| /* |
| * Copyright (C) 2016 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "compile/Png.h" |
| |
| #include <png.h> |
| #include <zlib.h> |
| |
| #include <algorithm> |
| #include <unordered_map> |
| #include <unordered_set> |
| |
| #include "android-base/errors.h" |
| #include "android-base/logging.h" |
| #include "android-base/macros.h" |
| |
| #include "trace/TraceBuffer.h" |
| |
| namespace aapt { |
| |
| // Custom deleter that destroys libpng read and info structs. |
| class PngReadStructDeleter { |
| public: |
| PngReadStructDeleter(png_structp read_ptr, png_infop info_ptr) |
| : read_ptr_(read_ptr), info_ptr_(info_ptr) {} |
| |
| ~PngReadStructDeleter() { |
| png_destroy_read_struct(&read_ptr_, &info_ptr_, nullptr); |
| } |
| |
| private: |
| png_structp read_ptr_; |
| png_infop info_ptr_; |
| |
| DISALLOW_COPY_AND_ASSIGN(PngReadStructDeleter); |
| }; |
| |
| // Custom deleter that destroys libpng write and info structs. |
| class PngWriteStructDeleter { |
| public: |
| PngWriteStructDeleter(png_structp write_ptr, png_infop info_ptr) |
| : write_ptr_(write_ptr), info_ptr_(info_ptr) {} |
| |
| ~PngWriteStructDeleter() { |
| png_destroy_write_struct(&write_ptr_, &info_ptr_); |
| } |
| |
| private: |
| png_structp write_ptr_; |
| png_infop info_ptr_; |
| |
| DISALLOW_COPY_AND_ASSIGN(PngWriteStructDeleter); |
| }; |
| |
| // Custom warning logging method that uses IDiagnostics. |
| static void LogWarning(png_structp png_ptr, png_const_charp warning_msg) { |
| IDiagnostics* diag = (IDiagnostics*)png_get_error_ptr(png_ptr); |
| diag->Warn(DiagMessage() << warning_msg); |
| } |
| |
| // Custom error logging method that uses IDiagnostics. |
| static void LogError(png_structp png_ptr, png_const_charp error_msg) { |
| IDiagnostics* diag = (IDiagnostics*)png_get_error_ptr(png_ptr); |
| diag->Error(DiagMessage() << error_msg); |
| |
| // Causes libpng to longjmp to the spot where setjmp was set. This is how libpng does |
| // error handling. If this custom error handler method were to return, libpng would, by |
| // default, print the error message to stdout and call the same png_longjmp method. |
| png_longjmp(png_ptr, 1); |
| } |
| |
| static void ReadDataFromStream(png_structp png_ptr, png_bytep buffer, png_size_t len) { |
| io::InputStream* in = (io::InputStream*)png_get_io_ptr(png_ptr); |
| |
| const void* in_buffer; |
| size_t in_len; |
| if (!in->Next(&in_buffer, &in_len)) { |
| if (in->HadError()) { |
| std::stringstream error_msg_builder; |
| error_msg_builder << "failed reading from input"; |
| if (!in->GetError().empty()) { |
| error_msg_builder << ": " << in->GetError(); |
| } |
| std::string err = error_msg_builder.str(); |
| png_error(png_ptr, err.c_str()); |
| } |
| return; |
| } |
| |
| const size_t bytes_read = std::min(in_len, len); |
| memcpy(buffer, in_buffer, bytes_read); |
| if (bytes_read != in_len) { |
| in->BackUp(in_len - bytes_read); |
| } |
| } |
| |
| static void WriteDataToStream(png_structp png_ptr, png_bytep buffer, png_size_t len) { |
| io::OutputStream* out = (io::OutputStream*)png_get_io_ptr(png_ptr); |
| |
| void* out_buffer; |
| size_t out_len; |
| while (len > 0) { |
| if (!out->Next(&out_buffer, &out_len)) { |
| if (out->HadError()) { |
| std::stringstream err_msg_builder; |
| err_msg_builder << "failed writing to output"; |
| if (!out->GetError().empty()) { |
| err_msg_builder << ": " << out->GetError(); |
| } |
| std::string err = out->GetError(); |
| png_error(png_ptr, err.c_str()); |
| } |
| return; |
| } |
| |
| const size_t bytes_written = std::min(out_len, len); |
| memcpy(out_buffer, buffer, bytes_written); |
| |
| // Advance the input buffer. |
| buffer += bytes_written; |
| len -= bytes_written; |
