| /* |
| * Copyright (C) 2013 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #define LOG_TAG "OpenGLRenderer" |
| |
| #include <math.h> |
| #include <utils/Log.h> |
| #include <utils/Vector.h> |
| |
| #include "AmbientShadow.h" |
| #include "Vertex.h" |
| |
| namespace android { |
| namespace uirenderer { |
| |
| /** |
| * Calculate the shadows as a triangle strips while alpha value as the |
| * shadow values. |
| * |
| * @param vertices The shadow caster's polygon, which is represented in a Vector3 |
| * array. |
| * @param vertexCount The length of caster's polygon in terms of number of |
| * vertices. |
| * @param rays The number of rays shooting out from the centroid. |
| * @param layers The number of rings outside the polygon. |
| * @param strength The darkness of the shadow, the higher, the darker. |
| * @param heightFactor The factor showing the higher the object, the lighter the |
| * shadow. |
| * @param geomFactor The factor scaling the geometry expansion along the normal. |
| * |
| * @param shadowVertexBuffer Return an floating point array of (x, y, a) |
| * triangle strips mode. |
| */ |
| void AmbientShadow::createAmbientShadow(const Vector3* vertices, int vertexCount, |
| int rays, int layers, float strength, float heightFactor, float geomFactor, |
| VertexBuffer& shadowVertexBuffer) { |
| |
| // Validate the inputs. |
| if (strength <= 0 || heightFactor <= 0 || layers <= 0 || rays <= 0 |
| || geomFactor <= 0) { |
| #if DEBUG_SHADOW |
| ALOGE("Invalid input for createAmbientShadow(), early return!"); |
| #endif |
| return; |
| } |
| int rings = layers + 1; |
| int size = rays * rings; |
| Vector2 centroid; |
| calculatePolygonCentroid(vertices, vertexCount, centroid); |
| |
| Vector<Vector2> dir; // TODO: use C++11 unique_ptr |
| dir.setCapacity(rays); |
| float rayDist[rays]; |
| float rayHeight[rays]; |
| calculateRayDirections(rays, dir.editArray()); |
| |
| // Calculate the length and height of the points along the edge. |
| // |
| // The math here is: |
| // Intersect each ray (starting from the centroid) with the polygon. |
| for (int i = 0; i < rays; i++) { |
| int edgeIndex; |
| float edgeFraction; |
| float rayDistance; |
| calculateIntersection(vertices, vertexCount, centroid, dir[i], edgeIndex, |
| edgeFraction, rayDistance); |
| rayDist[i] = rayDistance; |
| if (edgeIndex < 0 || edgeIndex >= vertexCount) { |
| #if DEBUG_SHADOW |
| ALOGE("Invalid edgeIndex!"); |
| #endif |
| edgeIndex = 0; |
| } |
| float h1 = vertices[edgeIndex].z; |
| float h2 = vertices[((edgeIndex + 1) % vertexCount)].z; |
| rayHeight[i] = h1 + edgeFraction * (h2 - h1); |
| } |
| |
| // The output buffer length basically is roughly rays * layers, but since we |
| // need triangle strips, so we need to duplicate vertices to accomplish that. |
| const int shadowVertexCount = (2 + rays + ((layers) * 2 * (rays + 1))); |
| AlphaVertex* shadowVertices = shadowVertexBuffer.alloc<AlphaVertex>(shadowVertexCount); |
| |
| // Calculate the vertex of the shadows. |
| // |
| // The math here is: |
| // Along the edges of the polygon, for each intersection point P (generated above), |
| // calculate the normal N, which should be perpendicular to the edge of the |
| // polygon (represented by the neighbor intersection points) . |
| // Shadow's vertices will be generated as : P + N * scale. |
| int currentIndex = 0; |
| for (int r = 0; r < layers; r++) { |
| int firstInLayer = currentIndex; |
