| /* |
| * Copyright (C) 2015 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "VectorDrawableUtils.h" |
| |
| #include "PathParser.h" |
| |
| #include <math.h> |
| #include <utils/Log.h> |
| |
| namespace android { |
| namespace uirenderer { |
| |
| class PathResolver { |
| public: |
| float currentX = 0; |
| float currentY = 0; |
| float ctrlPointX = 0; |
| float ctrlPointY = 0; |
| float currentSegmentStartX = 0; |
| float currentSegmentStartY = 0; |
| void addCommand(SkPath* outPath, char previousCmd, |
| char cmd, const std::vector<float>* points, size_t start, size_t end); |
| }; |
| |
| bool VectorDrawableUtils::canMorph(const PathData& morphFrom, const PathData& morphTo) { |
| if (morphFrom.verbs.size() != morphTo.verbs.size()) { |
| return false; |
| } |
| |
| for (unsigned int i = 0; i < morphFrom.verbs.size(); i++) { |
| if (morphFrom.verbs[i] != morphTo.verbs[i] |
| || morphFrom.verbSizes[i] != morphTo.verbSizes[i]) { |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| bool VectorDrawableUtils::interpolatePathData(PathData* outData, const PathData& morphFrom, |
| const PathData& morphTo, float fraction) { |
| if (!canMorph(morphFrom, morphTo)) { |
| return false; |
| } |
| interpolatePaths(outData, morphFrom, morphTo, fraction); |
| return true; |
| } |
| |
| /** |
| * Convert an array of PathVerb to Path. |
| */ |
| void VectorDrawableUtils::verbsToPath(SkPath* outPath, const PathData& data) { |
| PathResolver resolver; |
| char previousCommand = 'm'; |
| size_t start = 0; |
| outPath->reset(); |
| for (unsigned int i = 0; i < data.verbs.size(); i++) { |
| size_t verbSize = data.verbSizes[i]; |
| resolver.addCommand(outPath, previousCommand, data.verbs[i], &data.points, start, |
| start + verbSize); |
| previousCommand = data.verbs[i]; |
| start += verbSize; |
| } |
| } |
| |
| /** |
| * The current PathVerb will be interpolated between the |
| * <code>nodeFrom</code> and <code>nodeTo</code> according to the |
| * <code>fraction</code>. |
| * |
| * @param nodeFrom The start value as a PathVerb. |
| * @param nodeTo The end value as a PathVerb |
| * @param fraction The fraction to interpolate. |
| */ |
| void VectorDrawableUtils::interpolatePaths(PathData* outData, |
| const PathData& from, const PathData& to, float fraction) { |
| outData->points.resize(from.points.size()); |
| outData->verbSizes = from.verbSizes; |
| outData->verbs = from.verbs; |
| |
| for (size_t i = 0; i < from.points.size(); i++) { |
| outData->points[i] = from.points[i] * (1 - fraction) + to.points[i] * fraction; |
| } |
| } |
| |
| /** |
| * Converts an arc to cubic Bezier segments and records them in p. |
| * |
| * @param p The target for the cubic Bezier segments |
| * @param cx The x coordinate center of the ellipse |
| * @param cy The y coordinate center of the ellipse |
| * @param a The radius of the ellipse in the horizontal direction |
| * @param b The radius of the ellipse in the vertical direction |
| * @param e1x E(eta1) x coordinate of the starting point of the arc |
| * @param e1y E(eta2) y coordinate of the starting point of the arc |
