blob: ff0d8d74831cfa86dcca6e91e5797e867ea563e1 [file] [log] [blame]
/*
* Copyright (C) 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "RecordingCanvas.h"
#include <GrRecordingContext.h>
#include <SkMesh.h>
#include <hwui/Paint.h>
#include <log/log.h>
#include <experimental/type_traits>
#include <utility>
#include "Mesh.h"
#include "SkAndroidFrameworkUtils.h"
#include "SkBlendMode.h"
#include "SkCanvas.h"
#include "SkCanvasPriv.h"
#include "SkColor.h"
#include "SkData.h"
#include "SkDrawShadowInfo.h"
#include "SkImage.h"
#include "SkImageFilter.h"
#include "SkImageInfo.h"
#include "SkLatticeIter.h"
#include "SkMesh.h"
#include "SkPaint.h"
#include "SkPicture.h"
#include "SkRRect.h"
#include "SkRSXform.h"
#include "SkRect.h"
#include "SkRegion.h"
#include "SkTextBlob.h"
#include "SkVertices.h"
#include "Tonemapper.h"
#include "VectorDrawable.h"
#include "effects/GainmapRenderer.h"
#include "include/gpu/GpuTypes.h" // from Skia
#include "include/gpu/GrDirectContext.h"
#include "include/gpu/ganesh/SkMeshGanesh.h"
#include "pipeline/skia/AnimatedDrawables.h"
#include "pipeline/skia/FunctorDrawable.h"
#ifdef __ANDROID__
#include "renderthread/CanvasContext.h"
#endif
namespace android {
namespace uirenderer {
#ifndef SKLITEDL_PAGE
#define SKLITEDL_PAGE 4096
#endif
// A stand-in for an optional SkRect which was not set, e.g. bounds for a saveLayer().
static const SkRect kUnset = {SK_ScalarInfinity, 0, 0, 0};
static const SkRect* maybe_unset(const SkRect& r) {
return r.left() == SK_ScalarInfinity ? nullptr : &r;
}
// copy_v(dst, src,n, src,n, ...) copies an arbitrary number of typed srcs into dst.
static void copy_v(void* dst) {}
template <typename S, typename... Rest>
static void copy_v(void* dst, const S* src, int n, Rest&&... rest) {
LOG_FATAL_IF(((uintptr_t)dst & (alignof(S) - 1)) != 0,
"Expected %p to be aligned for at least %zu bytes.",
dst, alignof(S));
// If n is 0, there is nothing to copy into dst from src.
if (n > 0) {
memcpy(dst, src, n * sizeof(S));
dst = reinterpret_cast<void*>(
reinterpret_cast<uint8_t*>(dst) + n * sizeof(S));
}
// Repeat for the next items, if any
copy_v(dst, std::forward<Rest>(rest)...);
}
// Helper for getting back at arrays which have been copy_v'd together after an Op.
template <typename D, typename T>
static const D* pod(const T* op, size_t offset = 0) {
return reinterpret_cast<const D*>(
reinterpret_cast<const uint8_t*>(op + 1) + offset);
}
namespace {
#define X(T) T,
enum class Type : uint8_t {
#include "DisplayListOps.in"
};
#undef X
struct Op {
uint32_t type : 8;
uint32_t skip : 24;
};
static_assert(sizeof(Op) == 4, "");
struct Save final : Op {
static const auto kType = Type::Save;
void draw(SkCanvas* c, const SkMatrix&) const { c->save(); }
};
struct Restore final : Op {
static const auto kType = Type::Restore;
void draw(SkCanvas* c, const SkMatrix&) const { c->restore(); }
};
struct SaveLayer final : Op {
static const auto kType = Type::SaveLayer;
SaveLayer(const SkRect* bounds, const SkPaint* paint, const SkImageFilter* backdrop,
SkCanvas::SaveLayerFlags flags) {
if (bounds) {
this->bounds = *bounds;
}
if (paint) {
this->paint = *paint;
}
this->backdrop = sk_ref_sp(backdrop);
this->flags = flags;
}
SkRect bounds = kUnset;
SkPaint paint;
sk_sp<const SkImageFilter> backdrop;
SkCanvas::SaveLayerFlags flags;
void draw(SkCanvas* c, const SkMatrix&) const {
c->saveLayer({maybe_unset(bounds), &paint, backdrop.get(), flags});
}
};
struct SaveBehind final : Op {
static const auto kType = Type::SaveBehind;
SaveBehind(const SkRect* subset) {
if (subset) { this->subset = *subset; }
}
SkRect subset = kUnset;
void draw(SkCanvas* c, const SkMatrix&) const {
SkAndroidFrameworkUtils::SaveBehind(c, &subset);
}
};
struct Concat final : Op {
static const auto kType = Type::Concat;
Concat(const SkM44& matrix) : matrix(matrix) {}
SkM44 matrix;
void draw(SkCanvas* c, const SkMatrix&) const { c->concat(matrix); }
};
struct SetMatrix final : Op {
static const auto kType = Type::SetMatrix;
SetMatrix(const SkM44& matrix) : matrix(matrix) {}
SkM44 matrix;
void draw(SkCanvas* c, const SkMatrix& original) const {
c->setMatrix(SkM44(original) * matrix);
}
};
struct Scale final : Op {
static const auto kType = Type::Scale;
Scale(SkScalar sx, SkScalar sy) : sx(sx), sy(sy) {}
SkScalar sx, sy;
void draw(SkCanvas* c, const SkMatrix&) const { c->scale(sx, sy); }
};
struct Translate final : Op {
static const auto kType = Type::Translate;
Translate(SkScalar dx, SkScalar dy) : dx(dx), dy(dy) {}
SkScalar dx, dy;
void draw(SkCanvas* c, const SkMatrix&) const { c->translate(dx, dy); }
};
struct ClipPath final : Op {
static const auto kType = Type::ClipPath;
ClipPath(const SkPath& path, SkClipOp op, bool aa) : path(path), op(op), aa(aa) {}
SkPath path;
SkClipOp op;
bool aa;
void draw(SkCanvas* c, const SkMatrix&) const { c->clipPath(path, op, aa); }
};
struct ClipRect final : Op {
static const auto kType = Type::ClipRect;
ClipRect(const SkRect& rect, SkClipOp op, bool aa) : rect(rect), op(op), aa(aa) {}