| |
| // Advance the output buffer. |
| out_len -= bytes_written; |
| } |
| |
| // If the entire output buffer wasn't used, backup. |
| if (out_len > 0) { |
| out->BackUp(out_len); |
| } |
| } |
| |
| std::unique_ptr<Image> ReadPng(IAaptContext* context, const Source& source, io::InputStream* in) { |
| TRACE_CALL(); |
| // Create a diagnostics that has the source information encoded. |
| SourcePathDiagnostics source_diag(source, context->GetDiagnostics()); |
| |
| // Read the first 8 bytes of the file looking for the PNG signature. |
| // Bail early if it does not match. |
| const png_byte* signature; |
| size_t buffer_size; |
| if (!in->Next((const void**)&signature, &buffer_size)) { |
| if (in->HadError()) { |
| source_diag.Error(DiagMessage() << "failed to read PNG signature: " << in->GetError()); |
| } else { |
| source_diag.Error(DiagMessage() << "not enough data for PNG signature"); |
| } |
| return {}; |
| } |
| |
| if (buffer_size < kPngSignatureSize || png_sig_cmp(signature, 0, kPngSignatureSize) != 0) { |
| source_diag.Error(DiagMessage() << "file signature does not match PNG signature"); |
| return {}; |
| } |
| |
| // Start at the beginning of the first chunk. |
| in->BackUp(buffer_size - kPngSignatureSize); |
| |
| // Create and initialize the png_struct with the default error and warning handlers. |
| // The header version is also passed in to ensure that this was built against the same |
| // version of libpng. |
| png_structp read_ptr = png_create_read_struct(PNG_LIBPNG_VER_STRING, nullptr, nullptr, nullptr); |
| if (read_ptr == nullptr) { |
| source_diag.Error(DiagMessage() << "failed to create libpng read png_struct"); |
| return {}; |
| } |
| |
| // Create and initialize the memory for image header and data. |
| png_infop info_ptr = png_create_info_struct(read_ptr); |
| if (info_ptr == nullptr) { |
| source_diag.Error(DiagMessage() << "failed to create libpng read png_info"); |
| png_destroy_read_struct(&read_ptr, nullptr, nullptr); |
| return {}; |
| } |
| |
| // Automatically release PNG resources at end of scope. |
| PngReadStructDeleter png_read_deleter(read_ptr, info_ptr); |
| |
| // libpng uses longjmp to jump to an error handling routine. |
| // setjmp will only return true if it was jumped to, aka there was |
| // an error. |
| if (setjmp(png_jmpbuf(read_ptr))) { |
| return {}; |
| } |
| |
| // Handle warnings ourselves via IDiagnostics. |
| png_set_error_fn(read_ptr, (png_voidp)&source_diag, LogError, LogWarning); |
| |
| // Set up the read functions which read from our custom data sources. |
| png_set_read_fn(read_ptr, (png_voidp)in, ReadDataFromStream); |
| |
| // Skip the signature that we already read. |
| png_set_sig_bytes(read_ptr, kPngSignatureSize); |
| |
| // Read the chunk headers. |
| png_read_info(read_ptr, info_ptr); |
| |
| // Extract image meta-data from the various chunk headers. |
| uint32_t width, height; |
| int bit_depth, color_type, interlace_method, compression_method, filter_method; |
| png_get_IHDR(read_ptr, info_ptr, &width, &height, &bit_depth, &color_type, |
| &interlace_method, &compression_method, &filter_method); |
| |
| // When the image is read, expand it so that it is in RGBA 8888 format |
| // so that image handling is uniform. |
| |
| if (color_type == PNG_COLOR_TYPE_PALETTE) { |
| png_set_palette_to_rgb(read_ptr); |
| } |
| |
| if (color_type == PNG_COLOR_TYPE_GRAY && bit_depth < 8) { |
| png_set_expand_gray_1_2_4_to_8(read_ptr); |
| } |
| |
| if (png_get_valid(read_ptr, info_ptr, PNG_INFO_tRNS)) { |
| png_set_tRNS_to_alpha(read_ptr); |
| } |
| |
| if (bit_depth == 16) { |
| png_set_strip_16(read_ptr); |
| } |
| |
| if (!(color_type & PNG_COLOR_MASK_ALPHA)) { |
