| /* |
| * Copyright (C) 2016 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "VulkanManager.h" |
| |
| #include <gui/Surface.h> |
| |
| #include "Properties.h" |
| #include "RenderThread.h" |
| #include "renderstate/RenderState.h" |
| #include "utils/FatVector.h" |
| |
| #include <GrBackendSurface.h> |
| #include <GrContext.h> |
| #include <GrTypes.h> |
| #include <GrTypes.h> |
| #include <vk/GrVkExtensions.h> |
| #include <vk/GrVkTypes.h> |
| |
| namespace android { |
| namespace uirenderer { |
| namespace renderthread { |
| |
| static void free_features_extensions_structs(const VkPhysicalDeviceFeatures2& features) { |
| // All Vulkan structs that could be part of the features chain will start with the |
| // structure type followed by the pNext pointer. We cast to the CommonVulkanHeader |
| // so we can get access to the pNext for the next struct. |
| struct CommonVulkanHeader { |
| VkStructureType sType; |
| void* pNext; |
| }; |
| |
| void* pNext = features.pNext; |
| while (pNext) { |
| void* current = pNext; |
| pNext = static_cast<CommonVulkanHeader*>(current)->pNext; |
| free(current); |
| } |
| } |
| |
| #define GET_PROC(F) m##F = (PFN_vk##F)vkGetInstanceProcAddr(VK_NULL_HANDLE, "vk" #F) |
| #define GET_INST_PROC(F) m##F = (PFN_vk##F)vkGetInstanceProcAddr(mInstance, "vk" #F) |
| #define GET_DEV_PROC(F) m##F = (PFN_vk##F)vkGetDeviceProcAddr(mDevice, "vk" #F) |
| |
| VulkanManager::VulkanManager(RenderThread& thread) : mRenderThread(thread) {} |
| |
| void VulkanManager::destroy() { |
| mRenderThread.setGrContext(nullptr); |
| |
| // We don't need to explicitly free the command buffer since it automatically gets freed when we |
| // delete the VkCommandPool below. |
| mDummyCB = VK_NULL_HANDLE; |
| |
| if (VK_NULL_HANDLE != mCommandPool) { |
| mDestroyCommandPool(mDevice, mCommandPool, nullptr); |
| mCommandPool = VK_NULL_HANDLE; |
| } |
| |
| if (mDevice != VK_NULL_HANDLE) { |
| mDeviceWaitIdle(mDevice); |
| mDestroyDevice(mDevice, nullptr); |
| } |
| |
| if (mInstance != VK_NULL_HANDLE) { |
| mDestroyInstance(mInstance, nullptr); |
| } |
| |
| mGraphicsQueue = VK_NULL_HANDLE; |
| mPresentQueue = VK_NULL_HANDLE; |
| mDevice = VK_NULL_HANDLE; |
| mPhysicalDevice = VK_NULL_HANDLE; |
| mInstance = VK_NULL_HANDLE; |
| mInstanceExtensions.clear(); |
| mDeviceExtensions.clear(); |
| free_features_extensions_structs(mPhysicalDeviceFeatures2); |
| mPhysicalDeviceFeatures2 = {}; |
| } |
| |
| void VulkanManager::setupDevice(GrVkExtensions& grExtensions, VkPhysicalDeviceFeatures2& features) { |
| VkResult err; |
| |
| constexpr VkApplicationInfo app_info = { |
| VK_STRUCTURE_TYPE_APPLICATION_INFO, // sType |
| nullptr, // pNext |
| "android framework", // pApplicationName |
| 0, // applicationVersion |
| "android framework", // pEngineName |
| 0, // engineVerison |
| mAPIVersion, // apiVersion |
| }; |
| |
| { |
| GET_PROC(EnumerateInstanceExtensionProperties); |
| |
| uint32_t extensionCount = 0; |
| err = mEnumerateInstanceExtensionProperties(nullptr, &extensionCount, nullptr); |
| LOG_ALWAYS_FATAL_IF(VK_SUCCESS != err); |
| std::unique_ptr<VkExtensionProperties[]> extensions( |
| new VkExtensionProperties[extensionCount]); |
| err = mEnumerateInstanceExtensionProperties(nullptr, &extensionCount, extensions.get()); |
| LOG_ALWAYS_FATAL_IF(VK_SUCCESS != err); |
| bool hasKHRSurfaceExtension = false; |
| bool hasKHRAndroidSurfaceExtension = false; |
| for (uint32_t i = 0; i < extensionCount; ++i) { |
| mInstanceExtensions.push_back(extensions[i].extensionName); |
| if (!strcmp(extensions[i].extensionName, VK_KHR_SURFACE_EXTENSION_NAME)) { |
| hasKHRSurfaceExtension = true; |
| } |
| if (!strcmp(extensions[i].extensionName,VK_KHR_ANDROID_SURFACE_EXTENSION_NAME)) { |
| hasKHRAndroidSurfaceExtension = true; |
| } |
| } |
| LOG_ALWAYS_FATAL_IF(!hasKHRSurfaceExtension || !hasKHRAndroidSurfaceExtension); |
| } |
| |
| const VkInstanceCreateInfo instance_create = { |
| VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO, // sType |
| nullptr, // pNext |
| 0, // flags |
| &app_info, // pApplicationInfo |
| 0, // enabledLayerNameCount |
| nullptr, // ppEnabledLayerNames |
| (uint32_t) mInstanceExtensions.size(), // enabledExtensionNameCount |
| mInstanceExtensions.data(), // ppEnabledExtensionNames |
| }; |
| |
| GET_PROC(CreateInstance); |
| err = mCreateInstance(&instance_create, nullptr, &mInstance); |
| LOG_ALWAYS_FATAL_IF(err < 0); |
| |
| GET_INST_PROC(DestroyInstance); |
| GET_INST_PROC(EnumeratePhysicalDevices); |
| GET_INST_PROC(GetPhysicalDeviceProperties); |
| GET_INST_PROC(GetPhysicalDeviceQueueFamilyProperties); |
| GET_INST_PROC(GetPhysicalDeviceFeatures2); |
| GET_INST_PROC(CreateDevice); |
| GET_INST_PROC(EnumerateDeviceExtensionProperties); |
| GET_INST_PROC(CreateAndroidSurfaceKHR); |
| GET_INST_PROC(DestroySurfaceKHR); |
| GET_INST_PROC(GetPhysicalDeviceSurfaceSupportKHR); |
| GET_INST_PROC(GetPhysicalDeviceSurfaceCapabilitiesKHR); |
| GET_INST_PROC(GetPhysicalDeviceSurfaceFormatsKHR); |
| GET_INST_PROC(GetPhysicalDeviceSurfacePresentModesKHR); |
| |
| uint32_t gpuCount; |
| LOG_ALWAYS_FATAL_IF(mEnumeratePhysicalDevices(mInstance, &gpuCount, nullptr)); |
| LOG_ALWAYS_FATAL_IF(!gpuCount); |