SkRect rect;
SkClipOp op;
bool aa;
void draw(SkCanvas* c, const SkMatrix&) const { c->clipRect(rect, op, aa); }
};
struct ClipRRect final : Op {
static const auto kType = Type::ClipRRect;
ClipRRect(const SkRRect& rrect, SkClipOp op, bool aa) : rrect(rrect), op(op), aa(aa) {}
SkRRect rrect;
SkClipOp op;
bool aa;
void draw(SkCanvas* c, const SkMatrix&) const { c->clipRRect(rrect, op, aa); }
};
struct ClipRegion final : Op {
static const auto kType = Type::ClipRegion;
ClipRegion(const SkRegion& region, SkClipOp op) : region(region), op(op) {}
SkRegion region;
SkClipOp op;
void draw(SkCanvas* c, const SkMatrix&) const { c->clipRegion(region, op); }
};
struct ResetClip final : Op {
static const auto kType = Type::ResetClip;
ResetClip() {}
void draw(SkCanvas* c, const SkMatrix&) const { SkAndroidFrameworkUtils::ResetClip(c); }
};
struct DrawPaint final : Op {
static const auto kType = Type::DrawPaint;
DrawPaint(const SkPaint& paint) : paint(paint) {}
SkPaint paint;
void draw(SkCanvas* c, const SkMatrix&) const { c->drawPaint(paint); }
};
struct DrawBehind final : Op {
static const auto kType = Type::DrawBehind;
DrawBehind(const SkPaint& paint) : paint(paint) {}
SkPaint paint;
void draw(SkCanvas* c, const SkMatrix&) const { SkCanvasPriv::DrawBehind(c, paint); }
};
struct DrawPath final : Op {
static const auto kType = Type::DrawPath;
DrawPath(const SkPath& path, const SkPaint& paint) : path(path), paint(paint) {}
SkPath path;
SkPaint paint;
void draw(SkCanvas* c, const SkMatrix&) const { c->drawPath(path, paint); }
};
struct DrawRect final : Op {
static const auto kType = Type::DrawRect;
DrawRect(const SkRect& rect, const SkPaint& paint) : rect(rect), paint(paint) {}
SkRect rect;
SkPaint paint;
void draw(SkCanvas* c, const SkMatrix&) const { c->drawRect(rect, paint); }
};
struct DrawRegion final : Op {
static const auto kType = Type::DrawRegion;
DrawRegion(const SkRegion& region, const SkPaint& paint) : region(region), paint(paint) {}
SkRegion region;
SkPaint paint;
void draw(SkCanvas* c, const SkMatrix&) const { c->drawRegion(region, paint); }
};
struct DrawOval final : Op {
static const auto kType = Type::DrawOval;
DrawOval(const SkRect& oval, const SkPaint& paint) : oval(oval), paint(paint) {}
SkRect oval;
SkPaint paint;
void draw(SkCanvas* c, const SkMatrix&) const { c->drawOval(oval, paint); }
};
struct DrawArc final : Op {
static const auto kType = Type::DrawArc;
DrawArc(const SkRect& oval, SkScalar startAngle, SkScalar sweepAngle, bool useCenter,
const SkPaint& paint)
: oval(oval)
, startAngle(startAngle)
, sweepAngle(sweepAngle)
, useCenter(useCenter)
, paint(paint) {}
SkRect oval;
SkScalar startAngle;
SkScalar sweepAngle;
bool useCenter;
SkPaint paint;
void draw(SkCanvas* c, const SkMatrix&) const {
c->drawArc(oval, startAngle, sweepAngle, useCenter, paint);
}
};
struct DrawRRect final : Op {
static const auto kType = Type::DrawRRect;
DrawRRect(const SkRRect& rrect, const SkPaint& paint) : rrect(rrect), paint(paint) {}
SkRRect rrect;
SkPaint paint;
void draw(SkCanvas* c, const SkMatrix&) const { c->drawRRect(rrect, paint); }
};
struct DrawDRRect final : Op {
static const auto kType = Type::DrawDRRect;
DrawDRRect(const SkRRect& outer, const SkRRect& inner, const SkPaint& paint)
: outer(outer), inner(inner), paint(paint) {}
SkRRect outer, inner;
SkPaint paint;
void draw(SkCanvas* c, const SkMatrix&) const { c->drawDRRect(outer, inner, paint); }
};
struct DrawAnnotation final : Op {
static const auto kType = Type::DrawAnnotation;
DrawAnnotation(const SkRect& rect, SkData* value) : rect(rect), value(sk_ref_sp(value)) {}
SkRect rect;
sk_sp<SkData> value;
void draw(SkCanvas* c, const SkMatrix&) const {
c->drawAnnotation(rect, pod<char>(this), value.get());
}
};
struct DrawDrawable final : Op {
static const auto kType = Type::DrawDrawable;
DrawDrawable(SkDrawable* drawable, const SkMatrix* matrix) : drawable(sk_ref_sp(drawable)) {
if (matrix) {
this->matrix = *matrix;
}
}
sk_sp<SkDrawable> drawable;
SkMatrix matrix = SkMatrix::I();
// It is important that we call drawable->draw(c) here instead of c->drawDrawable(drawable).
// Drawables are mutable and in cases, like RenderNodeDrawable, are not expected to produce the
// same content if retained outside the duration of the frame. Therefore we resolve
// them now and do not allow the canvas to take a reference to the drawable and potentially
// keep it alive for longer than the frames duration (e.g. SKP serialization).
void draw(SkCanvas* c, const SkMatrix&) const { drawable->draw(c, &matrix); }
};
struct DrawPicture final : Op {
static const auto kType = Type::DrawPicture;
DrawPicture(const SkPicture* picture, const SkMatrix* matrix, const SkPaint* paint)
: picture(sk_ref_sp(picture)) {
if (matrix) {
this->matrix = *matrix;
}
if (paint) {
this->paint = *paint;
has_paint = true;
}
}
sk_sp<const SkPicture> picture;
SkMatrix matrix = SkMatrix::I();
SkPaint paint;
bool has_paint = false; // TODO: why is a default paint not the same?