| png_set_add_alpha(read_ptr, 0xFF, PNG_FILLER_AFTER); |
| } |
| |
| if (color_type == PNG_COLOR_TYPE_GRAY || |
| color_type == PNG_COLOR_TYPE_GRAY_ALPHA) { |
| png_set_gray_to_rgb(read_ptr); |
| } |
| |
| if (interlace_method != PNG_INTERLACE_NONE) { |
| png_set_interlace_handling(read_ptr); |
| } |
| |
| // Once all the options for reading have been set, we need to flush |
| // them to libpng. |
| png_read_update_info(read_ptr, info_ptr); |
| |
| // 9-patch uses int32_t to index images, so we cap the image dimensions to |
| // something |
| // that can always be represented by 9-patch. |
| if (width > std::numeric_limits<int32_t>::max() || height > std::numeric_limits<int32_t>::max()) { |
| source_diag.Error(DiagMessage() |
| << "PNG image dimensions are too large: " << width << "x" << height); |
| return {}; |
| } |
| |
| std::unique_ptr<Image> output_image = util::make_unique<Image>(); |
| output_image->width = static_cast<int32_t>(width); |
| output_image->height = static_cast<int32_t>(height); |
| |
| const size_t row_bytes = png_get_rowbytes(read_ptr, info_ptr); |
| CHECK(row_bytes == 4 * width); // RGBA |
| |
| // Allocate one large block to hold the image. |
| output_image->data = std::unique_ptr<uint8_t[]>(new uint8_t[height * row_bytes]); |
| |
| // Create an array of rows that index into the data block. |
| output_image->rows = std::unique_ptr<uint8_t* []>(new uint8_t*[height]); |
| for (uint32_t h = 0; h < height; h++) { |
| output_image->rows[h] = output_image->data.get() + (h * row_bytes); |
| } |
| |
| // Actually read the image pixels. |
| png_read_image(read_ptr, output_image->rows.get()); |
| |
| // Finish reading. This will read any other chunks after the image data. |
| png_read_end(read_ptr, info_ptr); |
| |
| return output_image; |
| } |
| |
| // Experimentally chosen constant to be added to the overhead of using color type |
| // PNG_COLOR_TYPE_PALETTE to account for the uncompressability of the palette chunk. |
| // Without this, many small PNGs encoded with palettes are larger after compression than |
| // the same PNGs encoded as RGBA. |
| constexpr static const size_t kPaletteOverheadConstant = 1024u * 10u; |
| |
| // Pick a color type by which to encode the image, based on which color type will take |
| // the least amount of disk space. |
| // |
| // 9-patch images traditionally have not been encoded with palettes. |
| // The original rationale was to avoid dithering until after scaling, |
| // but I don't think this would be an issue with palettes. Either way, |
| // our naive size estimation tends to be wrong for small images like 9-patches |
| // and using palettes balloons the size of the resulting 9-patch. |
| // In order to not regress in size, restrict 9-patch to not use palettes. |
| |
| // The options are: |
| // |
| // - RGB |
| // - RGBA |
| // - RGB + cheap alpha |
| // - Color palette |
| // - Color palette + cheap alpha |
| // - Color palette + alpha palette |
| // - Grayscale |
| // - Grayscale + cheap alpha |
| // - Grayscale + alpha |
| // |
| static int PickColorType(int32_t width, int32_t height, bool grayscale, |
| bool convertible_to_grayscale, bool has_nine_patch, |
| size_t color_palette_size, size_t alpha_palette_size) { |
| const size_t palette_chunk_size = 16 + color_palette_size * 3; |
| const size_t alpha_chunk_size = 16 + alpha_palette_size; |
| const size_t color_alpha_data_chunk_size = 16 + 4 * width * height; |
| const size_t color_data_chunk_size = 16 + 3 * width * height; |
| const size_t grayscale_alpha_data_chunk_size = 16 + 2 * width * height; |
| const size_t palette_data_chunk_size = 16 + width * height; |
| |
| if (grayscale) { |
| if (alpha_palette_size == 0) { |
| // This is the smallest the data can be. |