| // Just returning the first physical device instead of getting the whole array. Since there |
| // should only be one device on android. |
| gpuCount = 1; |
| err = mEnumeratePhysicalDevices(mInstance, &gpuCount, &mPhysicalDevice); |
| // VK_INCOMPLETE is returned when the count we provide is less than the total device count. |
| LOG_ALWAYS_FATAL_IF(err && VK_INCOMPLETE != err); |
| |
| VkPhysicalDeviceProperties physDeviceProperties; |
| mGetPhysicalDeviceProperties(mPhysicalDevice, &physDeviceProperties); |
| LOG_ALWAYS_FATAL_IF(physDeviceProperties.apiVersion < VK_MAKE_VERSION(1, 1, 0)); |
| |
| // query to get the initial queue props size |
| uint32_t queueCount; |
| mGetPhysicalDeviceQueueFamilyProperties(mPhysicalDevice, &queueCount, nullptr); |
| LOG_ALWAYS_FATAL_IF(!queueCount); |
| |
| // now get the actual queue props |
| std::unique_ptr<VkQueueFamilyProperties[]> queueProps(new VkQueueFamilyProperties[queueCount]); |
| mGetPhysicalDeviceQueueFamilyProperties(mPhysicalDevice, &queueCount, queueProps.get()); |
| |
| // iterate to find the graphics queue |
| mGraphicsQueueIndex = queueCount; |
| for (uint32_t i = 0; i < queueCount; i++) { |
| if (queueProps[i].queueFlags & VK_QUEUE_GRAPHICS_BIT) { |
| mGraphicsQueueIndex = i; |
| break; |
| } |
| } |
| LOG_ALWAYS_FATAL_IF(mGraphicsQueueIndex == queueCount); |
| |
| // All physical devices and queue families on Android must be capable of |
| // presentation with any native window. So just use the first one. |
| mPresentQueueIndex = 0; |
| |
| { |
| uint32_t extensionCount = 0; |
| err = mEnumerateDeviceExtensionProperties(mPhysicalDevice, nullptr, &extensionCount, |
| nullptr); |
| LOG_ALWAYS_FATAL_IF(VK_SUCCESS != err); |
| std::unique_ptr<VkExtensionProperties[]> extensions( |
| new VkExtensionProperties[extensionCount]); |
| err = mEnumerateDeviceExtensionProperties(mPhysicalDevice, nullptr, &extensionCount, |
| extensions.get()); |
| LOG_ALWAYS_FATAL_IF(VK_SUCCESS != err); |
| bool hasKHRSwapchainExtension = false; |
| for (uint32_t i = 0; i < extensionCount; ++i) { |
| mDeviceExtensions.push_back(extensions[i].extensionName); |
| if (!strcmp(extensions[i].extensionName, VK_KHR_SWAPCHAIN_EXTENSION_NAME)) { |
| hasKHRSwapchainExtension = true; |
| } |
| } |
| LOG_ALWAYS_FATAL_IF(!hasKHRSwapchainExtension); |
| } |
| |
| auto getProc = [] (const char* proc_name, VkInstance instance, VkDevice device) { |
| if (device != VK_NULL_HANDLE) { |
| return vkGetDeviceProcAddr(device, proc_name); |
| } |
| return vkGetInstanceProcAddr(instance, proc_name); |
| }; |
| grExtensions.init(getProc, mInstance, mPhysicalDevice, mInstanceExtensions.size(), |
| mInstanceExtensions.data(), mDeviceExtensions.size(), mDeviceExtensions.data()); |
| |
| LOG_ALWAYS_FATAL_IF(!grExtensions.hasExtension(VK_KHR_EXTERNAL_SEMAPHORE_FD_EXTENSION_NAME, 1)); |
| |
| memset(&features, 0, sizeof(VkPhysicalDeviceFeatures2)); |
| features.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FEATURES_2; |
| features.pNext = nullptr; |
| |
| // Setup all extension feature structs we may want to use. |
| void** tailPNext = &features.pNext; |
| |
| if (grExtensions.hasExtension(VK_EXT_BLEND_OPERATION_ADVANCED_EXTENSION_NAME, 2)) { |
| VkPhysicalDeviceBlendOperationAdvancedFeaturesEXT* blend; |
| blend = (VkPhysicalDeviceBlendOperationAdvancedFeaturesEXT*) malloc( |
| sizeof(VkPhysicalDeviceBlendOperationAdvancedFeaturesEXT)); |
| LOG_ALWAYS_FATAL_IF(!blend); |
| blend->sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BLEND_OPERATION_ADVANCED_FEATURES_EXT; |
| blend->pNext = nullptr; |
| *tailPNext = blend; |
| tailPNext = &blend->pNext; |
| } |
| |
| VkPhysicalDeviceSamplerYcbcrConversionFeatures* ycbcrFeature; |
| ycbcrFeature = (VkPhysicalDeviceSamplerYcbcrConversionFeatures*) malloc( |
| sizeof(VkPhysicalDeviceSamplerYcbcrConversionFeatures)); |
| LOG_ALWAYS_FATAL_IF(!ycbcrFeature); |
| ycbcrFeature->sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_YCBCR_CONVERSION_FEATURES; |
| ycbcrFeature->pNext = nullptr; |
| *tailPNext = ycbcrFeature; |
| tailPNext = &ycbcrFeature->pNext; |
| |
| // query to get the physical device features |
| mGetPhysicalDeviceFeatures2(mPhysicalDevice, &features); |
| // this looks like it would slow things down, |
| // and we can't depend on it on all platforms |
| features.features.robustBufferAccess = VK_FALSE; |
| |
| float queuePriorities[1] = { 0.0 }; |
| |
| const VkDeviceQueueCreateInfo queueInfo[2] = { |
| { |
| VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO, // sType |
| nullptr, // pNext |
| 0, // VkDeviceQueueCreateFlags |
| mGraphicsQueueIndex, // queueFamilyIndex |
| 1, // queueCount |
| queuePriorities, // pQueuePriorities |
| }, |
| { |
| VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO, // sType |
| nullptr, // pNext |
| 0, // VkDeviceQueueCreateFlags |
| mPresentQueueIndex, // queueFamilyIndex |
| 1, // queueCount |
| queuePriorities, // pQueuePriorities |
| } |
| }; |
| uint32_t queueInfoCount = (mPresentQueueIndex != mGraphicsQueueIndex) ? 2 : 1; |
| |
| const VkDeviceCreateInfo deviceInfo = { |
| VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO, // sType |
| &features, // pNext |
| 0, // VkDeviceCreateFlags |