void draw(SkCanvas* c, const SkMatrix&) const {
c->drawPicture(picture.get(), &matrix, has_paint ? &paint : nullptr);
}
};
struct DrawImage final : Op {
static const auto kType = Type::DrawImage;
DrawImage(DrawImagePayload&& payload, SkScalar x, SkScalar y, const SkSamplingOptions& sampling,
const SkPaint* paint)
: image(std::move(payload.image))
, x(x)
, y(y)
, sampling(sampling)
, palette(payload.palette)
, gainmap(std::move(payload.gainmapImage))
, gainmapInfo(payload.gainmapInfo) {
if (paint) {
this->paint = *paint;
}
}
sk_sp<const SkImage> image;
SkScalar x, y;
SkSamplingOptions sampling;
SkPaint paint;
BitmapPalette palette;
sk_sp<const SkImage> gainmap;
SkGainmapInfo gainmapInfo;
void draw(SkCanvas* c, const SkMatrix&) const {
if (gainmap) {
SkRect src = SkRect::MakeWH(image->width(), image->height());
SkRect dst = SkRect::MakeXYWH(x, y, src.width(), src.height());
DrawGainmapBitmap(c, image, src, dst, sampling, &paint,
SkCanvas::kFast_SrcRectConstraint, gainmap, gainmapInfo);
} else {
SkPaint newPaint = paint;
tonemapPaint(image->imageInfo(), c->imageInfo(), -1, newPaint);
c->drawImage(image.get(), x, y, sampling, &newPaint);
}
}
};
struct DrawImageRect final : Op {
static const auto kType = Type::DrawImageRect;
DrawImageRect(DrawImagePayload&& payload, const SkRect* src, const SkRect& dst,
const SkSamplingOptions& sampling, const SkPaint* paint,
SkCanvas::SrcRectConstraint constraint)
: image(std::move(payload.image))
, dst(dst)
, sampling(sampling)
, constraint(constraint)
, palette(payload.palette)
, gainmap(std::move(payload.gainmapImage))
, gainmapInfo(payload.gainmapInfo) {
this->src = src ? *src : SkRect::MakeIWH(this->image->width(), this->image->height());
if (paint) {
this->paint = *paint;
}
}
sk_sp<const SkImage> image;
SkRect src, dst;
SkSamplingOptions sampling;
SkPaint paint;
SkCanvas::SrcRectConstraint constraint;
BitmapPalette palette;
sk_sp<const SkImage> gainmap;
SkGainmapInfo gainmapInfo;
void draw(SkCanvas* c, const SkMatrix&) const {
if (gainmap) {
DrawGainmapBitmap(c, image, src, dst, sampling, &paint, constraint, gainmap,
gainmapInfo);
} else {
SkPaint newPaint = paint;
tonemapPaint(image->imageInfo(), c->imageInfo(), -1, newPaint);
c->drawImageRect(image.get(), src, dst, sampling, &newPaint, constraint);
}
}
};
struct DrawImageLattice final : Op {
static const auto kType = Type::DrawImageLattice;
DrawImageLattice(DrawImagePayload&& payload, int xs, int ys, int fs, const SkIRect& src,
const SkRect& dst, SkFilterMode filter, const SkPaint* paint)
: image(std::move(payload.image))
, xs(xs)
, ys(ys)
, fs(fs)
, src(src)
, dst(dst)
, filter(filter)
, palette(payload.palette) {
if (paint) {
this->paint = *paint;
}
}
sk_sp<const SkImage> image;
int xs, ys, fs;
SkIRect src;
SkRect dst;
SkFilterMode filter;
SkPaint paint;
BitmapPalette palette;
void draw(SkCanvas* c, const SkMatrix&) const {
// TODO: Support drawing a gainmap 9-patch?
auto xdivs = pod<int>(this, 0), ydivs = pod<int>(this, xs * sizeof(int));
auto colors = (0 == fs) ? nullptr : pod<SkColor>(this, (xs + ys) * sizeof(int));
auto flags =
(0 == fs) ? nullptr : pod<SkCanvas::Lattice::RectType>(
this, (xs + ys) * sizeof(int) + fs * sizeof(SkColor));
SkPaint newPaint = paint;
tonemapPaint(image->imageInfo(), c->imageInfo(), -1, newPaint);
c->drawImageLattice(image.get(), {xdivs, ydivs, flags, xs, ys, &src, colors}, dst, filter,
&newPaint);
}
};
struct DrawTextBlob final : Op {
static const auto kType = Type::DrawTextBlob;
DrawTextBlob(const SkTextBlob* blob, SkScalar x, SkScalar y, const SkPaint& paint)
: blob(sk_ref_sp(blob)), x(x), y(y), paint(paint), drawTextBlobMode(gDrawTextBlobMode) {}
sk_sp<const SkTextBlob> blob;
SkScalar x, y;
SkPaint paint;
DrawTextBlobMode drawTextBlobMode;
void draw(SkCanvas* c, const SkMatrix&) const { c->drawTextBlob(blob.get(), x, y, paint); }
};
struct DrawPatch final : Op {
static const auto kType = Type::DrawPatch;
DrawPatch(const SkPoint cubics[12], const SkColor colors[4], const SkPoint texs[4],
SkBlendMode bmode, const SkPaint& paint)
: xfermode(bmode), paint(paint) {
copy_v(this->cubics, cubics, 12);
if (colors) {
copy_v(this->colors, colors, 4);
has_colors = true;
}
if (texs) {
copy_v(this->texs, texs, 4);
has_texs = true;
}
}
SkPoint cubics[12];
SkColor colors[4];
SkPoint texs[4];
SkBlendMode xfermode;
SkPaint paint;
bool has_colors = false;
bool has_texs = false;
void draw(SkCanvas* c, const SkMatrix&) const {
c->drawPatch(cubics, has_colors ? colors : nullptr, has_texs ? texs : nullptr, xfermode,
paint);
}
};
struct DrawPoints final : Op {
static const auto kType = Type::DrawPoints;
DrawPoints(SkCanvas::PointMode mode, size_t count, const SkPaint& paint)
: mode(mode), count(count), paint(paint) {}
SkCanvas::PointMode mode;
size_t count;
SkPaint paint;
void draw(SkCanvas* c, const SkMatrix&) const {
if (paint.isAntiAlias()) {
c->drawPoints(mode, count, pod<SkPoint>(this), paint);
} else {
c->save();
