blob: 43dbcc012cf37180272be0a2c3c92c6b134236b4 [file] [log] [blame]
/*
* Copyright (C) 2007 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.android.server;
import static android.os.Process.*;
import android.os.Process;
import android.os.SystemClock;
import android.util.Config;
import android.util.Slog;
import java.io.File;
import java.io.FileInputStream;
import java.io.PrintWriter;
import java.io.StringWriter;
import java.util.ArrayList;
import java.util.Collections;
import java.util.Comparator;
import java.util.StringTokenizer;
public class ProcessStats {
private static final String TAG = "ProcessStats";
private static final boolean DEBUG = false;
private static final boolean localLOGV = DEBUG || Config.LOGV;
private static final int[] PROCESS_STATS_FORMAT = new int[] {
PROC_SPACE_TERM,
PROC_SPACE_TERM|PROC_PARENS,
PROC_SPACE_TERM,
PROC_SPACE_TERM,
PROC_SPACE_TERM,
PROC_SPACE_TERM,
PROC_SPACE_TERM,
PROC_SPACE_TERM,
PROC_SPACE_TERM,
PROC_SPACE_TERM|PROC_OUT_LONG, // 9: minor faults
PROC_SPACE_TERM,
PROC_SPACE_TERM|PROC_OUT_LONG, // 11: major faults
PROC_SPACE_TERM,
PROC_SPACE_TERM|PROC_OUT_LONG, // 13: utime
PROC_SPACE_TERM|PROC_OUT_LONG // 14: stime
};
static final int PROCESS_STAT_MINOR_FAULTS = 0;
static final int PROCESS_STAT_MAJOR_FAULTS = 1;
static final int PROCESS_STAT_UTIME = 2;
static final int PROCESS_STAT_STIME = 3;
/** Stores user time and system time in 100ths of a second. */
private final long[] mProcessStatsData = new long[4];
/** Stores user time and system time in 100ths of a second. */
private final long[] mSinglePidStatsData = new long[4];
private static final int[] PROCESS_FULL_STATS_FORMAT = new int[] {
PROC_SPACE_TERM,
PROC_SPACE_TERM|PROC_PARENS|PROC_OUT_STRING, // 1: name
PROC_SPACE_TERM,
PROC_SPACE_TERM,
PROC_SPACE_TERM,
PROC_SPACE_TERM,
PROC_SPACE_TERM,
PROC_SPACE_TERM,
PROC_SPACE_TERM,
PROC_SPACE_TERM|PROC_OUT_LONG, // 9: minor faults
PROC_SPACE_TERM,
PROC_SPACE_TERM|PROC_OUT_LONG, // 11: major faults
PROC_SPACE_TERM,
PROC_SPACE_TERM|PROC_OUT_LONG, // 13: utime
PROC_SPACE_TERM|PROC_OUT_LONG, // 14: stime
PROC_SPACE_TERM,
PROC_SPACE_TERM,
PROC_SPACE_TERM,
PROC_SPACE_TERM,
PROC_SPACE_TERM,
PROC_SPACE_TERM,
PROC_SPACE_TERM|PROC_OUT_LONG, // 21: vsize
};
static final int PROCESS_FULL_STAT_MINOR_FAULTS = 1;
static final int PROCESS_FULL_STAT_MAJOR_FAULTS = 2;
static final int PROCESS_FULL_STAT_UTIME = 3;
static final int PROCESS_FULL_STAT_STIME = 4;
static final int PROCESS_FULL_STAT_VSIZE = 5;
private final String[] mProcessFullStatsStringData = new String[6];
private final long[] mProcessFullStatsData = new long[6];
private static final int[] SYSTEM_CPU_FORMAT = new int[] {
PROC_SPACE_TERM|PROC_COMBINE,
PROC_SPACE_TERM|PROC_OUT_LONG, // 1: user time
PROC_SPACE_TERM|PROC_OUT_LONG, // 2: nice time
PROC_SPACE_TERM|PROC_OUT_LONG, // 3: sys time
PROC_SPACE_TERM|PROC_OUT_LONG, // 4: idle time
PROC_SPACE_TERM|PROC_OUT_LONG, // 5: iowait time
PROC_SPACE_TERM|PROC_OUT_LONG, // 6: irq time
PROC_SPACE_TERM|PROC_OUT_LONG // 7: softirq time
};
private final long[] mSystemCpuData = new long[7];
private static final int[] LOAD_AVERAGE_FORMAT = new int[] {
PROC_SPACE_TERM|PROC_OUT_FLOAT, // 0: 1 min
PROC_SPACE_TERM|PROC_OUT_FLOAT, // 1: 5 mins
PROC_SPACE_TERM|PROC_OUT_FLOAT // 2: 15 mins
};
private final float[] mLoadAverageData = new float[3];
private final boolean mIncludeThreads;
private float mLoad1 = 0;
private float mLoad5 = 0;
private float mLoad15 = 0;
private long mCurrentSampleTime;
private long mLastSampleTime;
