
outEdgeFraction = t;
return;
}
}
}
p1 = p2;
}
return;
};
/**
* Calculate the normal at the intersection point between a ray and the polygon.
*
* @param rays The total number of rays.
* @param currentRayIndex The index of the ray which the normal is based on.
* @param dir The array of the all the rays directions.
* @param rayDist The pre-computed ray distances array.
*
* @param normal Return the normal.
*/
void AmbientShadow::calculateNormal(int rays, int currentRayIndex,
const Vector2* dir, const float* rayDist, Vector2& normal) {
int preIndex = (currentRayIndex - 1 + rays) % rays;
int postIndex = (currentRayIndex + 1) % rays;
Vector2 p1 = dir[preIndex] * rayDist[preIndex];
Vector2 p2 = dir[postIndex] * rayDist[postIndex];
// Now the V (deltaX, deltaY) is the vector going CW around the poly.
Vector2 delta = p2 - p1;
if (delta.length() != 0) {
delta.normalize();
// Calculate the normal , which is CCW 90 rotate to the V.
// 90 degrees CCW about z-axis: (x, y, z) -> (-y, x, z)
normal.x = -delta.y;
normal.y = delta.x;
}
}
}; // namespace uirenderer
}; // namespace android