#ifdef __ANDROID__
auto pixelSnap = renderthread::CanvasContext::getActiveContext()->getPixelSnapMatrix();
auto transform = c->getLocalToDevice();
transform.postConcat(pixelSnap);
c->setMatrix(transform);
#endif
c->drawPoints(mode, count, pod<SkPoint>(this), paint);
c->restore();
}
}
};
struct DrawVertices final : Op {
static const auto kType = Type::DrawVertices;
DrawVertices(const SkVertices* v, SkBlendMode m, const SkPaint& p)
: vertices(sk_ref_sp(const_cast<SkVertices*>(v))), mode(m), paint(p) {}
sk_sp<SkVertices> vertices;
SkBlendMode mode;
SkPaint paint;
void draw(SkCanvas* c, const SkMatrix&) const {
c->drawVertices(vertices, mode, paint);
}
};
struct DrawSkMesh final : Op {
static const auto kType = Type::DrawSkMesh;
DrawSkMesh(const SkMesh& mesh, sk_sp<SkBlender> blender, const SkPaint& paint)
: cpuMesh(mesh), blender(std::move(blender)), paint(paint) {
isGpuBased = false;
}
const SkMesh& cpuMesh;
mutable SkMesh gpuMesh;
sk_sp<SkBlender> blender;
SkPaint paint;
mutable bool isGpuBased;
mutable GrDirectContext::DirectContextID contextId;
void draw(SkCanvas* c, const SkMatrix&) const {
#ifdef __ANDROID__
GrDirectContext* directContext = c->recordingContext()->asDirectContext();
GrDirectContext::DirectContextID id = directContext->directContextID();
if (!isGpuBased || contextId != id) {
sk_sp<SkMesh::VertexBuffer> vb =
SkMeshes::CopyVertexBuffer(directContext, cpuMesh.refVertexBuffer());
if (!cpuMesh.indexBuffer()) {
gpuMesh = SkMesh::Make(cpuMesh.refSpec(), cpuMesh.mode(), vb, cpuMesh.vertexCount(),
cpuMesh.vertexOffset(), cpuMesh.refUniforms(),
SkSpan<SkRuntimeEffect::ChildPtr>(), cpuMesh.bounds())
.mesh;
} else {
sk_sp<SkMesh::IndexBuffer> ib =
SkMeshes::CopyIndexBuffer(directContext, cpuMesh.refIndexBuffer());
gpuMesh = SkMesh::MakeIndexed(cpuMesh.refSpec(), cpuMesh.mode(), vb,
cpuMesh.vertexCount(), cpuMesh.vertexOffset(), ib,
cpuMesh.indexCount(), cpuMesh.indexOffset(),
cpuMesh.refUniforms(),
SkSpan<SkRuntimeEffect::ChildPtr>(), cpuMesh.bounds())
.mesh;
}
isGpuBased = true;
contextId = id;
}
c->drawMesh(gpuMesh, blender, paint);
#else
c->drawMesh(cpuMesh, blender, paint);
#endif
}
};
struct DrawMesh final : Op {
static const auto kType = Type::DrawMesh;
DrawMesh(const Mesh& mesh, sk_sp<SkBlender> blender, const SkPaint& paint)
: mesh(mesh), blender(std::move(blender)), paint(paint) {}
const Mesh& mesh;
sk_sp<SkBlender> blender;
SkPaint paint;
void draw(SkCanvas* c, const SkMatrix&) const { c->drawMesh(mesh.getSkMesh(), blender, paint); }
};
struct DrawAtlas final : Op {
static const auto kType = Type::DrawAtlas;
DrawAtlas(const SkImage* atlas, int count, SkBlendMode mode, const SkSamplingOptions& sampling,
const SkRect* cull, const SkPaint* paint, bool has_colors)
: atlas(sk_ref_sp(atlas)), count(count), mode(mode), sampling(sampling)
, has_colors(has_colors) {
if (cull) {
this->cull = *cull;
}
if (paint) {
this->paint = *paint;
}
}
sk_sp<const SkImage> atlas;
int count;
SkBlendMode mode;
SkSamplingOptions sampling;
SkRect cull = kUnset;
SkPaint paint;
bool has_colors;
void draw(SkCanvas* c, const SkMatrix&) const {
auto xforms = pod<SkRSXform>(this, 0);
auto texs = pod<SkRect>(this, count * sizeof(SkRSXform));
auto colors = has_colors ? pod<SkColor>(this, count * (sizeof(SkRSXform) + sizeof(SkRect)))
: nullptr;
c->drawAtlas(atlas.get(), xforms, texs, colors, count, mode, sampling, maybe_unset(cull),
&paint);
}
};
struct DrawShadowRec final : Op {
static const auto kType = Type::DrawShadowRec;
DrawShadowRec(const SkPath& path, const SkDrawShadowRec& rec) : fPath(path), fRec(rec) {}
SkPath fPath;
SkDrawShadowRec fRec;
void draw(SkCanvas* c, const SkMatrix&) const { c->private_draw_shadow_rec(fPath, fRec); }
};
struct DrawVectorDrawable final : Op {
static const auto kType = Type::DrawVectorDrawable;
DrawVectorDrawable(VectorDrawableRoot* tree)
: mRoot(tree)
, mBounds(tree->stagingProperties().getBounds())
, palette(tree->computePalette()) {
// Recording, so use staging properties
tree->getPaintFor(&paint, tree->stagingProperties());
}
void draw(SkCanvas* canvas, const SkMatrix&) const {
mRoot->draw(canvas, mBounds, paint);
}
sp<VectorDrawableRoot> mRoot;
SkRect mBounds;
Paint paint;
BitmapPalette palette;
};
struct DrawRippleDrawable final : Op {
static const auto kType = Type::DrawRippleDrawable;
DrawRippleDrawable(const skiapipeline::RippleDrawableParams& params) : mParams(params) {}
void draw(SkCanvas* canvas, const SkMatrix&) const {
skiapipeline::AnimatedRippleDrawable::draw(canvas, mParams);
}
skiapipeline::RippleDrawableParams mParams;
};
struct DrawWebView final : Op {
static const auto kType = Type::DrawWebView;
DrawWebView(skiapipeline::FunctorDrawable* drawable) : drawable(sk_ref_sp(drawable)) {}
sk_sp<skiapipeline::FunctorDrawable> drawable;
// We can't invoke SkDrawable::draw directly, because VkFunctorDrawable expects
// SkDrawable::onSnapGpuDrawHandler callback instead of SkDrawable::onDraw.
