| /* |
| * Copyright (C) 2015 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "VectorDrawableUtils.h" |
| |
| #include "PathParser.h" |
| |
| #include <math.h> |
| #include <utils/Log.h> |
| |
| namespace android { |
| namespace uirenderer { |
| |
| class PathResolver { |
| public: |
| float currentX = 0; |
| float currentY = 0; |
| float ctrlPointX = 0; |
| float ctrlPointY = 0; |
| float currentSegmentStartX = 0; |
| float currentSegmentStartY = 0; |
| void addCommand(SkPath* outPath, char previousCmd, char cmd, const std::vector<float>* points, |
| size_t start, size_t end); |
| }; |
| |
| bool VectorDrawableUtils::canMorph(const PathData& morphFrom, const PathData& morphTo) { |
| if (morphFrom.verbs.size() != morphTo.verbs.size()) { |
| return false; |
| } |
| |
| for (unsigned int i = 0; i < morphFrom.verbs.size(); i++) { |
| if (morphFrom.verbs[i] != morphTo.verbs[i] || |
| morphFrom.verbSizes[i] != morphTo.verbSizes[i]) { |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| bool VectorDrawableUtils::interpolatePathData(PathData* outData, const PathData& morphFrom, |
| const PathData& morphTo, float fraction) { |
| if (!canMorph(morphFrom, morphTo)) { |
| return false; |
| } |
| interpolatePaths(outData, morphFrom, morphTo, fraction); |
| return true; |
| } |
| |
| /** |
| * Convert an array of PathVerb to Path. |
| */ |
| void VectorDrawableUtils::verbsToPath(SkPath* outPath, const PathData& data) { |
| PathResolver resolver; |
| char previousCommand = 'm'; |
| size_t start = 0; |
| outPath->reset(); |
| for (unsigned int i = 0; i < data.verbs.size(); i++) { |
| size_t verbSize = data.verbSizes[i]; |
| resolver.addCommand(outPath, previousCommand, data.verbs[i], &data.points, start, |
| start + verbSize); |
| previousCommand = data.verbs[i]; |
| start += verbSize; |
| } |
| } |
| |
| /** |
| * The current PathVerb will be interpolated between the |
| * <code>nodeFrom</code> and <code>nodeTo</code> according to the |
| * <code>fraction</code>. |
| * |
| * @param nodeFrom The start value as a PathVerb. |
| * @param nodeTo The end value as a PathVerb |
| * @param fraction The fraction to interpolate. |
| */ |
| void VectorDrawableUtils::interpolatePaths(PathData* outData, const PathData& from, |
| const PathData& to, float fraction) { |
| outData->points.resize(from.points.size()); |
| outData->verbSizes = from.verbSizes; |
| outData->verbs = from.verbs; |
| |
| for (size_t i = 0; i < from.points.size(); i++) { |
| outData->points[i] = from.points[i] * (1 - fraction) + to.points[i] * fraction; |
| } |
| } |
| |
| // Use the given verb, and points in the range [start, end) to insert a command into the SkPath. |
| void PathResolver::addCommand(SkPath* outPath, char previousCmd, char cmd, |
| const std::vector<float>* points, size_t start, size_t end) { |
| int incr = 2; |
| float reflectiveCtrlPointX; |
| float reflectiveCtrlPointY; |
| |
| switch (cmd) { |
| case 'z': |
| case 'Z': |
| outPath->close(); |
| // Path is closed here, but we need to move the pen to the |
| // closed position. So we cache the segment's starting position, |
| // and restore it here. |
| currentX = currentSegmentStartX; |
| currentY = currentSegmentStartY; |
| ctrlPointX = currentSegmentStartX; |
| ctrlPointY = currentSegmentStartY; |
| outPath->moveTo(currentX, currentY); |
| break; |
| case 'm': |
| case 'M': |
| case 'l': |
| case 'L': |
| case 't': |
| case 'T': |
| incr = 2; |
| break; |
| case 'h': |
| case 'H': |
| case 'v': |
| case 'V': |
| incr = 1; |
| break; |
| case 'c': |
| case 'C': |
| incr = 6; |
| break; |
| case 's': |
| case 'S': |
| case 'q': |
| case 'Q': |
| incr = 4; |