private long mCurrentSampleRealTime;
private long mLastSampleRealTime;
private long mBaseUserTime;
private long mBaseSystemTime;
private long mBaseIoWaitTime;
private long mBaseIrqTime;
private long mBaseSoftIrqTime;
private long mBaseIdleTime;
private int mRelUserTime;
private int mRelSystemTime;
private int mRelIoWaitTime;
private int mRelIrqTime;
private int mRelSoftIrqTime;
private int mRelIdleTime;
private int[] mCurPids;
private int[] mCurThreadPids;
private final ArrayList<Stats> mProcStats = new ArrayList<Stats>();
private final ArrayList<Stats> mWorkingProcs = new ArrayList<Stats>();
private boolean mWorkingProcsSorted;
private boolean mFirst = true;
private byte[] mBuffer = new byte[256];
/**
* The time in microseconds that the CPU has been running at each speed.
*/
private long[] mCpuSpeedTimes;
/**
* The relative time in microseconds that the CPU has been running at each speed.
*/
private long[] mRelCpuSpeedTimes;
/**
* The different speeds that the CPU can be running at.
*/
private long[] mCpuSpeeds;
public static class Stats {
public final int pid;
final String statFile;
final String cmdlineFile;
final String threadsDir;
final ArrayList<Stats> threadStats;
final ArrayList<Stats> workingThreads;
public boolean interesting;
public String baseName;
public String name;
int nameWidth;
public long base_uptime;
public long rel_uptime;
public long base_utime;
public long base_stime;
public int rel_utime;
public int rel_stime;
public long base_minfaults;
public long base_majfaults;
public int rel_minfaults;
public int rel_majfaults;
public boolean active;
public boolean working;
public boolean added;
public boolean removed;
Stats(int _pid, int parentPid, boolean includeThreads) {
pid = _pid;
if (parentPid < 0) {
final File procDir = new File("/proc", Integer.toString(pid));
statFile = new File(procDir, "stat").toString();
cmdlineFile = new File(procDir, "cmdline").toString();
threadsDir = (new File(procDir, "task")).toString();
if (includeThreads) {
threadStats = new ArrayList<Stats>();
workingThreads = new ArrayList<Stats>();
} else {
threadStats = null;
workingThreads = null;
}
} else {
final File procDir = new File("/proc", Integer.toString(
parentPid));
final File taskDir = new File(
new File(procDir, "task"), Integer.toString(pid));
statFile = new File(taskDir, "stat").toString();
cmdlineFile = null;
threadsDir = null;
threadStats = null;
workingThreads = null;
}
}
}
private final static Comparator<Stats> sLoadComparator = new Comparator<Stats>() {
public final int
compare(Stats sta, Stats stb) {
int ta = sta.rel_utime + sta.rel_stime;
int tb = stb.rel_utime + stb.rel_stime;
if (ta != tb) {
return ta > tb ? -1 : 1;
}
if (sta.added != stb.added) {
return sta.added ? -1 : 1;
}
if (sta.removed != stb.removed) {
return sta.added ? -1 : 1;
}
return 0;
}
};
public ProcessStats(boolean includeThreads) {
mIncludeThreads = includeThreads;
}
public void onLoadChanged(float load1, float load5, float load15) {
}
public int onMeasureProcessName(String name) {
return 0;
}
public void init() {
if (DEBUG) Slog.v(TAG, "Init: " + this);
mFirst = true;
update();
}
public void update() {
if (DEBUG) Slog.v(TAG, "Update: " + this);
mLastSampleTime = mCurrentSampleTime;
mCurrentSampleTime = SystemClock.uptimeMillis();
mLastSampleRealTime = mCurrentSampleRealTime;
mCurrentSampleRealTime = SystemClock.elapsedRealtime();
final long[] sysCpu = mSystemCpuData;
if (Process.readProcFile("/proc/stat", SYSTEM_CPU_FORMAT,
null, sysCpu, null)) {
// Total user time is user + nice time.