| * @param theta The angle that the ellipse bounding rectangle makes with horizontal plane |
| * @param start The start angle of the arc on the ellipse |
| * @param sweep The angle (positive or negative) of the sweep of the arc on the ellipse |
| */ |
| static void arcToBezier(SkPath* p, |
| double cx, |
| double cy, |
| double a, |
| double b, |
| double e1x, |
| double e1y, |
| double theta, |
| double start, |
| double sweep) { |
| // Taken from equations at: http://spaceroots.org/documents/ellipse/node8.html |
| // and http://www.spaceroots.org/documents/ellipse/node22.html |
| |
| // Maximum of 45 degrees per cubic Bezier segment |
| int numSegments = ceil(fabs(sweep * 4 / M_PI)); |
| |
| double eta1 = start; |
| double cosTheta = cos(theta); |
| double sinTheta = sin(theta); |
| double cosEta1 = cos(eta1); |
| double sinEta1 = sin(eta1); |
| double ep1x = (-a * cosTheta * sinEta1) - (b * sinTheta * cosEta1); |
| double ep1y = (-a * sinTheta * sinEta1) + (b * cosTheta * cosEta1); |
| |
| double anglePerSegment = sweep / numSegments; |
| for (int i = 0; i < numSegments; i++) { |
| double eta2 = eta1 + anglePerSegment; |
| double sinEta2 = sin(eta2); |
| double cosEta2 = cos(eta2); |
| double e2x = cx + (a * cosTheta * cosEta2) - (b * sinTheta * sinEta2); |
| double e2y = cy + (a * sinTheta * cosEta2) + (b * cosTheta * sinEta2); |
| double ep2x = -a * cosTheta * sinEta2 - b * sinTheta * cosEta2; |
| double ep2y = -a * sinTheta * sinEta2 + b * cosTheta * cosEta2; |
| double tanDiff2 = tan((eta2 - eta1) / 2); |
| double alpha = |
| sin(eta2 - eta1) * (sqrt(4 + (3 * tanDiff2 * tanDiff2)) - 1) / 3; |
| double q1x = e1x + alpha * ep1x; |
| double q1y = e1y + alpha * ep1y; |
| double q2x = e2x - alpha * ep2x; |
| double q2y = e2y - alpha * ep2y; |
| |
| p->cubicTo((float) q1x, |
| (float) q1y, |
| (float) q2x, |
| (float) q2y, |
| (float) e2x, |
| (float) e2y); |
| eta1 = eta2; |
| e1x = e2x; |
| e1y = e2y; |
| ep1x = ep2x; |
| ep1y = ep2y; |
| } |
| } |
| |
| inline double toRadians(float theta) { return theta * M_PI / 180;} |
| |
| static void drawArc(SkPath* p, |
| float x0, |
| float y0, |
| float x1, |
| float y1, |
| float a, |
| float b, |
| float theta, |
| bool isMoreThanHalf, |
| bool isPositiveArc) { |
| |
| /* Convert rotation angle from degrees to radians */ |
| double thetaD = toRadians(theta); |
| /* Pre-compute rotation matrix entries */ |
| double cosTheta = cos(thetaD); |
| double sinTheta = sin(thetaD); |
| /* Transform (x0, y0) and (x1, y1) into unit space */ |
| /* using (inverse) rotation, followed by (inverse) scale */ |
| double x0p = (x0 * cosTheta + y0 * sinTheta) / a; |
| double y0p = (-x0 * sinTheta + y0 * cosTheta) / b; |
| double x1p = (x1 * cosTheta + y1 * sinTheta) / a; |
| double y1p = (-x1 * sinTheta + y1 * cosTheta) / b; |
| |
| /* Compute differences and averages */ |
| double dx = x0p - x1p; |
| double dy = y0p - y1p; |
| double xm = (x0p + x1p) / 2; |
| double ym = (y0p + y1p) / 2; |
| /* Solve for intersecting unit circles */ |
| double dsq = dx * dx + dy * dy; |
| if (dsq == 0.0) { |
| ALOGW("Points are coincident"); |
| return; /* Points are coincident */ |
| } |