| return PNG_COLOR_TYPE_GRAY; |
| } else if (color_palette_size <= 256 && !has_nine_patch) { |
| // This grayscale has alpha and can fit within a palette. |
| // See if it is worth fitting into a palette. |
| const size_t palette_threshold = palette_chunk_size + alpha_chunk_size + |
| palette_data_chunk_size + |
| kPaletteOverheadConstant; |
| if (grayscale_alpha_data_chunk_size > palette_threshold) { |
| return PNG_COLOR_TYPE_PALETTE; |
| } |
| } |
| return PNG_COLOR_TYPE_GRAY_ALPHA; |
| } |
| |
| if (color_palette_size <= 256 && !has_nine_patch) { |
| // This image can fit inside a palette. Let's see if it is worth it. |
| size_t total_size_with_palette = |
| palette_data_chunk_size + palette_chunk_size; |
| size_t total_size_without_palette = color_data_chunk_size; |
| if (alpha_palette_size > 0) { |
| total_size_with_palette += alpha_palette_size; |
| total_size_without_palette = color_alpha_data_chunk_size; |
| } |
| |
| if (total_size_without_palette > |
| total_size_with_palette + kPaletteOverheadConstant) { |
| return PNG_COLOR_TYPE_PALETTE; |
| } |
| } |
| |
| if (convertible_to_grayscale) { |
| if (alpha_palette_size == 0) { |
| return PNG_COLOR_TYPE_GRAY; |
| } else { |
| return PNG_COLOR_TYPE_GRAY_ALPHA; |
| } |
| } |
| |
| if (alpha_palette_size == 0) { |
| return PNG_COLOR_TYPE_RGB; |
| } |
| return PNG_COLOR_TYPE_RGBA; |
| } |
| |
| // Assigns indices to the color and alpha palettes, encodes them, and then invokes |
| // png_set_PLTE/png_set_tRNS. |
| // This must be done before writing image data. |
| // Image data must be transformed to use the indices assigned within the palette. |
| static void WritePalette(png_structp write_ptr, png_infop write_info_ptr, |
| std::unordered_map<uint32_t, int>* color_palette, |
| std::unordered_set<uint32_t>* alpha_palette) { |
| CHECK(color_palette->size() <= 256); |
| CHECK(alpha_palette->size() <= 256); |
| |
| // Populate the PNG palette struct and assign indices to the color palette. |
| |
| // Colors in the alpha palette should have smaller indices. |
| // This will ensure that we can truncate the alpha palette if it is |
| // smaller than the color palette. |
| int index = 0; |
| for (uint32_t color : *alpha_palette) { |
| (*color_palette)[color] = index++; |
| } |
| |
| // Assign the rest of the entries. |
| for (auto& entry : *color_palette) { |
| if (entry.second == -1) { |
| entry.second = index++; |
| } |
| } |
| |
| // Create the PNG color palette struct. |
| auto color_palette_bytes = std::unique_ptr<png_color[]>(new png_color[color_palette->size()]); |
| |
| std::unique_ptr<png_byte[]> alpha_palette_bytes; |
| if (!alpha_palette->empty()) { |
| alpha_palette_bytes = std::unique_ptr<png_byte[]>(new png_byte[alpha_palette->size()]); |
| } |
| |
| for (const auto& entry : *color_palette) { |
| const uint32_t color = entry.first; |
| const int index = entry.second; |
| CHECK(index >= 0); |
| CHECK(static_cast<size_t>(index) < color_palette->size()); |
| |
| png_colorp slot = color_palette_bytes.get() + index; |
| slot->red = color >> 24; |
| slot->green = color >> 16; |
| slot->blue = color >> 8; |
| |
| const png_byte alpha = color & 0x000000ff; |
| if (alpha != 0xff && alpha_palette_bytes) { |
| CHECK(static_cast<size_t>(index) < alpha_palette->size()); |
| alpha_palette_bytes[index] = alpha; |
| } |
| } |
| |
| // The bytes get copied here, so it is safe to release color_palette_bytes at |
| // the end of function |
| // scope. |
| png_set_PLTE(write_ptr, write_info_ptr, color_palette_bytes.get(), color_palette->size()); |
| |
| if (alpha_palette_bytes) { |
| png_set_tRNS(write_ptr, write_info_ptr, alpha_palette_bytes.get(), alpha_palette->size(), |
| nullptr); |
| } |
| } |
| |