// SkCanvas::drawDrawable/SkGpuDevice::drawDrawable has the logic to invoke
// onSnapGpuDrawHandler.
private:
// Unfortunately WebView does not have complex clip information serialized, and we only perform
// best-effort stencil fill for GLES. So for Vulkan we create an intermediate layer if the
// canvas clip is complex.
static bool needsCompositedLayer(SkCanvas* c) {
if (Properties::getRenderPipelineType() != RenderPipelineType::SkiaVulkan) {
return false;
}
SkRegion clipRegion;
// WebView's rasterizer has access to simple clips, so for Vulkan we only need to check if
// the clip is more complex than a rectangle.
c->temporary_internal_getRgnClip(&clipRegion);
return clipRegion.isComplex();
}
mutable SkImageInfo mLayerImageInfo;
mutable sk_sp<SkSurface> mLayerSurface = nullptr;
public:
void draw(SkCanvas* c, const SkMatrix&) const {
if (needsCompositedLayer(c)) {
// What we do now is create an offscreen surface, sized by the clip bounds.
// We won't apply a clip while drawing - clipping will be performed when compositing the
// surface back onto the original canvas. Note also that we're not using saveLayer
// because the webview functor still doesn't respect the canvas clip stack.
const SkIRect deviceBounds = c->getDeviceClipBounds();
if (mLayerSurface == nullptr || c->imageInfo() != mLayerImageInfo) {
mLayerImageInfo =
c->imageInfo().makeWH(deviceBounds.width(), deviceBounds.height());
// SkCanvas::makeSurface returns a new surface that will be GPU-backed if
// canvas was also.
mLayerSurface = c->makeSurface(mLayerImageInfo);
}
SkCanvas* layerCanvas = mLayerSurface->getCanvas();
SkAutoCanvasRestore(layerCanvas, true);
layerCanvas->clear(SK_ColorTRANSPARENT);
// Preserve the transform from the original canvas, but now the clip rectangle is
// anchored at the origin so we need to transform the clipped content to the origin.
SkM44 mat4(c->getLocalToDevice());
mat4.postTranslate(-deviceBounds.fLeft, -deviceBounds.fTop);
layerCanvas->concat(mat4);
layerCanvas->drawDrawable(drawable.get());
SkAutoCanvasRestore acr(c, true);
// Temporarily use an identity transform, because this is just blitting to the parent
// canvas with an offset.
SkMatrix invertedMatrix;
if (!c->getTotalMatrix().invert(&invertedMatrix)) {
ALOGW("Unable to extract invert canvas matrix; aborting VkFunctor draw");
return;
}
c->concat(invertedMatrix);
mLayerSurface->draw(c, deviceBounds.fLeft, deviceBounds.fTop);
} else {
c->drawDrawable(drawable.get());
}
}
};
}
static constexpr inline bool is_power_of_two(int value) {
return (value & (value - 1)) == 0;
}
template <typename T, typename... Args>
void* DisplayListData::push(size_t pod, Args&&... args) {
size_t skip = SkAlignPtr(sizeof(T) + pod);
LOG_FATAL_IF(skip >= (1 << 24));
if (fUsed + skip > fReserved) {
static_assert(is_power_of_two(SKLITEDL_PAGE),
"This math needs updating for non-pow2.");
// Next greater multiple of SKLITEDL_PAGE.
fReserved = (fUsed + skip + SKLITEDL_PAGE) & ~(SKLITEDL_PAGE - 1);
fBytes.realloc(fReserved);
LOG_ALWAYS_FATAL_IF(fBytes.get() == nullptr, "realloc(%zd) failed", fReserved);
}
LOG_FATAL_IF((fUsed + skip) > fReserved);
auto op = (T*)(fBytes.get() + fUsed);
fUsed += skip;
new (op) T{std::forward<Args>(args)...};
op->type = (uint32_t)T::kType;
op->skip = skip;
return op + 1;
}
template <typename Fn, typename... Args>
inline void DisplayListData::map(const Fn fns[], Args... args) const {
auto end = fBytes.get() + fUsed;
for (const uint8_t* ptr = fBytes.get(); ptr < end;) {
auto op = (const Op*)ptr;
auto type = op->type;
auto skip = op->skip;
if (auto fn = fns[type]) { // We replace no-op functions with nullptrs
fn(op, args...); // to avoid the overhead of a pointless call.
}
ptr += skip;
}
}
void DisplayListData::save() {
this->push<Save>(0);
}
void DisplayListData::restore() {
this->push<Restore>(0);
}
void DisplayListData::saveLayer(const SkRect* bounds, const SkPaint* paint,
const SkImageFilter* backdrop, SkCanvas::SaveLayerFlags flags) {
this->push<SaveLayer>(0, bounds, paint, backdrop, flags);
}
void DisplayListData::saveBehind(const SkRect* subset) {
this->push<SaveBehind>(0, subset);
}
void DisplayListData::concat(const SkM44& m) {
this->push<Concat>(0, m);
}
void DisplayListData::setMatrix(const SkM44& matrix) {
this->push<SetMatrix>(0, matrix);
}
void DisplayListData::scale(SkScalar sx, SkScalar sy) {
this->push<Scale>(0, sx, sy);
}
void DisplayListData::translate(SkScalar dx, SkScalar dy) {
this->push<Translate>(0, dx, dy);
}
void DisplayListData::clipPath(const SkPath& path, SkClipOp op, bool aa) {
this->push<ClipPath>(0, path, op, aa);
}
void DisplayListData::clipRect(const SkRect& rect, SkClipOp op, bool aa) {
this->push<ClipRect>(0, rect, op, aa);
}
void DisplayListData::clipRRect(const SkRRect& rrect, SkClipOp op, bool aa) {
this->push<ClipRRect>(0, rrect, op, aa);
}
void DisplayListData::clipRegion(const SkRegion& region, SkClipOp op) {
this->push<ClipRegion>(0, region, op);
}
void DisplayListData::resetClip() {
this->push<ResetClip>(0);
}
void DisplayListData::drawPaint(const SkPaint& paint) {
this->push<DrawPaint>(0, paint);
}
void DisplayListData::drawBehind(const SkPaint& paint) {
this->push<DrawBehind>(0, paint);