| double disc = 1.0 / dsq - 1.0 / 4.0; |
| if (disc < 0.0) { |
| ALOGW("Points are too far apart %f", dsq); |
| float adjust = (float) (sqrt(dsq) / 1.99999); |
| drawArc(p, x0, y0, x1, y1, a * adjust, |
| b * adjust, theta, isMoreThanHalf, isPositiveArc); |
| return; /* Points are too far apart */ |
| } |
| double s = sqrt(disc); |
| double sdx = s * dx; |
| double sdy = s * dy; |
| double cx; |
| double cy; |
| if (isMoreThanHalf == isPositiveArc) { |
| cx = xm - sdy; |
| cy = ym + sdx; |
| } else { |
| cx = xm + sdy; |
| cy = ym - sdx; |
| } |
| |
| double eta0 = atan2((y0p - cy), (x0p - cx)); |
| |
| double eta1 = atan2((y1p - cy), (x1p - cx)); |
| |
| double sweep = (eta1 - eta0); |
| if (isPositiveArc != (sweep >= 0)) { |
| if (sweep > 0) { |
| sweep -= 2 * M_PI; |
| } else { |
| sweep += 2 * M_PI; |
| } |
| } |
| |
| cx *= a; |
| cy *= b; |
| double tcx = cx; |
| cx = cx * cosTheta - cy * sinTheta; |
| cy = tcx * sinTheta + cy * cosTheta; |
| |
| arcToBezier(p, cx, cy, a, b, x0, y0, thetaD, eta0, sweep); |
| } |
| |
| |
| |
| // Use the given verb, and points in the range [start, end) to insert a command into the SkPath. |
| void PathResolver::addCommand(SkPath* outPath, char previousCmd, |
| char cmd, const std::vector<float>* points, size_t start, size_t end) { |
| |
| int incr = 2; |
| float reflectiveCtrlPointX; |
| float reflectiveCtrlPointY; |
| |
| switch (cmd) { |
| case 'z': |
| case 'Z': |
| outPath->close(); |
| // Path is closed here, but we need to move the pen to the |
| // closed position. So we cache the segment's starting position, |
| // and restore it here. |
| currentX = currentSegmentStartX; |
| currentY = currentSegmentStartY; |
| ctrlPointX = currentSegmentStartX; |
| ctrlPointY = currentSegmentStartY; |
| outPath->moveTo(currentX, currentY); |
| break; |
| case 'm': |
| case 'M': |
| case 'l': |
| case 'L': |
| case 't': |
| case 'T': |
| incr = 2; |
| break; |
| case 'h': |
| case 'H': |
| case 'v': |
| case 'V': |
| incr = 1; |
| break; |
| case 'c': |
| case 'C': |
| incr = 6; |
| break; |
| case 's': |
| case 'S': |
| case 'q': |
| case 'Q': |
| incr = 4; |
| break; |
| case 'a': |
| case 'A': |
| incr = 7; |
| break; |
| } |
| |
| for (unsigned int k = start; k < end; k += incr) { |
| switch (cmd) { |
| case 'm': // moveto - Start a new sub-path (relative) |
| currentX += points->at(k + 0); |
| currentY += points->at(k + 1); |
| if (k > start) { |
| // According to the spec, if a moveto is followed by multiple |
| // pairs of coordinates, the subsequent pairs are treated as |
| // implicit lineto commands. |
| outPath->rLineTo(points->at(k + 0), points->at(k + 1)); |
| } else { |
| outPath->rMoveTo(points->at(k + 0), points->at(k + 1)); |
| currentSegmentStartX = currentX; |
| currentSegmentStartY = currentY; |
| } |
| break; |
| case 'M': // moveto - Start a new sub-path |
| currentX = points->at(k + 0); |
| currentY = points->at(k + 1); |
| if (k > start) { |
| // According to the spec, if a moveto is followed by multiple |
| // pairs of coordinates, the subsequent pairs are treated as |
| // implicit lineto commands. |
| outPath->lineTo(points->at(k + 0), points->at(k + 1)); |