| // Write the 9-patch custom PNG chunks to write_info_ptr. This must be done |
| // before writing image data. |
| static void WriteNinePatch(png_structp write_ptr, png_infop write_info_ptr, |
| const NinePatch* nine_patch) { |
| // The order of the chunks is important. |
| // 9-patch code in older platforms expects the 9-patch chunk to be last. |
| |
| png_unknown_chunk unknown_chunks[3]; |
| memset(unknown_chunks, 0, sizeof(unknown_chunks)); |
| |
| size_t index = 0; |
| size_t chunk_len = 0; |
| |
| std::unique_ptr<uint8_t[]> serialized_outline = |
| nine_patch->SerializeRoundedRectOutline(&chunk_len); |
| strcpy((char*)unknown_chunks[index].name, "npOl"); |
| unknown_chunks[index].size = chunk_len; |
| unknown_chunks[index].data = (png_bytep)serialized_outline.get(); |
| unknown_chunks[index].location = PNG_HAVE_PLTE; |
| index++; |
| |
| std::unique_ptr<uint8_t[]> serialized_layout_bounds; |
| if (nine_patch->layout_bounds.nonZero()) { |
| serialized_layout_bounds = nine_patch->SerializeLayoutBounds(&chunk_len); |
| strcpy((char*)unknown_chunks[index].name, "npLb"); |
| unknown_chunks[index].size = chunk_len; |
| unknown_chunks[index].data = (png_bytep)serialized_layout_bounds.get(); |
| unknown_chunks[index].location = PNG_HAVE_PLTE; |
| index++; |
| } |
| |
| std::unique_ptr<uint8_t[]> serialized_nine_patch = nine_patch->SerializeBase(&chunk_len); |
| strcpy((char*)unknown_chunks[index].name, "npTc"); |
| unknown_chunks[index].size = chunk_len; |
| unknown_chunks[index].data = (png_bytep)serialized_nine_patch.get(); |
| unknown_chunks[index].location = PNG_HAVE_PLTE; |
| index++; |
| |
| // Handle all unknown chunks. We are manually setting the chunks here, |
| // so we will only ever handle our custom chunks. |
| png_set_keep_unknown_chunks(write_ptr, PNG_HANDLE_CHUNK_ALWAYS, nullptr, 0); |
| |
| // Set the actual chunks here. The data gets copied, so our buffers can |
| // safely go out of scope. |
| png_set_unknown_chunks(write_ptr, write_info_ptr, unknown_chunks, index); |
| } |
| |
| bool WritePng(IAaptContext* context, const Image* image, |
| const NinePatch* nine_patch, io::OutputStream* out, |
| const PngOptions& options) { |
| TRACE_CALL(); |
| // Create and initialize the write png_struct with the default error and |
| // warning handlers. |
| // The header version is also passed in to ensure that this was built against the same |
| // version of libpng. |
| png_structp write_ptr = png_create_write_struct(PNG_LIBPNG_VER_STRING, nullptr, nullptr, nullptr); |
| if (write_ptr == nullptr) { |
| context->GetDiagnostics()->Error(DiagMessage() << "failed to create libpng write png_struct"); |
| return false; |
| } |
| |
| // Allocate memory to store image header data. |
| png_infop write_info_ptr = png_create_info_struct(write_ptr); |
| if (write_info_ptr == nullptr) { |
| context->GetDiagnostics()->Error(DiagMessage() << "failed to create libpng write png_info"); |
| png_destroy_write_struct(&write_ptr, nullptr); |
| return false; |
| } |
| |
| // Automatically release PNG resources at end of scope. |
| PngWriteStructDeleter png_write_deleter(write_ptr, write_info_ptr); |
| |
| // libpng uses longjmp to jump to error handling routines. |
| // setjmp will return true only if it was jumped to, aka, there was an error. |
| if (setjmp(png_jmpbuf(write_ptr))) { |
| return false; |
| } |
| |
| // Handle warnings with our IDiagnostics. |
| png_set_error_fn(write_ptr, (png_voidp)context->GetDiagnostics(), LogError, LogWarning); |
| |
| // Set up the write functions which write to our custom data sources. |
| png_set_write_fn(write_ptr, (png_voidp)out, WriteDataToStream, nullptr); |
| |
| // We want small files and can take the performance hit to achieve this goal. |