final long usertime = sysCpu[0]+sysCpu[1];
// Total system time is simply system time.
final long systemtime = sysCpu[2];
// Total idle time is simply idle time.
final long idletime = sysCpu[3];
// Total irq time is iowait + irq + softirq time.
final long iowaittime = sysCpu[4];
final long irqtime = sysCpu[5];
final long softirqtime = sysCpu[6];
mRelUserTime = (int)(usertime - mBaseUserTime);
mRelSystemTime = (int)(systemtime - mBaseSystemTime);
mRelIoWaitTime = (int)(iowaittime - mBaseIoWaitTime);
mRelIrqTime = (int)(irqtime - mBaseIrqTime);
mRelSoftIrqTime = (int)(softirqtime - mBaseSoftIrqTime);
mRelIdleTime = (int)(idletime - mBaseIdleTime);
if (DEBUG) {
Slog.i("Load", "Total U:" + sysCpu[0] + " N:" + sysCpu[1]
+ " S:" + sysCpu[2] + " I:" + sysCpu[3]
+ " W:" + sysCpu[4] + " Q:" + sysCpu[5]
+ " O:" + sysCpu[6]);
Slog.i("Load", "Rel U:" + mRelUserTime + " S:" + mRelSystemTime
+ " I:" + mRelIdleTime + " Q:" + mRelIrqTime);
}
mBaseUserTime = usertime;
mBaseSystemTime = systemtime;
mBaseIoWaitTime = iowaittime;
mBaseIrqTime = irqtime;
mBaseSoftIrqTime = softirqtime;
mBaseIdleTime = idletime;
}
mCurPids = collectStats("/proc", -1, mFirst, mCurPids, mProcStats);
final float[] loadAverages = mLoadAverageData;
if (Process.readProcFile("/proc/loadavg", LOAD_AVERAGE_FORMAT,
null, null, loadAverages)) {
float load1 = loadAverages[0];
float load5 = loadAverages[1];
float load15 = loadAverages[2];
if (load1 != mLoad1 || load5 != mLoad5 || load15 != mLoad15) {
mLoad1 = load1;
mLoad5 = load5;
mLoad15 = load15;
onLoadChanged(load1, load5, load15);
}
}
if (DEBUG) Slog.i(TAG, "*** TIME TO COLLECT STATS: "
+ (SystemClock.uptimeMillis()-mCurrentSampleTime));
mWorkingProcsSorted = false;
mFirst = false;
}
private int[] collectStats(String statsFile, int parentPid, boolean first,
int[] curPids, ArrayList<Stats> allProcs) {
int[] pids = Process.getPids(statsFile, curPids);
int NP = (pids == null) ? 0 : pids.length;
int NS = allProcs.size();
int curStatsIndex = 0;
for (int i=0; i<NP; i++) {
int pid = pids[i];
if (pid < 0) {
NP = pid;
break;
}
Stats st = curStatsIndex < NS ? allProcs.get(curStatsIndex) : null;
if (st != null && st.pid == pid) {
// Update an existing process...