| queueInfoCount, // queueCreateInfoCount |
| queueInfo, // pQueueCreateInfos |
| 0, // layerCount |
| nullptr, // ppEnabledLayerNames |
| (uint32_t) mDeviceExtensions.size(), // extensionCount |
| mDeviceExtensions.data(), // ppEnabledExtensionNames |
| nullptr, // ppEnabledFeatures |
| }; |
| |
| LOG_ALWAYS_FATAL_IF(mCreateDevice(mPhysicalDevice, &deviceInfo, nullptr, &mDevice)); |
| |
| GET_DEV_PROC(GetDeviceQueue); |
| GET_DEV_PROC(DeviceWaitIdle); |
| GET_DEV_PROC(DestroyDevice); |
| GET_DEV_PROC(CreateSwapchainKHR); |
| GET_DEV_PROC(DestroySwapchainKHR); |
| GET_DEV_PROC(GetSwapchainImagesKHR); |
| GET_DEV_PROC(AcquireNextImageKHR); |
| GET_DEV_PROC(QueuePresentKHR); |
| GET_DEV_PROC(CreateCommandPool); |
| GET_DEV_PROC(DestroyCommandPool); |
| GET_DEV_PROC(AllocateCommandBuffers); |
| GET_DEV_PROC(FreeCommandBuffers); |
| GET_DEV_PROC(ResetCommandBuffer); |
| GET_DEV_PROC(BeginCommandBuffer); |
| GET_DEV_PROC(EndCommandBuffer); |
| GET_DEV_PROC(CmdPipelineBarrier); |
| GET_DEV_PROC(GetDeviceQueue); |
| GET_DEV_PROC(QueueSubmit); |
| GET_DEV_PROC(QueueWaitIdle); |
| GET_DEV_PROC(DeviceWaitIdle); |
| GET_DEV_PROC(CreateSemaphore); |
| GET_DEV_PROC(DestroySemaphore); |
| GET_DEV_PROC(ImportSemaphoreFdKHR); |
| GET_DEV_PROC(GetSemaphoreFdKHR); |
| GET_DEV_PROC(CreateFence); |
| GET_DEV_PROC(DestroyFence); |
| GET_DEV_PROC(WaitForFences); |
| GET_DEV_PROC(ResetFences); |
| } |
| |
| void VulkanManager::initialize() { |
| if (mDevice != VK_NULL_HANDLE) { |
| return; |
| } |
| |
| GET_PROC(EnumerateInstanceVersion); |
| uint32_t instanceVersion; |
| LOG_ALWAYS_FATAL_IF(mEnumerateInstanceVersion(&instanceVersion)); |
| LOG_ALWAYS_FATAL_IF(instanceVersion < VK_MAKE_VERSION(1, 1, 0)); |
| |
| GrVkExtensions extensions; |
| this->setupDevice(extensions, mPhysicalDeviceFeatures2); |
| |
| mGetDeviceQueue(mDevice, mGraphicsQueueIndex, 0, &mGraphicsQueue); |
| |
| auto getProc = [] (const char* proc_name, VkInstance instance, VkDevice device) { |
| if (device != VK_NULL_HANDLE) { |
| return vkGetDeviceProcAddr(device, proc_name); |
| } |
| return vkGetInstanceProcAddr(instance, proc_name); |
| }; |
| |
| GrVkBackendContext backendContext; |
| backendContext.fInstance = mInstance; |
| backendContext.fPhysicalDevice = mPhysicalDevice; |
| backendContext.fDevice = mDevice; |
| backendContext.fQueue = mGraphicsQueue; |
| backendContext.fGraphicsQueueIndex = mGraphicsQueueIndex; |
| backendContext.fMaxAPIVersion = mAPIVersion; |
| backendContext.fVkExtensions = &extensions; |
| backendContext.fDeviceFeatures2 = &mPhysicalDeviceFeatures2; |
| backendContext.fGetProc = std::move(getProc); |
| |
| // create the command pool for the command buffers |
| if (VK_NULL_HANDLE == mCommandPool) { |
| VkCommandPoolCreateInfo commandPoolInfo; |
| memset(&commandPoolInfo, 0, sizeof(VkCommandPoolCreateInfo)); |
| commandPoolInfo.sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO; |
| // this needs to be on the render queue |
| commandPoolInfo.queueFamilyIndex = mGraphicsQueueIndex; |
| commandPoolInfo.flags = VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT; |
| SkDEBUGCODE(VkResult res =) mCreateCommandPool(mDevice, &commandPoolInfo, nullptr, |
| &mCommandPool); |
| SkASSERT(VK_SUCCESS == res); |
| } |
| LOG_ALWAYS_FATAL_IF(mCommandPool == VK_NULL_HANDLE); |
| |
| if (!setupDummyCommandBuffer()) { |
| this->destroy(); |
| // Pass through will crash on next line. |
| } |
| LOG_ALWAYS_FATAL_IF(mDummyCB == VK_NULL_HANDLE); |
| |
| |
| mGetDeviceQueue(mDevice, mPresentQueueIndex, 0, &mPresentQueue); |
| |
| GrContextOptions options; |
| options.fDisableDistanceFieldPaths = true; |
| // TODO: get a string describing the SPIR-V compiler version and use it here |
| mRenderThread.cacheManager().configureContext(&options, nullptr, 0); |
| sk_sp<GrContext> grContext(GrContext::MakeVulkan(backendContext, options)); |
| LOG_ALWAYS_FATAL_IF(!grContext.get()); |
| mRenderThread.setGrContext(grContext); |
| |
| if (Properties::enablePartialUpdates && Properties::useBufferAge) { |
| mSwapBehavior = SwapBehavior::BufferAge; |
| } |
| } |
| |
| VkFunctorInitParams VulkanManager::getVkFunctorInitParams() const { |
| return VkFunctorInitParams{ |
| .instance = mInstance, |
| .physical_device = mPhysicalDevice, |
| .device = mDevice, |
| .queue = mGraphicsQueue, |
| .graphics_queue_index = mGraphicsQueueIndex, |
| .api_version = mAPIVersion, |
| .enabled_instance_extension_names = mInstanceExtensions.data(), |
| .enabled_instance_extension_names_length = |
| static_cast<uint32_t>(mInstanceExtensions.size()), |
| .enabled_device_extension_names = mDeviceExtensions.data(), |
| .enabled_device_extension_names_length = |
| static_cast<uint32_t>(mDeviceExtensions.size()), |
| .device_features_2 = &mPhysicalDeviceFeatures2, |
| }; |
| } |
| |
| // Returns the next BackbufferInfo to use for the next draw. The function will make sure all |
| // previous uses have finished before returning. |
| VulkanSurface::BackbufferInfo* VulkanManager::getAvailableBackbuffer(VulkanSurface* surface) { |
| SkASSERT(surface->mBackbuffers); |
| |
| ++surface->mCurrentBackbufferIndex; |
| if (surface->mCurrentBackbufferIndex > surface->mImageCount) { |
| surface->mCurrentBackbufferIndex = 0; |
| } |
| |