}
void DisplayListData::drawPath(const SkPath& path, const SkPaint& paint) {
this->push<DrawPath>(0, path, paint);
}
void DisplayListData::drawRect(const SkRect& rect, const SkPaint& paint) {
this->push<DrawRect>(0, rect, paint);
}
void DisplayListData::drawRegion(const SkRegion& region, const SkPaint& paint) {
this->push<DrawRegion>(0, region, paint);
}
void DisplayListData::drawOval(const SkRect& oval, const SkPaint& paint) {
this->push<DrawOval>(0, oval, paint);
}
void DisplayListData::drawArc(const SkRect& oval, SkScalar startAngle, SkScalar sweepAngle,
bool useCenter, const SkPaint& paint) {
this->push<DrawArc>(0, oval, startAngle, sweepAngle, useCenter, paint);
}
void DisplayListData::drawRRect(const SkRRect& rrect, const SkPaint& paint) {
this->push<DrawRRect>(0, rrect, paint);
}
void DisplayListData::drawDRRect(const SkRRect& outer, const SkRRect& inner, const SkPaint& paint) {
this->push<DrawDRRect>(0, outer, inner, paint);
}
void DisplayListData::drawAnnotation(const SkRect& rect, const char* key, SkData* value) {
size_t bytes = strlen(key) + 1;
void* pod = this->push<DrawAnnotation>(bytes, rect, value);
copy_v(pod, key, bytes);
}
void DisplayListData::drawDrawable(SkDrawable* drawable, const SkMatrix* matrix) {
this->push<DrawDrawable>(0, drawable, matrix);
}
void DisplayListData::drawPicture(const SkPicture* picture, const SkMatrix* matrix,
const SkPaint* paint) {
this->push<DrawPicture>(0, picture, matrix, paint);
}
void DisplayListData::drawImage(DrawImagePayload&& payload, SkScalar x, SkScalar y,
const SkSamplingOptions& sampling, const SkPaint* paint) {
this->push<DrawImage>(0, std::move(payload), x, y, sampling, paint);
}
void DisplayListData::drawImageRect(DrawImagePayload&& payload, const SkRect* src,
const SkRect& dst, const SkSamplingOptions& sampling,
const SkPaint* paint, SkCanvas::SrcRectConstraint constraint) {
this->push<DrawImageRect>(0, std::move(payload), src, dst, sampling, paint, constraint);
}
void DisplayListData::drawImageLattice(DrawImagePayload&& payload, const SkCanvas::Lattice& lattice,
const SkRect& dst, SkFilterMode filter,
const SkPaint* paint) {
int xs = lattice.fXCount, ys = lattice.fYCount;
int fs = lattice.fRectTypes ? (xs + 1) * (ys + 1) : 0;
size_t bytes = (xs + ys) * sizeof(int) + fs * sizeof(SkCanvas::Lattice::RectType) +
fs * sizeof(SkColor);
LOG_FATAL_IF(!lattice.fBounds);
void* pod = this->push<DrawImageLattice>(bytes, std::move(payload), xs, ys, fs,
*lattice.fBounds, dst, filter, paint);
copy_v(pod, lattice.fXDivs, xs, lattice.fYDivs, ys, lattice.fColors, fs, lattice.fRectTypes,
fs);
}
void DisplayListData::drawTextBlob(const SkTextBlob* blob, SkScalar x, SkScalar y,
const SkPaint& paint) {
this->push<DrawTextBlob>(0, blob, x, y, paint);
mHasText = true;
}
void DisplayListData::drawRippleDrawable(const skiapipeline::RippleDrawableParams& params) {
this->push<DrawRippleDrawable>(0, params);
}
void DisplayListData::drawPatch(const SkPoint points[12], const SkColor colors[4],
const SkPoint texs[4], SkBlendMode bmode, const SkPaint& paint) {
this->push<DrawPatch>(0, points, colors, texs, bmode, paint);
}
void DisplayListData::drawPoints(SkCanvas::PointMode mode, size_t count, const SkPoint points[],
const SkPaint& paint) {
void* pod = this->push<DrawPoints>(count * sizeof(SkPoint), mode, count, paint);
copy_v(pod, points, count);
}
void DisplayListData::drawVertices(const SkVertices* vert, SkBlendMode mode, const SkPaint& paint) {
this->push<DrawVertices>(0, vert, mode, paint);
}
void DisplayListData::drawMesh(const SkMesh& mesh, const sk_sp<SkBlender>& blender,
const SkPaint& paint) {
this->push<DrawSkMesh>(0, mesh, blender, paint);
}
void DisplayListData::drawMesh(const Mesh& mesh, const sk_sp<SkBlender>& blender,
const SkPaint& paint) {
this->push<DrawMesh>(0, mesh, blender, paint);
}
void DisplayListData::drawAtlas(const SkImage* atlas, const SkRSXform xforms[], const SkRect texs[],
const SkColor colors[], int count, SkBlendMode xfermode,
const SkSamplingOptions& sampling, const SkRect* cull,
const SkPaint* paint) {
size_t bytes = count * (sizeof(SkRSXform) + sizeof(SkRect));
if (colors) {
bytes += count * sizeof(SkColor);
}
void* pod = this->push<DrawAtlas>(bytes, atlas, count, xfermode, sampling, cull, paint,
colors != nullptr);
copy_v(pod, xforms, count, texs, count, colors, colors ? count : 0);
}
void DisplayListData::drawShadowRec(const SkPath& path, const SkDrawShadowRec& rec) {
this->push<DrawShadowRec>(0, path, rec);
}
void DisplayListData::drawVectorDrawable(VectorDrawableRoot* tree) {
this->push<DrawVectorDrawable>(0, tree);
}
void DisplayListData::drawWebView(skiapipeline::FunctorDrawable* drawable) {
this->push<DrawWebView>(0, drawable);
}
typedef void (*draw_fn)(const void*, SkCanvas*, const SkMatrix&);
typedef void (*void_fn)(const void*);
typedef void (*color_transform_fn)(const void*, ColorTransform);
// All ops implement draw().
#define X(T) \
[](const void* op, SkCanvas* c, const SkMatrix& original) { \
((const T*)op)->draw(c, original); \
},
static const draw_fn draw_fns[] = {
#include "DisplayListOps.in"
};
#undef X
// Most state ops (matrix, clip, save, restore) have a trivial destructor.