st.added = false;
st.working = false;
curStatsIndex++;
if (DEBUG) Slog.v(TAG, "Existing "
+ (parentPid < 0 ? "process" : "thread")
+ " pid " + pid + ": " + st);
if (st.interesting) {
final long uptime = SystemClock.uptimeMillis();
final long[] procStats = mProcessStatsData;
if (!Process.readProcFile(st.statFile.toString(),
PROCESS_STATS_FORMAT, null, procStats, null)) {
continue;
}
final long minfaults = procStats[PROCESS_STAT_MINOR_FAULTS];
final long majfaults = procStats[PROCESS_STAT_MAJOR_FAULTS];
final long utime = procStats[PROCESS_STAT_UTIME];
final long stime = procStats[PROCESS_STAT_STIME];
if (utime == st.base_utime && stime == st.base_stime) {
st.rel_utime = 0;
st.rel_stime = 0;
st.rel_minfaults = 0;
st.rel_majfaults = 0;
if (st.active) {
st.active = false;
}
continue;
}
if (!st.active) {
st.active = true;
}
if (parentPid < 0) {
getName(st, st.cmdlineFile);
if (st.threadStats != null) {
mCurThreadPids = collectStats(st.threadsDir, pid, false,
mCurThreadPids, st.threadStats);
}
}
if (DEBUG) Slog.v("Load", "Stats changed " + st.name + " pid=" + st.pid
+ " utime=" + utime + "-" + st.base_utime
+ " stime=" + stime + "-" + st.base_stime
+ " minfaults=" + minfaults + "-" + st.base_minfaults
+ " majfaults=" + majfaults + "-" + st.base_majfaults);
st.rel_uptime = uptime - st.base_uptime;
st.base_uptime = uptime;
st.rel_utime = (int)(utime - st.base_utime);
st.rel_stime = (int)(stime - st.base_stime);
st.base_utime = utime;
st.base_stime = stime;
st.rel_minfaults = (int)(minfaults - st.base_minfaults);
st.rel_majfaults = (int)(majfaults - st.base_majfaults);
st.base_minfaults = minfaults;
st.base_majfaults = majfaults;
st.working = true;
}
continue;
}
if (st == null || st.pid > pid) {
// We have a new process!
st = new Stats(pid, parentPid, mIncludeThreads);
allProcs.add(curStatsIndex, st);
curStatsIndex++;
NS++;
if (DEBUG) Slog.v(TAG, "New "
+ (parentPid < 0 ? "process" : "thread")
+ " pid " + pid + ": " + st);
final String[] procStatsString = mProcessFullStatsStringData;
final long[] procStats = mProcessFullStatsData;
st.base_uptime = SystemClock.uptimeMillis();
if (Process.readProcFile(st.statFile.toString(),
PROCESS_FULL_STATS_FORMAT, procStatsString,
procStats, null)) {
// This is a possible way to filter out processes that
// are actually kernel threads... do we want to? Some
// of them do use CPU, but there can be a *lot* that are
// not doing anything.