| VulkanSurface::BackbufferInfo* backbuffer = |
| surface->mBackbuffers + surface->mCurrentBackbufferIndex; |
| |
| // Before we reuse a backbuffer, make sure its fences have all signaled so that we can safely |
| // reuse its commands buffers. |
| VkResult res = mWaitForFences(mDevice, 2, backbuffer->mUsageFences, true, UINT64_MAX); |
| if (res != VK_SUCCESS) { |
| return nullptr; |
| } |
| |
| return backbuffer; |
| } |
| |
| static SkMatrix getPreTransformMatrix(int width, int height, |
| VkSurfaceTransformFlagBitsKHR transform) { |
| switch (transform) { |
| case VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR: |
| return SkMatrix::I(); |
| case VK_SURFACE_TRANSFORM_ROTATE_90_BIT_KHR: |
| return SkMatrix::MakeAll(0, -1, height, 1, 0, 0, 0, 0, 1); |
| case VK_SURFACE_TRANSFORM_ROTATE_180_BIT_KHR: |
| return SkMatrix::MakeAll(-1, 0, width, 0, -1, height, 0, 0, 1); |
| case VK_SURFACE_TRANSFORM_ROTATE_270_BIT_KHR: |
| return SkMatrix::MakeAll(0, 1, 0, -1, 0, width, 0, 0, 1); |
| case VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_BIT_KHR: |
| return SkMatrix::MakeAll(-1, 0, width, 0, 1, 0, 0, 0, 1); |
| case VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_ROTATE_90_BIT_KHR: |
| return SkMatrix::MakeAll(0, -1, height, -1, 0, width, 0, 0, 1); |
| case VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_ROTATE_180_BIT_KHR: |
| return SkMatrix::MakeAll(1, 0, 0, 0, -1, height, 0, 0, 1); |
| case VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_ROTATE_270_BIT_KHR: |
| return SkMatrix::MakeAll(0, 1, 0, 1, 0, 0, 0, 0, 1); |
| default: |
| LOG_ALWAYS_FATAL("Unsupported pre transform of swapchain."); |
| } |
| return SkMatrix::I(); |
| } |
| |
| |
| SkSurface* VulkanManager::getBackbufferSurface(VulkanSurface** surfaceOut) { |
| // Recreate VulkanSurface, if ANativeWindow has been resized. |
| VulkanSurface* surface = *surfaceOut; |
| int windowWidth = 0, windowHeight = 0; |
| ANativeWindow* window = surface->mNativeWindow; |
| window->query(window, NATIVE_WINDOW_WIDTH, &windowWidth); |
| window->query(window, NATIVE_WINDOW_HEIGHT, &windowHeight); |
| if (windowWidth != surface->mWindowWidth || windowHeight != surface->mWindowHeight) { |
| ColorMode colorMode = surface->mColorMode; |
| sk_sp<SkColorSpace> colorSpace = surface->mColorSpace; |
| SkColorType colorType = surface->mColorType; |
| destroySurface(surface); |
| *surfaceOut = createSurface(window, colorMode, colorSpace, colorType); |
| surface = *surfaceOut; |
| if (!surface) { |
| return nullptr; |
| } |
| } |
| |
| VulkanSurface::BackbufferInfo* backbuffer = getAvailableBackbuffer(surface); |
| SkASSERT(backbuffer); |
| |
| VkResult res; |
| |
| res = mResetFences(mDevice, 2, backbuffer->mUsageFences); |
| SkASSERT(VK_SUCCESS == res); |
| |
| // The acquire will signal the attached mAcquireSemaphore. We use this to know the image has |
| // finished presenting and that it is safe to begin sending new commands to the returned image. |
| res = mAcquireNextImageKHR(mDevice, surface->mSwapchain, UINT64_MAX, |
| backbuffer->mAcquireSemaphore, VK_NULL_HANDLE, |
| &backbuffer->mImageIndex); |
| |
| if (VK_ERROR_SURFACE_LOST_KHR == res) { |
| // need to figure out how to create a new vkSurface without the platformData* |
| // maybe use attach somehow? but need a Window |
| return nullptr; |
| } |
| if (VK_ERROR_OUT_OF_DATE_KHR == res || VK_SUBOPTIMAL_KHR == res) { |
| // tear swapchain down and try again |
| if (!createSwapchain(surface)) { |
| return nullptr; |
| } |
| backbuffer = getAvailableBackbuffer(surface); |
| res = mResetFences(mDevice, 2, backbuffer->mUsageFences); |
| SkASSERT(VK_SUCCESS == res); |
| |
| // acquire the image |
| res = mAcquireNextImageKHR(mDevice, surface->mSwapchain, UINT64_MAX, |
| backbuffer->mAcquireSemaphore, VK_NULL_HANDLE, |
| &backbuffer->mImageIndex); |
| |
| if (VK_SUCCESS != res) { |
| return nullptr; |
| } |
| } |
| |
| // set up layout transfer from initial to color attachment |
| VkImageLayout layout = surface->mImageInfos[backbuffer->mImageIndex].mImageLayout; |
| SkASSERT(VK_IMAGE_LAYOUT_UNDEFINED == layout || VK_IMAGE_LAYOUT_PRESENT_SRC_KHR == layout); |
| VkPipelineStageFlags srcStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT; |
| VkPipelineStageFlags dstStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT; |
| VkAccessFlags srcAccessMask = 0; |
| VkAccessFlags dstAccessMask = VK_ACCESS_COLOR_ATTACHMENT_READ_BIT | |
| VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT; |
| |
| VkImageMemoryBarrier imageMemoryBarrier = { |
| VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER, // sType |
| NULL, // pNext |
| srcAccessMask, // outputMask |
| dstAccessMask, // inputMask |
| layout, // oldLayout |
| VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL, // newLayout |
| mPresentQueueIndex, // srcQueueFamilyIndex |
| mGraphicsQueueIndex, // dstQueueFamilyIndex |
| surface->mImages[backbuffer->mImageIndex], // image |
| {VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1} // subresourceRange |
| }; |
| mResetCommandBuffer(backbuffer->mTransitionCmdBuffers[0], 0); |
| |
| VkCommandBufferBeginInfo info; |
| memset(&info, 0, sizeof(VkCommandBufferBeginInfo)); |