| for (int i = 0; i < rays; i++) { |
| |
| Vector2 normal(1.0f, 0.0f); |
| calculateNormal(rays, i, dir.array(), rayDist, normal); |
| |
| float opacity = strength * (0.5f) / (1 + rayHeight[i] / heightFactor); |
| |
| // The vertex should be start from rayDist[i] then scale the |
| // normalizeNormal! |
| Vector2 intersection = dir[i] * rayDist[i] + centroid; |
| |
| // Use 2 rings' vertices to complete one layer's strip |
| for (int j = r; j < (r + 2); j++) { |
| float jf = j / (float)(rings - 1); |
| |
| float expansionDist = rayHeight[i] / heightFactor * geomFactor * jf; |
| AlphaVertex::set(&shadowVertices[currentIndex], |
| intersection.x + normal.x * expansionDist, |
| intersection.y + normal.y * expansionDist, |
| (1 - jf) * opacity); |
| currentIndex++; |
| } |
| } |
| |
| // From one layer to the next, we need to duplicate the vertex to |
| // continue as a single strip. |
| shadowVertices[currentIndex] = shadowVertices[firstInLayer]; |
| currentIndex++; |
| shadowVertices[currentIndex] = shadowVertices[firstInLayer + 1]; |
| currentIndex++; |
| } |
| |
| // After all rings are done, we need to jump into the polygon. |
| // In order to keep everything in a strip, we need to duplicate the last one |
| // of the rings and the first one inside the polygon. |
| int lastInRings = currentIndex - 1; |
| shadowVertices[currentIndex] = shadowVertices[lastInRings]; |
| currentIndex++; |
| |
| // We skip one and fill it back after we finish the internal triangles. |
| currentIndex++; |
| int firstInternal = currentIndex; |
| |
| // Combine the internal area of the polygon into a triangle strip, too. |
| // The basic idea is zig zag between the intersection points. |
| // 0 -> (n - 1) -> 1 -> (n - 2) ... |
| for (int k = 0; k < rays; k++) { |
| int i = k / 2; |
| if ((k & 1) == 1) { // traverse the inside in a zig zag pattern for strips |
| i = rays - i - 1; |
| } |
| float cast = rayDist[i] * (1 + rayHeight[i] / heightFactor); |
| float opacity = strength * (0.5f) / (1 + rayHeight[i] / heightFactor); |
| float t = rayDist[i]; |
| |
| AlphaVertex::set(&shadowVertices[currentIndex], dir[i].x * t + centroid.x, |
| dir[i].y * t + centroid.y, opacity); |
| currentIndex++; |
| } |
| |
| currentIndex = firstInternal - 1; |
| shadowVertices[currentIndex] = shadowVertices[firstInternal]; |
| } |
| |
| /** |
| * Calculate the centroid of a given polygon. |
| * |
| * @param vertices The shadow caster's polygon, which is represented in a |
| * straight Vector3 array. |
| * @param vertexCount The length of caster's polygon in terms of number of vertices. |
| * |
| * @param centroid Return the centroid of the polygon. |
| */ |
| void AmbientShadow::calculatePolygonCentroid(const Vector3* vertices, int vertexCount, |
| Vector2& centroid) { |
| float sumx = 0; |
| float sumy = 0; |
| int p1 = vertexCount - 1; |
| float area = 0; |
| for (int p2 = 0; p2 < vertexCount; p2++) { |
| float x1 = vertices[p1].x; |
| float y1 = vertices[p1].y; |
| float x2 = vertices[p2].x; |
| float y2 = vertices[p2].y; |
| float a = (x1 * y2 - x2 * y1); |
| sumx += (x1 + x2) * a; |
| sumy += (y1 + y2) * a; |
| area += a; |
| p1 = p2; |
| } |
| |
| if (area == 0) { |
| #if DEBUG_SHADOW |
| ALOGE("Area is 0!"); |
| #endif |
| centroid.x = vertices[0].x; |
| centroid.y = vertices[0].y; |
| } else { |
| centroid.x = sumx / (3 * area); |
| centroid.y = sumy / (3 * area); |
| } |
| } |
| |
| /** |