if (true || procStats[PROCESS_FULL_STAT_VSIZE] != 0) {
st.interesting = true;
st.baseName = procStatsString[0];
st.base_minfaults = procStats[PROCESS_FULL_STAT_MINOR_FAULTS];
st.base_majfaults = procStats[PROCESS_FULL_STAT_MAJOR_FAULTS];
st.base_utime = procStats[PROCESS_FULL_STAT_UTIME];
st.base_stime = procStats[PROCESS_FULL_STAT_STIME];
} else {
Slog.i(TAG, "Skipping kernel process pid " + pid
+ " name " + procStatsString[0]);
st.baseName = procStatsString[0];
}
} else {
Slog.w(TAG, "Skipping unknown process pid " + pid);
st.baseName = "<unknown>";
st.base_utime = st.base_stime = 0;
st.base_minfaults = st.base_majfaults = 0;
}
if (parentPid < 0) {
getName(st, st.cmdlineFile);
if (st.threadStats != null) {
mCurThreadPids = collectStats(st.threadsDir, pid, true,
mCurThreadPids, st.threadStats);
}
} else if (st.interesting) {
st.name = st.baseName;
st.nameWidth = onMeasureProcessName(st.name);
}
if (DEBUG) Slog.v("Load", "Stats added " + st.name + " pid=" + st.pid
+ " utime=" + st.base_utime + " stime=" + st.base_stime
+ " minfaults=" + st.base_minfaults + " majfaults=" + st.base_majfaults);
st.rel_utime = 0;
st.rel_stime = 0;
st.rel_minfaults = 0;
st.rel_majfaults = 0;
st.added = true;
if (!first && st.interesting) {
st.working = true;
}
continue;
}
// This process has gone away!
st.rel_utime = 0;
st.rel_stime = 0;
st.rel_minfaults = 0;
st.rel_majfaults = 0;
st.removed = true;
st.working = true;
allProcs.remove(curStatsIndex);
NS--;
if (DEBUG) Slog.v(TAG, "Removed "
+ (parentPid < 0 ? "process" : "thread")
+ " pid " + pid + ": " + st);
// Decrement the loop counter so that we process the current pid
// again the next time through the loop.
i--;
continue;
}
while (curStatsIndex < NS) {
// This process has gone away!
final Stats st = allProcs.get(curStatsIndex);
st.rel_utime = 0;
st.rel_stime = 0;
st.rel_minfaults = 0;
st.rel_majfaults = 0;
st.removed = true;
st.working = true;
allProcs.remove(curStatsIndex);
NS--;
if (localLOGV) Slog.v(TAG, "Removed pid " + st.pid + ": " + st);
}
return pids;
}
public long getCpuTimeForPid(int pid) {
final String statFile = "/proc/" + pid + "/stat";
final long[] statsData = mSinglePidStatsData;
if (Process.readProcFile(statFile, PROCESS_STATS_FORMAT,
null, statsData, null)) {
long time = statsData[PROCESS_STAT_UTIME]
+ statsData[PROCESS_STAT_STIME];
return time;
}
return 0;
}
/**
* Returns the times spent at each CPU speed, since the last call to this method. If this
* is the first time, it will return 1 for each value.
* @return relative times spent at different speed steps.
*/
public long[] getLastCpuSpeedTimes() {
if (mCpuSpeedTimes == null) {
mCpuSpeedTimes = getCpuSpeedTimes(null);
mRelCpuSpeedTimes = new long[mCpuSpeedTimes.length];
for (int i = 0; i < mCpuSpeedTimes.length; i++) {
mRelCpuSpeedTimes[i] = 1; // Initialize
}
} else {
getCpuSpeedTimes(mRelCpuSpeedTimes);
for (int i = 0; i < mCpuSpeedTimes.length; i++) {
long temp = mRelCpuSpeedTimes[i];
mRelCpuSpeedTimes[i] -= mCpuSpeedTimes[i];
mCpuSpeedTimes[i] = temp;
}
}
return mRelCpuSpeedTimes;
}
private long[] getCpuSpeedTimes(long[] out) {
long[] tempTimes = out;
long[] tempSpeeds = mCpuSpeeds;
final int MAX_SPEEDS = 20;
if (out == null) {
tempTimes = new long[MAX_SPEEDS]; // Hopefully no more than that
tempSpeeds = new long[MAX_SPEEDS];