| png_set_compression_level(write_ptr, Z_BEST_COMPRESSION); |
| |
| // Begin analysis of the image data. |
| // Scan the entire image and determine if: |
| // 1. Every pixel has R == G == B (grayscale) |
| // 2. Every pixel has A == 255 (opaque) |
| // 3. There are no more than 256 distinct RGBA colors (palette). |
| std::unordered_map<uint32_t, int> color_palette; |
| std::unordered_set<uint32_t> alpha_palette; |
| bool needs_to_zero_rgb_channels_of_transparent_pixels = false; |
| bool grayscale = true; |
| int max_gray_deviation = 0; |
| |
| for (int32_t y = 0; y < image->height; y++) { |
| const uint8_t* row = image->rows[y]; |
| for (int32_t x = 0; x < image->width; x++) { |
| int red = *row++; |
| int green = *row++; |
| int blue = *row++; |
| int alpha = *row++; |
| |
| if (alpha == 0) { |
| // The color is completely transparent. |
| // For purposes of palettes and grayscale optimization, |
| // treat all channels as 0x00. |
| needs_to_zero_rgb_channels_of_transparent_pixels = |
| needs_to_zero_rgb_channels_of_transparent_pixels || |
| (red != 0 || green != 0 || blue != 0); |
| red = green = blue = 0; |
| } |
| |
| // Insert the color into the color palette. |
| const uint32_t color = red << 24 | green << 16 | blue << 8 | alpha; |
| color_palette[color] = -1; |
| |
| // If the pixel has non-opaque alpha, insert it into the |
| // alpha palette. |
| if (alpha != 0xff) { |
| alpha_palette.insert(color); |
| } |
| |
| // Check if the image is indeed grayscale. |
| if (grayscale) { |
| if (red != green || red != blue) { |
| grayscale = false; |
| } |
| } |
| |
| // Calculate the gray scale deviation so that it can be compared |
| // with the threshold. |
| max_gray_deviation = std::max(std::abs(red - green), max_gray_deviation); |
| max_gray_deviation = std::max(std::abs(green - blue), max_gray_deviation); |
| max_gray_deviation = std::max(std::abs(blue - red), max_gray_deviation); |
| } |
| } |
| |
| if (context->IsVerbose()) { |
| DiagMessage msg; |
| msg << " paletteSize=" << color_palette.size() |
| << " alphaPaletteSize=" << alpha_palette.size() |
| << " maxGrayDeviation=" << max_gray_deviation |
| << " grayScale=" << (grayscale ? "true" : "false"); |
| context->GetDiagnostics()->Note(msg); |
| } |
| |
| const bool convertible_to_grayscale = max_gray_deviation <= options.grayscale_tolerance; |
| |
| const int new_color_type = PickColorType( |
| image->width, image->height, grayscale, convertible_to_grayscale, |
| nine_patch != nullptr, color_palette.size(), alpha_palette.size()); |
| |
| if (context->IsVerbose()) { |
| DiagMessage msg; |
| msg << "encoding PNG "; |
| if (nine_patch) { |
| msg << "(with 9-patch) as "; |
| } |
| switch (new_color_type) { |
| case PNG_COLOR_TYPE_GRAY: |
| msg << "GRAY"; |
| break; |
| case PNG_COLOR_TYPE_GRAY_ALPHA: |
| msg << "GRAY + ALPHA"; |
| break; |
| case PNG_COLOR_TYPE_RGB: |
| msg << "RGB"; |
| break; |
| case PNG_COLOR_TYPE_RGB_ALPHA: |
| msg << "RGBA"; |
| break; |
| case PNG_COLOR_TYPE_PALETTE: |
| msg << "PALETTE"; |
| break; |
| default: |
| msg << "unknown type " << new_color_type; |
| break; |
| } |
| context->GetDiagnostics()->Note(msg); |
| } |
| |
| png_set_IHDR(write_ptr, write_info_ptr, image->width, image->height, 8, |
| new_color_type, PNG_INTERLACE_NONE, PNG_COMPRESSION_TYPE_DEFAULT, |
| PNG_FILTER_TYPE_DEFAULT); |
| |
| if (new_color_type & PNG_COLOR_MASK_PALETTE) { |
| // Assigns indices to the palette, and writes the encoded palette to the |
| // libpng writePtr. |
| WritePalette(write_ptr, write_info_ptr, &color_palette, &alpha_palette); |
| png_set_filter(write_ptr, 0, PNG_NO_FILTERS); |
| } else { |
| png_set_filter(write_ptr, 0, PNG_ALL_FILTERS); |
| } |
| |