| } else { |
| outPath->moveTo(points->at(k + 0), points->at(k + 1)); |
| currentSegmentStartX = currentX; |
| currentSegmentStartY = currentY; |
| } |
| break; |
| case 'l': // lineto - Draw a line from the current point (relative) |
| outPath->rLineTo(points->at(k + 0), points->at(k + 1)); |
| currentX += points->at(k + 0); |
| currentY += points->at(k + 1); |
| break; |
| case 'L': // lineto - Draw a line from the current point |
| outPath->lineTo(points->at(k + 0), points->at(k + 1)); |
| currentX = points->at(k + 0); |
| currentY = points->at(k + 1); |
| break; |
| case 'h': // horizontal lineto - Draws a horizontal line (relative) |
| outPath->rLineTo(points->at(k + 0), 0); |
| currentX += points->at(k + 0); |
| break; |
| case 'H': // horizontal lineto - Draws a horizontal line |
| outPath->lineTo(points->at(k + 0), currentY); |
| currentX = points->at(k + 0); |
| break; |
| case 'v': // vertical lineto - Draws a vertical line from the current point (r) |
| outPath->rLineTo(0, points->at(k + 0)); |
| currentY += points->at(k + 0); |
| break; |
| case 'V': // vertical lineto - Draws a vertical line from the current point |
| outPath->lineTo(currentX, points->at(k + 0)); |
| currentY = points->at(k + 0); |
| break; |
| case 'c': // curveto - Draws a cubic Bézier curve (relative) |
| outPath->rCubicTo(points->at(k + 0), points->at(k + 1), points->at(k + 2), points->at(k + 3), |
| points->at(k + 4), points->at(k + 5)); |
| |
| ctrlPointX = currentX + points->at(k + 2); |
| ctrlPointY = currentY + points->at(k + 3); |
| currentX += points->at(k + 4); |
| currentY += points->at(k + 5); |
| |
| break; |
| case 'C': // curveto - Draws a cubic Bézier curve |
| outPath->cubicTo(points->at(k + 0), points->at(k + 1), points->at(k + 2), points->at(k + 3), |
| points->at(k + 4), points->at(k + 5)); |
| currentX = points->at(k + 4); |
| currentY = points->at(k + 5); |
| ctrlPointX = points->at(k + 2); |
| ctrlPointY = points->at(k + 3); |
| break; |
| case 's': // smooth curveto - Draws a cubic Bézier curve (reflective cp) |
| reflectiveCtrlPointX = 0; |
| reflectiveCtrlPointY = 0; |
| if (previousCmd == 'c' || previousCmd == 's' |
| || previousCmd == 'C' || previousCmd == 'S') { |
| reflectiveCtrlPointX = currentX - ctrlPointX; |
| reflectiveCtrlPointY = currentY - ctrlPointY; |
| } |
| outPath->rCubicTo(reflectiveCtrlPointX, reflectiveCtrlPointY, |
| points->at(k + 0), points->at(k + 1), |
| points->at(k + 2), points->at(k + 3)); |
| ctrlPointX = currentX + points->at(k + 0); |
| ctrlPointY = currentY + points->at(k + 1); |
| currentX += points->at(k + 2); |
| currentY += points->at(k + 3); |
| break; |
| case 'S': // shorthand/smooth curveto Draws a cubic Bézier curve(reflective cp) |
| reflectiveCtrlPointX = currentX; |
| reflectiveCtrlPointY = currentY; |
| if (previousCmd == 'c' || previousCmd == 's' |
| || previousCmd == 'C' || previousCmd == 'S') { |
| reflectiveCtrlPointX = 2 * currentX - ctrlPointX; |
| reflectiveCtrlPointY = 2 * currentY - ctrlPointY; |
| } |
| outPath->cubicTo(reflectiveCtrlPointX, reflectiveCtrlPointY, |