}
int speed = 0;
String file = readFile("/sys/devices/system/cpu/cpu0/cpufreq/stats/time_in_state", '\0');
// Note: file may be null on kernels without cpufreq (i.e. the emulator's)
if (file != null) {
StringTokenizer st = new StringTokenizer(file, "\n ");
while (st.hasMoreElements()) {
String token = st.nextToken();
try {
long val = Long.parseLong(token);
tempSpeeds[speed] = val;
token = st.nextToken();
val = Long.parseLong(token);
tempTimes[speed] = val;
speed++;
if (speed == MAX_SPEEDS) break; // No more
if (localLOGV && out == null) {
Slog.v(TAG, "First time : Speed/Time = " + tempSpeeds[speed - 1]
+ "\t" + tempTimes[speed - 1]);
}
} catch (NumberFormatException nfe) {
Slog.i(TAG, "Unable to parse time_in_state");
}
}
}
if (out == null) {
out = new long[speed];
mCpuSpeeds = new long[speed];
System.arraycopy(tempSpeeds, 0, mCpuSpeeds, 0, speed);
System.arraycopy(tempTimes, 0, out, 0, speed);
}
return out;
}
final public int getLastUserTime() {
return mRelUserTime;
}
final public int getLastSystemTime() {
return mRelSystemTime;
}
final public int getLastIoWaitTime() {
return mRelIoWaitTime;
}
final public int getLastIrqTime() {
return mRelIrqTime;
}
final public int getLastSoftIrqTime() {
return mRelSoftIrqTime;
}
final public int getLastIdleTime() {
return mRelIdleTime;
}
final public float getTotalCpuPercent() {
return ((float)(mRelUserTime+mRelSystemTime+mRelIrqTime)*100)
/ (mRelUserTime+mRelSystemTime+mRelIrqTime+mRelIdleTime);
}
final void buildWorkingProcs() {
if (!mWorkingProcsSorted) {
mWorkingProcs.clear();
final int N = mProcStats.size();
for (int i=0; i<N; i++) {
Stats stats = mProcStats.get(i);
if (stats.working) {
mWorkingProcs.add(stats);
if (stats.threadStats != null && stats.threadStats.size() > 1) {
stats.workingThreads.clear();
final int M = stats.threadStats.size();
for (int j=0; j<M; j++) {
Stats tstats = stats.threadStats.get(j);
if (tstats.working) {
stats.workingThreads.add(tstats);
}
}
Collections.sort(stats.workingThreads, sLoadComparator);
}
}
}
Collections.sort(mWorkingProcs, sLoadComparator);
mWorkingProcsSorted = true;
}
}
final public int countStats() {
return mProcStats.size();
}
final public Stats getStats(int index) {
return mProcStats.get(index);
}
final public int countWorkingStats() {
buildWorkingProcs();
return mWorkingProcs.size();
}
final public Stats getWorkingStats(int index) {
return mWorkingProcs.get(index);
}
final public String printCurrentLoad() {
StringWriter sw = new StringWriter();
PrintWriter pw = new PrintWriter(sw);
pw.print("Load: ");
pw.print(mLoad1);
pw.print(" / ");
pw.print(mLoad5);
pw.print(" / ");
pw.println(mLoad15);
return sw.toString();
}
final public String printCurrentState(long now) {
buildWorkingProcs();
StringWriter sw = new StringWriter();
PrintWriter pw = new PrintWriter(sw);
pw.print("CPU usage from ");
if (now > mLastSampleTime) {
pw.print(now-mLastSampleTime);
pw.print("ms to ");
pw.print(now-mCurrentSampleTime);
pw.print("ms ago");
} else {
pw.print(mLastSampleTime-now);
pw.print("ms to ");
pw.print(mCurrentSampleTime-now);
pw.print("ms later");
}
long sampleTime = mCurrentSampleTime - mLastSampleTime;
long sampleRealTime = mCurrentSampleRealTime - mLastSampleRealTime;
long percAwake = (sampleTime*100) / sampleRealTime;
if (percAwake != 100) {
pw.print(" with ");