#define X(T) \
!std::is_trivially_destructible<T>::value ? [](const void* op) { ((const T*)op)->~T(); } \
: (void_fn) nullptr,
static const void_fn dtor_fns[] = {
#include "DisplayListOps.in"
};
#undef X
void DisplayListData::draw(SkCanvas* canvas) const {
SkAutoCanvasRestore acr(canvas, false);
this->map(draw_fns, canvas, canvas->getTotalMatrix());
}
DisplayListData::~DisplayListData() {
this->reset();
}
void DisplayListData::reset() {
this->map(dtor_fns);
// Leave fBytes and fReserved alone.
fUsed = 0;
}
template <class T>
using has_paint_helper = decltype(std::declval<T>().paint);
template <class T>
constexpr bool has_paint = std::experimental::is_detected_v<has_paint_helper, T>;
template <class T>
using has_palette_helper = decltype(std::declval<T>().palette);
template <class T>
constexpr bool has_palette = std::experimental::is_detected_v<has_palette_helper, T>;
template <class T>
constexpr color_transform_fn colorTransformForOp() {
if
constexpr(has_paint<T> && has_palette<T>) {
// It's a bitmap
return [](const void* opRaw, ColorTransform transform) {
// TODO: We should be const. Or not. Or just use a different map
// Unclear, but this is the quick fix
const T* op = reinterpret_cast<const T*>(opRaw);
const SkPaint* paint = &op->paint;
transformPaint(transform, const_cast<SkPaint*>(paint), op->palette);
};
}
else if
constexpr(has_paint<T>) {
return [](const void* opRaw, ColorTransform transform) {
// TODO: We should be const. Or not. Or just use a different map
// Unclear, but this is the quick fix
const T* op = reinterpret_cast<const T*>(opRaw);
const SkPaint* paint = &op->paint;
transformPaint(transform, const_cast<SkPaint*>(paint));
};
}
else {
return nullptr;
}
}
template<>
constexpr color_transform_fn colorTransformForOp<DrawTextBlob>() {
return [](const void *opRaw, ColorTransform transform) {
const DrawTextBlob *op = reinterpret_cast<const DrawTextBlob*>(opRaw);
switch (op->drawTextBlobMode) {
case DrawTextBlobMode::HctOutline:
const_cast<SkPaint&>(op->paint).setColor(SK_ColorBLACK);
break;
case DrawTextBlobMode::HctInner:
const_cast<SkPaint&>(op->paint).setColor(SK_ColorWHITE);
break;
default:
transformPaint(transform, const_cast<SkPaint*>(&(op->paint)));
break;
}
};
}
template <>
constexpr color_transform_fn colorTransformForOp<DrawRippleDrawable>() {
return [](const void* opRaw, ColorTransform transform) {
const DrawRippleDrawable* op = reinterpret_cast<const DrawRippleDrawable*>(opRaw);
// Ripple drawable needs to contrast against the background, so we need the inverse color.
SkColor color = transformColorInverse(transform, op->mParams.color);
const_cast<DrawRippleDrawable*>(op)->mParams.color = color;
};
}
#define X(T) colorTransformForOp<T>(),
static const color_transform_fn color_transform_fns[] = {
#include "DisplayListOps.in"
};
#undef X
void DisplayListData::applyColorTransform(ColorTransform transform) {
this->map(color_transform_fns, transform);
}
RecordingCanvas::RecordingCanvas() : INHERITED(1, 1), fDL(nullptr) {}
void RecordingCanvas::reset(DisplayListData* dl, const SkIRect& bounds) {
this->resetCanvas(bounds.right(), bounds.bottom());
fDL = dl;
mClipMayBeComplex = false;
mSaveCount = mComplexSaveCount = 0;
}
sk_sp<SkSurface> RecordingCanvas::onNewSurface(const SkImageInfo&, const SkSurfaceProps&) {
return nullptr;
}
void RecordingCanvas::willSave() {
mSaveCount++;
fDL->save();
}
SkCanvas::SaveLayerStrategy RecordingCanvas::getSaveLayerStrategy(const SaveLayerRec& rec) {
fDL->saveLayer(rec.fBounds, rec.fPaint, rec.fBackdrop, rec.fSaveLayerFlags);
return SkCanvas::kNoLayer_SaveLayerStrategy;
}
void RecordingCanvas::willRestore() {
mSaveCount--;
if (mSaveCount < mComplexSaveCount) {
mClipMayBeComplex = false;
mComplexSaveCount = 0;
}
fDL->restore();
}
bool RecordingCanvas::onDoSaveBehind(const SkRect* subset) {
fDL->saveBehind(subset);
return false;
}
void RecordingCanvas::didConcat44(const SkM44& m) {
fDL->concat(m);
}
void RecordingCanvas::didSetM44(const SkM44& matrix) {
fDL->setMatrix(matrix);
}
void RecordingCanvas::didScale(SkScalar sx, SkScalar sy) {
fDL->scale(sx, sy);
}
void RecordingCanvas::didTranslate(SkScalar dx, SkScalar dy) {
fDL->translate(dx, dy);
}
void RecordingCanvas::onClipRect(const SkRect& rect, SkClipOp op, ClipEdgeStyle style) {
fDL->clipRect(rect, op, style == kSoft_ClipEdgeStyle);
if (!getTotalMatrix().isScaleTranslate()) {
setClipMayBeComplex();
}
this->INHERITED::onClipRect(rect, op, style);
}
void RecordingCanvas::onClipRRect(const SkRRect& rrect, SkClipOp op, ClipEdgeStyle style) {
if (rrect.getType() > SkRRect::kRect_Type || !getTotalMatrix().isScaleTranslate()) {
setClipMayBeComplex();
}
fDL->clipRRect(rrect, op, style == kSoft_ClipEdgeStyle);
this->INHERITED::onClipRRect(rrect, op, style);
}
void RecordingCanvas::onClipPath(const SkPath& path, SkClipOp op, ClipEdgeStyle style) {
setClipMayBeComplex();
fDL->clipPath(path, op, style == kSoft_ClipEdgeStyle);
this->INHERITED::onClipPath(path, op, style);
}
void RecordingCanvas::onClipRegion(const SkRegion& region, SkClipOp op) {
if (region.isComplex() || !getTotalMatrix().isScaleTranslate()) {
setClipMayBeComplex();
}
fDL->clipRegion(region, op);
this->INHERITED::onClipRegion(region, op);
}
void RecordingCanvas::onResetClip() {
// This is part of "replace op" emulation, but rely on the following intersection
// clip to potentially mark the clip as complex. If we are already complex, we do
// not reset the complexity so that we don't break the contract that no higher
// save point has a complex clip when "not complex".