| points->at(k + 0), points->at(k + 1), points->at(k + 2), points->at(k + 3)); |
| ctrlPointX = points->at(k + 0); |
| ctrlPointY = points->at(k + 1); |
| currentX = points->at(k + 2); |
| currentY = points->at(k + 3); |
| break; |
| case 'q': // Draws a quadratic Bézier (relative) |
| outPath->rQuadTo(points->at(k + 0), points->at(k + 1), points->at(k + 2), points->at(k + 3)); |
| ctrlPointX = currentX + points->at(k + 0); |
| ctrlPointY = currentY + points->at(k + 1); |
| currentX += points->at(k + 2); |
| currentY += points->at(k + 3); |
| break; |
| case 'Q': // Draws a quadratic Bézier |
| outPath->quadTo(points->at(k + 0), points->at(k + 1), points->at(k + 2), points->at(k + 3)); |
| ctrlPointX = points->at(k + 0); |
| ctrlPointY = points->at(k + 1); |
| currentX = points->at(k + 2); |
| currentY = points->at(k + 3); |
| break; |
| case 't': // Draws a quadratic Bézier curve(reflective control point)(relative) |
| reflectiveCtrlPointX = 0; |
| reflectiveCtrlPointY = 0; |
| if (previousCmd == 'q' || previousCmd == 't' |
| || previousCmd == 'Q' || previousCmd == 'T') { |
| reflectiveCtrlPointX = currentX - ctrlPointX; |
| reflectiveCtrlPointY = currentY - ctrlPointY; |
| } |
| outPath->rQuadTo(reflectiveCtrlPointX, reflectiveCtrlPointY, |
| points->at(k + 0), points->at(k + 1)); |
| ctrlPointX = currentX + reflectiveCtrlPointX; |
| ctrlPointY = currentY + reflectiveCtrlPointY; |
| currentX += points->at(k + 0); |
| currentY += points->at(k + 1); |
| break; |
| case 'T': // Draws a quadratic Bézier curve (reflective control point) |
| reflectiveCtrlPointX = currentX; |
| reflectiveCtrlPointY = currentY; |
| if (previousCmd == 'q' || previousCmd == 't' |
| || previousCmd == 'Q' || previousCmd == 'T') { |
| reflectiveCtrlPointX = 2 * currentX - ctrlPointX; |
| reflectiveCtrlPointY = 2 * currentY - ctrlPointY; |
| } |
| outPath->quadTo(reflectiveCtrlPointX, reflectiveCtrlPointY, |
| points->at(k + 0), points->at(k + 1)); |
| ctrlPointX = reflectiveCtrlPointX; |
| ctrlPointY = reflectiveCtrlPointY; |
| currentX = points->at(k + 0); |
| currentY = points->at(k + 1); |
| break; |
| case 'a': // Draws an elliptical arc |
| // (rx ry x-axis-rotation large-arc-flag sweep-flag x y) |
| drawArc(outPath, |
| currentX, |
| currentY, |
| points->at(k + 5) + currentX, |
| points->at(k + 6) + currentY, |
| points->at(k + 0), |
| points->at(k + 1), |
| points->at(k + 2), |
| points->at(k + 3) != 0, |
| points->at(k + 4) != 0); |
| currentX += points->at(k + 5); |
| currentY += points->at(k + 6); |
| ctrlPointX = currentX; |
| ctrlPointY = currentY; |
| break; |
| case 'A': // Draws an elliptical arc |
| drawArc(outPath, |
| currentX, |
| currentY, |
| points->at(k + 5), |
| points->at(k + 6), |
| points->at(k + 0), |
| points->at(k + 1), |
| points->at(k + 2), |
| points->at(k + 3) != 0, |
| points->at(k + 4) != 0); |
| currentX = points->at(k + 5); |
| currentY = points->at(k + 6); |
| ctrlPointX = currentX; |
| ctrlPointY = currentY; |
| break; |
| default: |
| LOG_ALWAYS_FATAL("Unsupported command: %c", cmd); |
| break; |
| } |
| previousCmd = cmd; |
| } |
| } |
| |
| } // namespace uirenderer |
| } // namespace android |