| if (nine_patch) { |
| WriteNinePatch(write_ptr, write_info_ptr, nine_patch); |
| } |
| |
| // Flush our updates to the header. |
| png_write_info(write_ptr, write_info_ptr); |
| |
| // Write out each row of image data according to its encoding. |
| if (new_color_type == PNG_COLOR_TYPE_PALETTE) { |
| // 1 byte/pixel. |
| auto out_row = std::unique_ptr<png_byte[]>(new png_byte[image->width]); |
| |
| for (int32_t y = 0; y < image->height; y++) { |
| png_const_bytep in_row = image->rows[y]; |
| for (int32_t x = 0; x < image->width; x++) { |
| int rr = *in_row++; |
| int gg = *in_row++; |
| int bb = *in_row++; |
| int aa = *in_row++; |
| if (aa == 0) { |
| // Zero out color channels when transparent. |
| rr = gg = bb = 0; |
| } |
| |
| const uint32_t color = rr << 24 | gg << 16 | bb << 8 | aa; |
| const int idx = color_palette[color]; |
| CHECK(idx != -1); |
| out_row[x] = static_cast<png_byte>(idx); |
| } |
| png_write_row(write_ptr, out_row.get()); |
| } |
| } else if (new_color_type == PNG_COLOR_TYPE_GRAY || |
| new_color_type == PNG_COLOR_TYPE_GRAY_ALPHA) { |
| const size_t bpp = new_color_type == PNG_COLOR_TYPE_GRAY ? 1 : 2; |
| auto out_row = |
| std::unique_ptr<png_byte[]>(new png_byte[image->width * bpp]); |
| |
| for (int32_t y = 0; y < image->height; y++) { |
| png_const_bytep in_row = image->rows[y]; |
| for (int32_t x = 0; x < image->width; x++) { |
| int rr = in_row[x * 4]; |
| int gg = in_row[x * 4 + 1]; |
| int bb = in_row[x * 4 + 2]; |
| int aa = in_row[x * 4 + 3]; |
| if (aa == 0) { |
| // Zero out the gray channel when transparent. |
| rr = gg = bb = 0; |
| } |
| |
| if (grayscale) { |
| // The image was already grayscale, red == green == blue. |
| out_row[x * bpp] = in_row[x * 4]; |
| } else { |
| // The image is convertible to grayscale, use linear-luminance of |
| // sRGB colorspace: |
| // https://en.wikipedia.org/wiki/Grayscale#Colorimetric_.28luminance-preserving.29_conversion_to_grayscale |
| out_row[x * bpp] = |
| (png_byte)(rr * 0.2126f + gg * 0.7152f + bb * 0.0722f); |
| } |
| |
| if (bpp == 2) { |
| // Write out alpha if we have it. |
| out_row[x * bpp + 1] = aa; |
| } |
| } |
| png_write_row(write_ptr, out_row.get()); |
| } |
| } else if (new_color_type == PNG_COLOR_TYPE_RGB || new_color_type == PNG_COLOR_TYPE_RGBA) { |
| const size_t bpp = new_color_type == PNG_COLOR_TYPE_RGB ? 3 : 4; |
| if (needs_to_zero_rgb_channels_of_transparent_pixels) { |
| // The source RGBA data can't be used as-is, because we need to zero out |
| // the RGB values of transparent pixels. |
| auto out_row = std::unique_ptr<png_byte[]>(new png_byte[image->width * bpp]); |
| |
| for (int32_t y = 0; y < image->height; y++) { |
| png_const_bytep in_row = image->rows[y]; |
| for (int32_t x = 0; x < image->width; x++) { |
| int rr = *in_row++; |
| int gg = *in_row++; |
| int bb = *in_row++; |
| int aa = *in_row++; |
| if (aa == 0) { |
| // Zero out the RGB channels when transparent. |
| rr = gg = bb = 0; |
| } |
| out_row[x * bpp] = rr; |
| out_row[x * bpp + 1] = gg; |
| out_row[x * bpp + 2] = bb; |
| if (bpp == 4) { |
| out_row[x * bpp + 3] = aa; |
| } |
| } |
| png_write_row(write_ptr, out_row.get()); |
| } |
| } else { |
| // The source image can be used as-is, just tell libpng whether or not to |
| // ignore the alpha channel. |
| if (new_color_type == PNG_COLOR_TYPE_RGB) { |
| // Delete the extraneous alpha values that we appended to our buffer |
| // when reading the original values. |
| png_set_filler(write_ptr, 0, PNG_FILLER_AFTER); |
| } |
| png_write_image(write_ptr, image->rows.get()); |
| } |
| } else { |
| LOG(FATAL) << "unreachable"; |
| } |
| |
| png_write_end(write_ptr, write_info_ptr); |
| return true; |
| } |
| |
| } // namespace aapt |