pw.print(percAwake);
pw.print("% awake");
}
pw.println(":");
final int totalTime = mRelUserTime + mRelSystemTime + mRelIoWaitTime
+ mRelIrqTime + mRelSoftIrqTime + mRelIdleTime;
if (DEBUG) Slog.i(TAG, "totalTime " + totalTime + " over sample time "
+ (mCurrentSampleTime-mLastSampleTime));
int N = mWorkingProcs.size();
for (int i=0; i<N; i++) {
Stats st = mWorkingProcs.get(i);
printProcessCPU(pw, st.added ? " +" : (st.removed ? " -": " "),
st.pid, st.name, (int)(st.rel_uptime+5)/10,
st.rel_utime, st.rel_stime, 0, 0, 0, st.rel_minfaults, st.rel_majfaults);
if (!st.removed && st.workingThreads != null) {
int M = st.workingThreads.size();
for (int j=0; j<M; j++) {
Stats tst = st.workingThreads.get(j);
printProcessCPU(pw,
tst.added ? " +" : (tst.removed ? " -": " "),
tst.pid, tst.name, (int)(st.rel_uptime+5)/10,
tst.rel_utime, tst.rel_stime, 0, 0, 0, 0, 0);
}
}
}
printProcessCPU(pw, "", -1, "TOTAL", totalTime, mRelUserTime, mRelSystemTime,
mRelIoWaitTime, mRelIrqTime, mRelSoftIrqTime, 0, 0);
return sw.toString();
}
private void printRatio(PrintWriter pw, long numerator, long denominator) {
long thousands = (numerator*1000)/denominator;
long hundreds = thousands/10;
pw.print(hundreds);
if (hundreds < 10) {
long remainder = thousands - (hundreds*10);
if (remainder != 0) {
pw.print('.');
pw.print(remainder);
}
}
}
private void printProcessCPU(PrintWriter pw, String prefix, int pid, String label,
int totalTime, int user, int system, int iowait, int irq, int softIrq,
int minFaults, int majFaults) {
pw.print(prefix);
if (totalTime == 0) totalTime = 1;
printRatio(pw, user+system+iowait+irq+softIrq, totalTime);
pw.print("% ");
if (pid >= 0) {
pw.print(pid);
pw.print("/");
}
pw.print(label);
pw.print(": ");
printRatio(pw, user, totalTime);
pw.print("% user + ");
printRatio(pw, system, totalTime);
pw.print("% kernel");
if (iowait > 0) {
pw.print(" + ");
printRatio(pw, iowait, totalTime);
pw.print("% iowait");
}
if (irq > 0) {
pw.print(" + ");
printRatio(pw, irq, totalTime);
pw.print("% irq");
}
if (softIrq > 0) {
pw.print(" + ");
printRatio(pw, softIrq, totalTime);
pw.print("% softirq");
}
if (minFaults > 0 || majFaults > 0) {
pw.print(" / faults:");
if (minFaults > 0) {
pw.print(" ");
pw.print(minFaults);
pw.print(" minor");
}
if (majFaults > 0) {
pw.print(" ");
pw.print(majFaults);
pw.print(" major");
}
}
pw.println();
}
private String readFile(String file, char endChar) {
try {
FileInputStream is = new FileInputStream(file);
int len = is.read(mBuffer);
is.close();
if (len > 0) {
int i;
for (i=0; i<len; i++) {
if (mBuffer[i] == endChar) {
break;
}
}
return new String(mBuffer, 0, i);
}
} catch (java.io.FileNotFoundException e) {
} catch (java.io.IOException e) {
}
return null;
}
private void getName(Stats st, String cmdlineFile) {
String newName = st.name;
if (st.name == null || st.name.equals("app_process")
|| st.name.equals("<pre-initialized>")) {
String cmdName = readFile(cmdlineFile, '\0');
if (cmdName != null && cmdName.length() > 1) {
newName = cmdName;
int i = newName.lastIndexOf("/");
if (i > 0 && i < newName.length()-1) {
newName = newName.substring(i+1);
}
}
if (newName == null) {
newName = st.baseName;
}
}
if (st.name == null || !newName.equals(st.name)) {
st.name = newName;
st.nameWidth = onMeasureProcessName(st.name);
}
}
}