| break; |
| case 'a': |
| case 'A': |
| incr = 7; |
| break; |
| } |
| |
| for (unsigned int k = start; k < end; k += incr) { |
| switch (cmd) { |
| case 'm': // moveto - Start a new sub-path (relative) |
| currentX += points->at(k + 0); |
| currentY += points->at(k + 1); |
| if (k > start) { |
| // According to the spec, if a moveto is followed by multiple |
| // pairs of coordinates, the subsequent pairs are treated as |
| // implicit lineto commands. |
| outPath->rLineTo(points->at(k + 0), points->at(k + 1)); |
| } else { |
| outPath->rMoveTo(points->at(k + 0), points->at(k + 1)); |
| currentSegmentStartX = currentX; |
| currentSegmentStartY = currentY; |
| } |
| break; |
| case 'M': // moveto - Start a new sub-path |
| currentX = points->at(k + 0); |
| currentY = points->at(k + 1); |
| if (k > start) { |
| // According to the spec, if a moveto is followed by multiple |
| // pairs of coordinates, the subsequent pairs are treated as |
| // implicit lineto commands. |
| outPath->lineTo(points->at(k + 0), points->at(k + 1)); |
| } else { |
| outPath->moveTo(points->at(k + 0), points->at(k + 1)); |
| currentSegmentStartX = currentX; |
| currentSegmentStartY = currentY; |
| } |
| break; |
| case 'l': // lineto - Draw a line from the current point (relative) |
| outPath->rLineTo(points->at(k + 0), points->at(k + 1)); |
| currentX += points->at(k + 0); |
| currentY += points->at(k + 1); |
| break; |
| case 'L': // lineto - Draw a line from the current point |
| outPath->lineTo(points->at(k + 0), points->at(k + 1)); |
| currentX = points->at(k + 0); |
| currentY = points->at(k + 1); |
| break; |
| case 'h': // horizontal lineto - Draws a horizontal line (relative) |
| outPath->rLineTo(points->at(k + 0), 0); |
| currentX += points->at(k + 0); |
| break; |
| case 'H': // horizontal lineto - Draws a horizontal line |
| outPath->lineTo(points->at(k + 0), currentY); |
| currentX = points->at(k + 0); |
| break; |
| case 'v': // vertical lineto - Draws a vertical line from the current point (r) |
| outPath->rLineTo(0, points->at(k + 0)); |
| currentY += points->at(k + 0); |
| break; |
| case 'V': // vertical lineto - Draws a vertical line from the current point |
| outPath->lineTo(currentX, points->at(k + 0)); |
| currentY = points->at(k + 0); |
| break; |
| case 'c': // curveto - Draws a cubic Bézier curve (relative) |
| outPath->rCubicTo(points->at(k + 0), points->at(k + 1), points->at(k + 2), |
| points->at(k + 3), points->at(k + 4), points->at(k + 5)); |
| |
| ctrlPointX = currentX + points->at(k + 2); |
| ctrlPointY = currentY + points->at(k + 3); |
| currentX += points->at(k + 4); |
| currentY += points->at(k + 5); |
| |
| break; |
| case 'C': // curveto - Draws a cubic Bézier curve |
| outPath->cubicTo(points->at(k + 0), points->at(k + 1), points->at(k + 2), |
| points->at(k + 3), points->at(k + 4), points->at(k + 5)); |
| currentX = points->at(k + 4); |
| currentY = points->at(k + 5); |
| ctrlPointX = points->at(k + 2); |
| ctrlPointY = points->at(k + 3); |
| break; |
| case 's': // smooth curveto - Draws a cubic Bézier curve (reflective cp) |
| reflectiveCtrlPointX = 0; |
| reflectiveCtrlPointY = 0; |
| if (previousCmd == 'c' || previousCmd == 's' || previousCmd == 'C' || |
| previousCmd == 'S') { |
| reflectiveCtrlPointX = currentX - ctrlPointX; |
| reflectiveCtrlPointY = currentY - ctrlPointY; |
| } |
| outPath->rCubicTo(reflectiveCtrlPointX, reflectiveCtrlPointY, points->at(k + 0), |
| points->at(k + 1), points->at(k + 2), points->at(k + 3)); |
| ctrlPointX = currentX + points->at(k + 0); |
| ctrlPointY = currentY + points->at(k + 1); |
| currentX += points->at(k + 2); |