| info.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO; |
| info.flags = 0; |
| mBeginCommandBuffer(backbuffer->mTransitionCmdBuffers[0], &info); |
| |
| mCmdPipelineBarrier(backbuffer->mTransitionCmdBuffers[0], srcStageMask, dstStageMask, 0, 0, |
| nullptr, 0, nullptr, 1, &imageMemoryBarrier); |
| |
| mEndCommandBuffer(backbuffer->mTransitionCmdBuffers[0]); |
| |
| VkPipelineStageFlags waitDstStageFlags = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT; |
| // insert the layout transfer into the queue and wait on the acquire |
| VkSubmitInfo submitInfo; |
| memset(&submitInfo, 0, sizeof(VkSubmitInfo)); |
| submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO; |
| submitInfo.waitSemaphoreCount = 1; |
| // Wait to make sure aquire semaphore set above has signaled. |
| submitInfo.pWaitSemaphores = &backbuffer->mAcquireSemaphore; |
| submitInfo.pWaitDstStageMask = &waitDstStageFlags; |
| submitInfo.commandBufferCount = 1; |
| submitInfo.pCommandBuffers = &backbuffer->mTransitionCmdBuffers[0]; |
| submitInfo.signalSemaphoreCount = 0; |
| |
| // Attach first fence to submission here so we can track when the command buffer finishes. |
| mQueueSubmit(mGraphicsQueue, 1, &submitInfo, backbuffer->mUsageFences[0]); |
| |
| // We need to notify Skia that we changed the layout of the wrapped VkImage |
| sk_sp<SkSurface> skSurface = surface->mImageInfos[backbuffer->mImageIndex].mSurface; |
| GrBackendRenderTarget backendRT = skSurface->getBackendRenderTarget( |
| SkSurface::kFlushRead_BackendHandleAccess); |
| if (!backendRT.isValid()) { |
| SkASSERT(backendRT.isValid()); |
| return nullptr; |
| } |
| backendRT.setVkImageLayout(VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL); |
| |
| surface->mPreTransform = getPreTransformMatrix(surface->windowWidth(), |
| surface->windowHeight(), |
| surface->mTransform); |
| |
| surface->mBackbuffer = std::move(skSurface); |
| return surface->mBackbuffer.get(); |
| } |
| |
| void VulkanManager::destroyBuffers(VulkanSurface* surface) { |
| if (surface->mBackbuffers) { |
| for (uint32_t i = 0; i < surface->mImageCount + 1; ++i) { |
| mWaitForFences(mDevice, 2, surface->mBackbuffers[i].mUsageFences, true, UINT64_MAX); |
| surface->mBackbuffers[i].mImageIndex = -1; |
| mDestroySemaphore(mDevice, surface->mBackbuffers[i].mAcquireSemaphore, nullptr); |
| mDestroySemaphore(mDevice, surface->mBackbuffers[i].mRenderSemaphore, nullptr); |
| mFreeCommandBuffers(mDevice, mCommandPool, 2, |
| surface->mBackbuffers[i].mTransitionCmdBuffers); |
| mDestroyFence(mDevice, surface->mBackbuffers[i].mUsageFences[0], 0); |
| mDestroyFence(mDevice, surface->mBackbuffers[i].mUsageFences[1], 0); |
| } |
| } |
| |
| delete[] surface->mBackbuffers; |
| surface->mBackbuffers = nullptr; |
| delete[] surface->mImageInfos; |
| surface->mImageInfos = nullptr; |
| delete[] surface->mImages; |
| surface->mImages = nullptr; |
| } |
| |
| void VulkanManager::destroySurface(VulkanSurface* surface) { |
| // Make sure all submit commands have finished before starting to destroy objects. |
| if (VK_NULL_HANDLE != mPresentQueue) { |
| mQueueWaitIdle(mPresentQueue); |
| } |
| mDeviceWaitIdle(mDevice); |
| |
| destroyBuffers(surface); |
| |
| if (VK_NULL_HANDLE != surface->mSwapchain) { |
| mDestroySwapchainKHR(mDevice, surface->mSwapchain, nullptr); |
| surface->mSwapchain = VK_NULL_HANDLE; |
| } |
| |
| if (VK_NULL_HANDLE != surface->mVkSurface) { |
| mDestroySurfaceKHR(mInstance, surface->mVkSurface, nullptr); |
| surface->mVkSurface = VK_NULL_HANDLE; |
| } |
| delete surface; |
| } |
| |
| void VulkanManager::createBuffers(VulkanSurface* surface, VkFormat format, VkExtent2D extent) { |
| mGetSwapchainImagesKHR(mDevice, surface->mSwapchain, &surface->mImageCount, nullptr); |
| SkASSERT(surface->mImageCount); |
| surface->mImages = new VkImage[surface->mImageCount]; |
| mGetSwapchainImagesKHR(mDevice, surface->mSwapchain, &surface->mImageCount, surface->mImages); |
| |
| SkSurfaceProps props(0, kUnknown_SkPixelGeometry); |
| |
| // set up initial image layouts and create surfaces |
| surface->mImageInfos = new VulkanSurface::ImageInfo[surface->mImageCount]; |
| for (uint32_t i = 0; i < surface->mImageCount; ++i) { |
| GrVkImageInfo info; |
| info.fImage = surface->mImages[i]; |
| info.fAlloc = GrVkAlloc(); |
| info.fImageLayout = VK_IMAGE_LAYOUT_UNDEFINED; |
| info.fImageTiling = VK_IMAGE_TILING_OPTIMAL; |
| info.fFormat = format; |
| info.fLevelCount = 1; |
| |
| GrBackendRenderTarget backendRT(extent.width, extent.height, 0, 0, info); |
| |
| VulkanSurface::ImageInfo& imageInfo = surface->mImageInfos[i]; |
| imageInfo.mSurface = SkSurface::MakeFromBackendRenderTarget( |
| mRenderThread.getGrContext(), backendRT, kTopLeft_GrSurfaceOrigin, |
| surface->mColorType, surface->mColorSpace, &props); |
| } |
| |
| SkASSERT(mCommandPool != VK_NULL_HANDLE); |
| |
| // set up the backbuffers |
| VkSemaphoreCreateInfo semaphoreInfo; |
| memset(&semaphoreInfo, 0, sizeof(VkSemaphoreCreateInfo)); |
| semaphoreInfo.sType = VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO; |
| semaphoreInfo.pNext = nullptr; |
| semaphoreInfo.flags = 0; |
| VkCommandBufferAllocateInfo commandBuffersInfo; |
| memset(&commandBuffersInfo, 0, sizeof(VkCommandBufferAllocateInfo)); |
| commandBuffersInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO; |
| commandBuffersInfo.pNext = nullptr; |
| commandBuffersInfo.commandPool = mCommandPool; |
| commandBuffersInfo.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY; |
| commandBuffersInfo.commandBufferCount = 2; |
| VkFenceCreateInfo fenceInfo; |
| memset(&fenceInfo, 0, sizeof(VkFenceCreateInfo)); |
| fenceInfo.sType = VK_STRUCTURE_TYPE_FENCE_CREATE_INFO; |
| fenceInfo.pNext = nullptr; |
| fenceInfo.flags = VK_FENCE_CREATE_SIGNALED_BIT; |
| |
| // we create one additional backbuffer structure here, because we want to |
| // give the command buffers they contain a chance to finish before we cycle back |
| surface->mBackbuffers = new VulkanSurface::BackbufferInfo[surface->mImageCount + 1]; |
| for (uint32_t i = 0; i < surface->mImageCount + 1; ++i) { |
| SkDEBUGCODE(VkResult res); |
| surface->mBackbuffers[i].mImageIndex = -1; |
| SkDEBUGCODE(res =) mCreateSemaphore(mDevice, &semaphoreInfo, nullptr, |
| &surface->mBackbuffers[i].mAcquireSemaphore); |
| SkDEBUGCODE(res =) mCreateSemaphore(mDevice, &semaphoreInfo, nullptr, |
| &surface->mBackbuffers[i].mRenderSemaphore); |
| SkDEBUGCODE(res =) mAllocateCommandBuffers(mDevice, &commandBuffersInfo, |
| surface->mBackbuffers[i].mTransitionCmdBuffers); |
| SkDEBUGCODE(res =) mCreateFence(mDevice, &fenceInfo, nullptr, |
| &surface->mBackbuffers[i].mUsageFences[0]); |
| SkDEBUGCODE(res =) mCreateFence(mDevice, &fenceInfo, nullptr, |
| &surface->mBackbuffers[i].mUsageFences[1]); |
| SkASSERT(VK_SUCCESS == res); |
| } |
| surface->mCurrentBackbufferIndex = surface->mImageCount; |
| } |
| |
| bool VulkanManager::createSwapchain(VulkanSurface* surface) { |
| // check for capabilities |
| VkSurfaceCapabilitiesKHR caps; |
| VkResult res = mGetPhysicalDeviceSurfaceCapabilitiesKHR(mPhysicalDevice, |
| surface->mVkSurface, &caps); |
| if (VK_SUCCESS != res) { |
| return false; |
| } |
| |
| uint32_t surfaceFormatCount; |
| res = mGetPhysicalDeviceSurfaceFormatsKHR(mPhysicalDevice, surface->mVkSurface, |
| &surfaceFormatCount, nullptr); |
| if (VK_SUCCESS != res) { |
| return false; |
| } |
| |
| FatVector<VkSurfaceFormatKHR, 4> surfaceFormats(surfaceFormatCount); |
| res = mGetPhysicalDeviceSurfaceFormatsKHR(mPhysicalDevice, surface->mVkSurface, |
| &surfaceFormatCount, surfaceFormats.data()); |
| if (VK_SUCCESS != res) { |
| return false; |
| } |
| |
| uint32_t presentModeCount; |
| res = mGetPhysicalDeviceSurfacePresentModesKHR(mPhysicalDevice, |
| surface->mVkSurface, &presentModeCount, nullptr); |
| if (VK_SUCCESS != res) { |
| return false; |
| } |
| |
| FatVector<VkPresentModeKHR, VK_PRESENT_MODE_RANGE_SIZE_KHR> presentModes(presentModeCount); |
| res = mGetPhysicalDeviceSurfacePresentModesKHR(mPhysicalDevice, |
| surface->mVkSurface, &presentModeCount, |
| presentModes.data()); |
| if (VK_SUCCESS != res) { |
| return false; |
| } |
| |
| if (!SkToBool(caps.supportedTransforms & VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR)) { |
| return false; |
| } |
| VkSurfaceTransformFlagBitsKHR transform; |
| if (SkToBool(caps.supportedTransforms & caps.currentTransform) && |
| !SkToBool(caps.currentTransform & VK_SURFACE_TRANSFORM_INHERIT_BIT_KHR)) { |
| transform = caps.currentTransform; |
| } else { |
| transform = VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR; |
| } |
| |
| VkExtent2D extent = caps.currentExtent; |
| // clamp width; to handle currentExtent of -1 and protect us from broken hints |
| if (extent.width < caps.minImageExtent.width) { |
| extent.width = caps.minImageExtent.width; |
| } |
| SkASSERT(extent.width <= caps.maxImageExtent.width); |
| // clamp height |
| if (extent.height < caps.minImageExtent.height) { |
| extent.height = caps.minImageExtent.height; |
| } |
| SkASSERT(extent.height <= caps.maxImageExtent.height); |
| |
| VkExtent2D swapExtent = extent; |
| if (transform == VK_SURFACE_TRANSFORM_ROTATE_90_BIT_KHR || |
| transform == VK_SURFACE_TRANSFORM_ROTATE_270_BIT_KHR || |
| transform == VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_ROTATE_90_BIT_KHR || |
| transform == VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_ROTATE_270_BIT_KHR) { |
| swapExtent.width = extent.height; |
| swapExtent.height = extent.width; |
| } |
| |
| surface->mWindowWidth = extent.width; |
| surface->mWindowHeight = extent.height; |
| |
| uint32_t imageCount = std::max<uint32_t>(3, caps.minImageCount); |
| if (caps.maxImageCount > 0 && imageCount > caps.maxImageCount) { |
| // Application must settle for fewer images than desired: |
| imageCount = caps.maxImageCount; |
| } |
| |
| // Currently Skia requires the images to be color attchments and support all transfer |
| // operations. |
| VkImageUsageFlags usageFlags = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT | |
| VK_IMAGE_USAGE_TRANSFER_SRC_BIT | |
| VK_IMAGE_USAGE_TRANSFER_DST_BIT; |
| SkASSERT((caps.supportedUsageFlags & usageFlags) == usageFlags); |
| |
| SkASSERT(caps.supportedCompositeAlpha & |
| (VK_COMPOSITE_ALPHA_OPAQUE_BIT_KHR | VK_COMPOSITE_ALPHA_INHERIT_BIT_KHR)); |
| VkCompositeAlphaFlagBitsKHR composite_alpha = |
| (caps.supportedCompositeAlpha & VK_COMPOSITE_ALPHA_INHERIT_BIT_KHR) |