| * Generate an array of rays' direction vectors. |
| * |
| * @param rays The number of rays shooting out from the centroid. |
| * @param dir Return the array of ray vectors. |
| */ |
| void AmbientShadow::calculateRayDirections(int rays, Vector2* dir) { |
| float deltaAngle = 2 * M_PI / rays; |
| |
| for (int i = 0; i < rays; i++) { |
| dir[i].x = sinf(deltaAngle * i); |
| dir[i].y = cosf(deltaAngle * i); |
| } |
| } |
| |
| /** |
| * Calculate the intersection of a ray hitting the polygon. |
| * |
| * @param vertices The shadow caster's polygon, which is represented in a |
| * Vector3 array. |
| * @param vertexCount The length of caster's polygon in terms of number of vertices. |
| * @param start The starting point of the ray. |
| * @param dir The direction vector of the ray. |
| * |
| * @param outEdgeIndex Return the index of the segment (or index of the starting |
| * vertex) that ray intersect with. |
| * @param outEdgeFraction Return the fraction offset from the segment starting |
| * index. |
| * @param outRayDist Return the ray distance from centroid to the intersection. |
| */ |
| void AmbientShadow::calculateIntersection(const Vector3* vertices, int vertexCount, |
| const Vector2& start, const Vector2& dir, int& outEdgeIndex, |
| float& outEdgeFraction, float& outRayDist) { |
| float startX = start.x; |
| float startY = start.y; |
| float dirX = dir.x; |
| float dirY = dir.y; |
| // Start the search from the last edge from poly[len-1] to poly[0]. |
| int p1 = vertexCount - 1; |
| |
| for (int p2 = 0; p2 < vertexCount; p2++) { |
| float p1x = vertices[p1].x; |
| float p1y = vertices[p1].y; |
| float p2x = vertices[p2].x; |
| float p2y = vertices[p2].y; |
| |
| // The math here is derived from: |
| // f(t, v) = p1x * (1 - t) + p2x * t - (startX + dirX * v) = 0; |
| // g(t, v) = p1y * (1 - t) + p2y * t - (startY + dirY * v) = 0; |
| float div = (dirX * (p1y - p2y) + dirY * p2x - dirY * p1x); |
| if (div != 0) { |
| float t = (dirX * (p1y - startY) + dirY * startX - dirY * p1x) / (div); |
| if (t > 0 && t <= 1) { |
| float t2 = (p1x * (startY - p2y) |
| + p2x * (p1y - startY) |
| + startX * (p2y - p1y)) / div; |
| if (t2 > 0) { |
| outEdgeIndex = p1; |
| outRayDist = t2; |
| outEdgeFraction = t; |
| return; |
| } |
| } |
| } |
| p1 = p2; |
| } |
| return; |
| }; |
| |
| /** |
| * Calculate the normal at the intersection point between a ray and the polygon. |
| * |
| * @param rays The total number of rays. |
| * @param currentRayIndex The index of the ray which the normal is based on. |
| * @param dir The array of the all the rays directions. |
| * @param rayDist The pre-computed ray distances array. |
| * |
| * @param normal Return the normal. |
| */ |
| void AmbientShadow::calculateNormal(int rays, int currentRayIndex, |
| const Vector2* dir, const float* rayDist, Vector2& normal) { |
| int preIndex = (currentRayIndex - 1 + rays) % rays; |
| int postIndex = (currentRayIndex + 1) % rays; |
| Vector2 p1 = dir[preIndex] * rayDist[preIndex]; |
| Vector2 p2 = dir[postIndex] * rayDist[postIndex]; |
| |
| // Now the V (deltaX, deltaY) is the vector going CW around the poly. |
| Vector2 delta = p2 - p1; |
| if (delta.length() != 0) { |
| delta.normalize(); |
| // Calculate the normal , which is CCW 90 rotate to the V. |
| // 90 degrees CCW about z-axis: (x, y, z) -> (-y, x, z) |
| normal.x = -delta.y; |
| normal.y = delta.x; |
| } |
| } |
| |
| }; // namespace uirenderer |
| }; // namespace android |