fDL->resetClip();
this->INHERITED::onResetClip();
}
void RecordingCanvas::onDrawPaint(const SkPaint& paint) {
fDL->drawPaint(paint);
}
void RecordingCanvas::onDrawBehind(const SkPaint& paint) {
fDL->drawBehind(paint);
}
void RecordingCanvas::onDrawPath(const SkPath& path, const SkPaint& paint) {
fDL->drawPath(path, paint);
}
void RecordingCanvas::onDrawRect(const SkRect& rect, const SkPaint& paint) {
fDL->drawRect(rect, paint);
}
void RecordingCanvas::onDrawRegion(const SkRegion& region, const SkPaint& paint) {
fDL->drawRegion(region, paint);
}
void RecordingCanvas::onDrawOval(const SkRect& oval, const SkPaint& paint) {
fDL->drawOval(oval, paint);
}
void RecordingCanvas::onDrawArc(const SkRect& oval, SkScalar startAngle, SkScalar sweepAngle,
bool useCenter, const SkPaint& paint) {
fDL->drawArc(oval, startAngle, sweepAngle, useCenter, paint);
}
void RecordingCanvas::onDrawRRect(const SkRRect& rrect, const SkPaint& paint) {
fDL->drawRRect(rrect, paint);
}
void RecordingCanvas::onDrawDRRect(const SkRRect& out, const SkRRect& in, const SkPaint& paint) {
fDL->drawDRRect(out, in, paint);
}
void RecordingCanvas::onDrawDrawable(SkDrawable* drawable, const SkMatrix* matrix) {
fDL->drawDrawable(drawable, matrix);
}
void RecordingCanvas::onDrawPicture(const SkPicture* picture, const SkMatrix* matrix,
const SkPaint* paint) {
fDL->drawPicture(picture, matrix, paint);
}
void RecordingCanvas::onDrawAnnotation(const SkRect& rect, const char key[], SkData* val) {
fDL->drawAnnotation(rect, key, val);
}
void RecordingCanvas::onDrawTextBlob(const SkTextBlob* blob, SkScalar x, SkScalar y,
const SkPaint& paint) {
fDL->drawTextBlob(blob, x, y, paint);
}
void RecordingCanvas::drawRippleDrawable(const skiapipeline::RippleDrawableParams& params) {
fDL->drawRippleDrawable(params);
}
void RecordingCanvas::drawImage(DrawImagePayload&& payload, SkScalar x, SkScalar y,
const SkSamplingOptions& sampling, const SkPaint* paint) {
fDL->drawImage(std::move(payload), x, y, sampling, paint);
}
void RecordingCanvas::drawImageRect(DrawImagePayload&& payload, const SkRect& src,
const SkRect& dst, const SkSamplingOptions& sampling,
const SkPaint* paint, SrcRectConstraint constraint) {
fDL->drawImageRect(std::move(payload), &src, dst, sampling, paint, constraint);
}
void RecordingCanvas::drawImageLattice(DrawImagePayload&& payload, const Lattice& lattice,
const SkRect& dst, SkFilterMode filter,
const SkPaint* paint) {
if (!payload.image || dst.isEmpty()) {
return;
}
SkIRect bounds;
Lattice latticePlusBounds = lattice;
if (!latticePlusBounds.fBounds) {
bounds = SkIRect::MakeWH(payload.image->width(), payload.image->height());
latticePlusBounds.fBounds = &bounds;
}
if (SkLatticeIter::Valid(payload.image->width(), payload.image->height(), latticePlusBounds)) {
fDL->drawImageLattice(std::move(payload), latticePlusBounds, dst, filter, paint);
} else {
SkSamplingOptions sampling(filter, SkMipmapMode::kNone);
fDL->drawImageRect(std::move(payload), nullptr, dst, sampling, paint,
kFast_SrcRectConstraint);
}
}
void RecordingCanvas::onDrawImage2(const SkImage* img, SkScalar x, SkScalar y,
const SkSamplingOptions& sampling, const SkPaint* paint) {
fDL->drawImage(DrawImagePayload(img), x, y, sampling, paint);
}
void RecordingCanvas::onDrawImageRect2(const SkImage* img, const SkRect& src, const SkRect& dst,
const SkSamplingOptions& sampling, const SkPaint* paint,
SrcRectConstraint constraint) {
fDL->drawImageRect(DrawImagePayload(img), &src, dst, sampling, paint, constraint);
}
void RecordingCanvas::onDrawImageLattice2(const SkImage* img, const SkCanvas::Lattice& lattice,
const SkRect& dst, SkFilterMode filter,
const SkPaint* paint) {
fDL->drawImageLattice(DrawImagePayload(img), lattice, dst, filter, paint);
}
void RecordingCanvas::onDrawPatch(const SkPoint cubics[12], const SkColor colors[4],
const SkPoint texCoords[4], SkBlendMode bmode,
const SkPaint& paint) {
fDL->drawPatch(cubics, colors, texCoords, bmode, paint);
}
void RecordingCanvas::onDrawPoints(SkCanvas::PointMode mode, size_t count, const SkPoint pts[],
const SkPaint& paint) {
fDL->drawPoints(mode, count, pts, paint);
}
void RecordingCanvas::onDrawVerticesObject(const SkVertices* vertices,
SkBlendMode mode, const SkPaint& paint) {
fDL->drawVertices(vertices, mode, paint);
}
void RecordingCanvas::onDrawMesh(const SkMesh& mesh, sk_sp<SkBlender> blender,
const SkPaint& paint) {
fDL->drawMesh(mesh, blender, paint);
}
void RecordingCanvas::drawMesh(const Mesh& mesh, sk_sp<SkBlender> blender, const SkPaint& paint) {
fDL->drawMesh(mesh, blender, paint);
}
void RecordingCanvas::onDrawAtlas2(const SkImage* atlas, const SkRSXform xforms[],
const SkRect texs[], const SkColor colors[], int count,
SkBlendMode bmode, const SkSamplingOptions& sampling,
const SkRect* cull, const SkPaint* paint) {
fDL->drawAtlas(atlas, xforms, texs, colors, count, bmode, sampling, cull, paint);
}
void RecordingCanvas::onDrawShadowRec(const SkPath& path, const SkDrawShadowRec& rec) {
fDL->drawShadowRec(path, rec);
}
void RecordingCanvas::drawVectorDrawable(VectorDrawableRoot* tree) {
fDL->drawVectorDrawable(tree);
}
void RecordingCanvas::drawWebView(skiapipeline::FunctorDrawable* drawable) {
fDL->drawWebView(drawable);
}
[[nodiscard]] const SkMesh& DrawMeshPayload::getSkMesh() const {
LOG_FATAL_IF(!meshWrapper && !mesh, "One of Mesh or Mesh must be non-null");
if (meshWrapper) {
return meshWrapper->getSkMesh();
} else {
return *mesh;
}
}
} // namespace uirenderer
} // namespace android