| ? VK_COMPOSITE_ALPHA_INHERIT_BIT_KHR |
| : VK_COMPOSITE_ALPHA_OPAQUE_BIT_KHR; |
| |
| VkFormat surfaceFormat = VK_FORMAT_R8G8B8A8_UNORM; |
| VkColorSpaceKHR colorSpace = VK_COLORSPACE_SRGB_NONLINEAR_KHR; |
| if (surface->mColorType == SkColorType::kRGBA_F16_SkColorType) { |
| surfaceFormat = VK_FORMAT_R16G16B16A16_SFLOAT; |
| } |
| |
| if (surface->mColorMode == ColorMode::WideColorGamut) { |
| skcms_Matrix3x3 surfaceGamut; |
| LOG_ALWAYS_FATAL_IF(!surface->mColorSpace->toXYZD50(&surfaceGamut), |
| "Could not get gamut matrix from color space"); |
| if (memcmp(&surfaceGamut, &SkNamedGamut::kSRGB, sizeof(surfaceGamut)) == 0) { |
| colorSpace = VK_COLOR_SPACE_EXTENDED_SRGB_NONLINEAR_EXT; |
| } else if (memcmp(&surfaceGamut, &SkNamedGamut::kDCIP3, sizeof(surfaceGamut)) == 0) { |
| colorSpace = VK_COLOR_SPACE_DISPLAY_P3_NONLINEAR_EXT; |
| } else { |
| LOG_ALWAYS_FATAL("Unreachable: unsupported wide color space."); |
| } |
| } |
| |
| bool foundSurfaceFormat = false; |
| for (uint32_t i = 0; i < surfaceFormatCount; ++i) { |
| if (surfaceFormat == surfaceFormats[i].format |
| && colorSpace == surfaceFormats[i].colorSpace) { |
| foundSurfaceFormat = true; |
| break; |
| } |
| } |
| |
| if (!foundSurfaceFormat) { |
| return false; |
| } |
| |
| // FIFO is always available and will match what we do on GL so just pick that here. |
| VkPresentModeKHR mode = VK_PRESENT_MODE_FIFO_KHR; |
| |
| VkSwapchainCreateInfoKHR swapchainCreateInfo; |
| memset(&swapchainCreateInfo, 0, sizeof(VkSwapchainCreateInfoKHR)); |
| swapchainCreateInfo.sType = VK_STRUCTURE_TYPE_SWAPCHAIN_CREATE_INFO_KHR; |
| swapchainCreateInfo.surface = surface->mVkSurface; |
| swapchainCreateInfo.minImageCount = imageCount; |
| swapchainCreateInfo.imageFormat = surfaceFormat; |
| swapchainCreateInfo.imageColorSpace = colorSpace; |
| swapchainCreateInfo.imageExtent = swapExtent; |
| swapchainCreateInfo.imageArrayLayers = 1; |
| swapchainCreateInfo.imageUsage = usageFlags; |
| |
| uint32_t queueFamilies[] = {mGraphicsQueueIndex, mPresentQueueIndex}; |
| if (mGraphicsQueueIndex != mPresentQueueIndex) { |
| swapchainCreateInfo.imageSharingMode = VK_SHARING_MODE_CONCURRENT; |
| swapchainCreateInfo.queueFamilyIndexCount = 2; |
| swapchainCreateInfo.pQueueFamilyIndices = queueFamilies; |
| } else { |
| swapchainCreateInfo.imageSharingMode = VK_SHARING_MODE_EXCLUSIVE; |
| swapchainCreateInfo.queueFamilyIndexCount = 0; |
| swapchainCreateInfo.pQueueFamilyIndices = nullptr; |
| } |
| |
| swapchainCreateInfo.preTransform = transform; |
| swapchainCreateInfo.compositeAlpha = composite_alpha; |
| swapchainCreateInfo.presentMode = mode; |
| swapchainCreateInfo.clipped = true; |
| swapchainCreateInfo.oldSwapchain = surface->mSwapchain; |
| |
| res = mCreateSwapchainKHR(mDevice, &swapchainCreateInfo, nullptr, &surface->mSwapchain); |
| if (VK_SUCCESS != res) { |
| return false; |
| } |
| |
| surface->mTransform = transform; |
| |
| // destroy the old swapchain |
| if (swapchainCreateInfo.oldSwapchain != VK_NULL_HANDLE) { |
| mDeviceWaitIdle(mDevice); |
| |
| destroyBuffers(surface); |
| |
| mDestroySwapchainKHR(mDevice, swapchainCreateInfo.oldSwapchain, nullptr); |
| } |
| |
| createBuffers(surface, surfaceFormat, swapExtent); |
| |
| // The window content is not updated (frozen) until a buffer of the window size is received. |
| // This prevents temporary stretching of the window after it is resized, but before the first |
| // buffer with new size is enqueued. |
| native_window_set_scaling_mode(surface->mNativeWindow, NATIVE_WINDOW_SCALING_MODE_FREEZE); |
| |
| return true; |
| } |
| |
| VulkanSurface* VulkanManager::createSurface(ANativeWindow* window, ColorMode colorMode, |
| sk_sp<SkColorSpace> surfaceColorSpace, |
| SkColorType surfaceColorType) { |
| initialize(); |
| |
| if (!window) { |
| return nullptr; |
| } |
| |
| VulkanSurface* surface = new VulkanSurface(colorMode, window, surfaceColorSpace, |
| surfaceColorType); |
| |
| VkAndroidSurfaceCreateInfoKHR surfaceCreateInfo; |
| memset(&surfaceCreateInfo, 0, sizeof(VkAndroidSurfaceCreateInfoKHR)); |
| surfaceCreateInfo.sType = VK_STRUCTURE_TYPE_ANDROID_SURFACE_CREATE_INFO_KHR; |
| surfaceCreateInfo.pNext = nullptr; |
| surfaceCreateInfo.flags = 0; |
| surfaceCreateInfo.window = window; |
| |
| VkResult res = mCreateAndroidSurfaceKHR(mInstance, &surfaceCreateInfo, nullptr, |
| &surface->mVkSurface); |
| if (VK_SUCCESS != res) { |
| delete surface; |
| return nullptr; |
| } |
| |
| SkDEBUGCODE(VkBool32 supported; res = mGetPhysicalDeviceSurfaceSupportKHR( |
| mPhysicalDevice, mPresentQueueIndex, surface->mVkSurface, &supported); |
| // All physical devices and queue families on Android must be capable of |
| // presentation with any native window. |
| SkASSERT(VK_SUCCESS == res && supported);); |
| |
| if (!createSwapchain(surface)) { |
| destroySurface(surface); |
| return nullptr; |
| } |
| |
| return surface; |
| } |
| |
| // Helper to know which src stage flags we need to set when transitioning to the present layout |
| static VkPipelineStageFlags layoutToPipelineSrcStageFlags(const VkImageLayout layout) { |
| if (VK_IMAGE_LAYOUT_GENERAL == layout) { |
| return VK_PIPELINE_STAGE_ALL_COMMANDS_BIT; |