| currentY += points->at(k + 3); |
| break; |
| case 'S': // shorthand/smooth curveto Draws a cubic Bézier curve(reflective cp) |
| reflectiveCtrlPointX = currentX; |
| reflectiveCtrlPointY = currentY; |
| if (previousCmd == 'c' || previousCmd == 's' || previousCmd == 'C' || |
| previousCmd == 'S') { |
| reflectiveCtrlPointX = 2 * currentX - ctrlPointX; |
| reflectiveCtrlPointY = 2 * currentY - ctrlPointY; |
| } |
| outPath->cubicTo(reflectiveCtrlPointX, reflectiveCtrlPointY, points->at(k + 0), |
| points->at(k + 1), points->at(k + 2), points->at(k + 3)); |
| ctrlPointX = points->at(k + 0); |
| ctrlPointY = points->at(k + 1); |
| currentX = points->at(k + 2); |
| currentY = points->at(k + 3); |
| break; |
| case 'q': // Draws a quadratic Bézier (relative) |
| outPath->rQuadTo(points->at(k + 0), points->at(k + 1), points->at(k + 2), |
| points->at(k + 3)); |
| ctrlPointX = currentX + points->at(k + 0); |
| ctrlPointY = currentY + points->at(k + 1); |
| currentX += points->at(k + 2); |
| currentY += points->at(k + 3); |
| break; |
| case 'Q': // Draws a quadratic Bézier |
| outPath->quadTo(points->at(k + 0), points->at(k + 1), points->at(k + 2), |
| points->at(k + 3)); |
| ctrlPointX = points->at(k + 0); |
| ctrlPointY = points->at(k + 1); |
| currentX = points->at(k + 2); |
| currentY = points->at(k + 3); |
| break; |
| case 't': // Draws a quadratic Bézier curve(reflective control point)(relative) |
| reflectiveCtrlPointX = 0; |
| reflectiveCtrlPointY = 0; |
| if (previousCmd == 'q' || previousCmd == 't' || previousCmd == 'Q' || |
| previousCmd == 'T') { |
| reflectiveCtrlPointX = currentX - ctrlPointX; |
| reflectiveCtrlPointY = currentY - ctrlPointY; |
| } |
| outPath->rQuadTo(reflectiveCtrlPointX, reflectiveCtrlPointY, points->at(k + 0), |
| points->at(k + 1)); |
| ctrlPointX = currentX + reflectiveCtrlPointX; |
| ctrlPointY = currentY + reflectiveCtrlPointY; |
| currentX += points->at(k + 0); |
| currentY += points->at(k + 1); |
| break; |
| case 'T': // Draws a quadratic Bézier curve (reflective control point) |
| reflectiveCtrlPointX = currentX; |
| reflectiveCtrlPointY = currentY; |
| if (previousCmd == 'q' || previousCmd == 't' || previousCmd == 'Q' || |
| previousCmd == 'T') { |
| reflectiveCtrlPointX = 2 * currentX - ctrlPointX; |
| reflectiveCtrlPointY = 2 * currentY - ctrlPointY; |
| } |
| outPath->quadTo(reflectiveCtrlPointX, reflectiveCtrlPointY, points->at(k + 0), |
| points->at(k + 1)); |
| ctrlPointX = reflectiveCtrlPointX; |
| ctrlPointY = reflectiveCtrlPointY; |
| currentX = points->at(k + 0); |
| currentY = points->at(k + 1); |
| break; |
| case 'a': // Draws an elliptical arc |
| // (rx ry x-axis-rotation large-arc-flag sweep-flag x y) |
| outPath->arcTo(points->at(k + 0), points->at(k + 1), points->at(k + 2), |
| (SkPath::ArcSize) (points->at(k + 3) != 0), |
| (SkPath::Direction) (points->at(k + 4) == 0), |
| points->at(k + 5) + currentX, points->at(k + 6) + currentY); |
| currentX += points->at(k + 5); |
| currentY += points->at(k + 6); |
| ctrlPointX = currentX; |
| ctrlPointY = currentY; |
| break; |
| case 'A': // Draws an elliptical arc |
| outPath->arcTo(points->at(k + 0), points->at(k + 1), points->at(k + 2), |
| (SkPath::ArcSize) (points->at(k + 3) != 0), |
| (SkPath::Direction) (points->at(k + 4) == 0), |
| points->at(k + 5), points->at(k + 6)); |
| currentX = points->at(k + 5); |
| currentY = points->at(k + 6); |
| ctrlPointX = currentX; |
| ctrlPointY = currentY; |
| break; |
| default: |
| LOG_ALWAYS_FATAL("Unsupported command: %c", cmd); |
| break; |
| } |
| previousCmd = cmd; |
| } |
| } |
| |
| } // namespace uirenderer |
| } // namespace android |