| } else if (VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL == layout || |
| VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL == layout) { |
| return VK_PIPELINE_STAGE_TRANSFER_BIT; |
| } else if (VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL == layout) { |
| return VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT; |
| } else if (VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL == layout || |
| VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL == layout) { |
| return VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT; |
| } else if (VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL == layout) { |
| return VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT; |
| } else if (VK_IMAGE_LAYOUT_PREINITIALIZED == layout) { |
| return VK_PIPELINE_STAGE_HOST_BIT; |
| } |
| |
| SkASSERT(VK_IMAGE_LAYOUT_UNDEFINED == layout); |
| return VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT; |
| } |
| |
| // Helper to know which src access mask we need to set when transitioning to the present layout |
| static VkAccessFlags layoutToSrcAccessMask(const VkImageLayout layout) { |
| VkAccessFlags flags = 0; |
| if (VK_IMAGE_LAYOUT_GENERAL == layout) { |
| flags = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT | |
| VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT | VK_ACCESS_TRANSFER_WRITE_BIT | |
| VK_ACCESS_TRANSFER_READ_BIT | VK_ACCESS_SHADER_READ_BIT | VK_ACCESS_HOST_WRITE_BIT | |
| VK_ACCESS_HOST_READ_BIT; |
| } else if (VK_IMAGE_LAYOUT_PREINITIALIZED == layout) { |
| flags = VK_ACCESS_HOST_WRITE_BIT; |
| } else if (VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL == layout) { |
| flags = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT; |
| } else if (VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL == layout) { |
| flags = VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT; |
| } else if (VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL == layout) { |
| flags = VK_ACCESS_TRANSFER_WRITE_BIT; |
| } else if (VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL == layout) { |
| flags = VK_ACCESS_TRANSFER_READ_BIT; |
| } else if (VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL == layout) { |
| flags = VK_ACCESS_SHADER_READ_BIT; |
| } |
| return flags; |
| } |
| |
| void VulkanManager::swapBuffers(VulkanSurface* surface) { |
| if (CC_UNLIKELY(Properties::waitForGpuCompletion)) { |
| ATRACE_NAME("Finishing GPU work"); |
| mDeviceWaitIdle(mDevice); |
| } |
| |
| SkASSERT(surface->mBackbuffers); |
| VulkanSurface::BackbufferInfo* backbuffer = |
| surface->mBackbuffers + surface->mCurrentBackbufferIndex; |
| |
| SkSurface* skSurface = surface->mImageInfos[backbuffer->mImageIndex].mSurface.get(); |
| GrBackendRenderTarget backendRT = skSurface->getBackendRenderTarget( |
| SkSurface::kFlushRead_BackendHandleAccess); |
| SkASSERT(backendRT.isValid()); |
| |
| GrVkImageInfo imageInfo; |
| SkAssertResult(backendRT.getVkImageInfo(&imageInfo)); |
| |
| // Check to make sure we never change the actually wrapped image |
| SkASSERT(imageInfo.fImage == surface->mImages[backbuffer->mImageIndex]); |
| |
| // We need to transition the image to VK_IMAGE_LAYOUT_PRESENT_SRC_KHR and make sure that all |
| // previous work is complete for before presenting. So we first add the necessary barrier here. |
| VkImageLayout layout = imageInfo.fImageLayout; |
| VkPipelineStageFlags srcStageMask = layoutToPipelineSrcStageFlags(layout); |
| VkPipelineStageFlags dstStageMask = VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT; |
| VkAccessFlags srcAccessMask = layoutToSrcAccessMask(layout); |
| VkAccessFlags dstAccessMask = 0; |
| |
| VkImageMemoryBarrier imageMemoryBarrier = { |
| VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER, // sType |
| NULL, // pNext |
| srcAccessMask, // outputMask |
| dstAccessMask, // inputMask |
| layout, // oldLayout |
| VK_IMAGE_LAYOUT_PRESENT_SRC_KHR, // newLayout |
| mGraphicsQueueIndex, // srcQueueFamilyIndex |
| mPresentQueueIndex, // dstQueueFamilyIndex |
| surface->mImages[backbuffer->mImageIndex], // image |
| {VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1} // subresourceRange |
| }; |
| |
| mResetCommandBuffer(backbuffer->mTransitionCmdBuffers[1], 0); |
| VkCommandBufferBeginInfo info; |
| memset(&info, 0, sizeof(VkCommandBufferBeginInfo)); |
| info.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO; |
| info.flags = 0; |
| mBeginCommandBuffer(backbuffer->mTransitionCmdBuffers[1], &info); |
| mCmdPipelineBarrier(backbuffer->mTransitionCmdBuffers[1], srcStageMask, dstStageMask, 0, 0, |
| nullptr, 0, nullptr, 1, &imageMemoryBarrier); |
| mEndCommandBuffer(backbuffer->mTransitionCmdBuffers[1]); |
| |
| surface->mImageInfos[backbuffer->mImageIndex].mImageLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR; |
| |
| // insert the layout transfer into the queue and wait on the acquire |
| VkSubmitInfo submitInfo; |
| memset(&submitInfo, 0, sizeof(VkSubmitInfo)); |
| submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO; |
| submitInfo.waitSemaphoreCount = 0; |
| submitInfo.pWaitDstStageMask = 0; |
| submitInfo.commandBufferCount = 1; |
| submitInfo.pCommandBuffers = &backbuffer->mTransitionCmdBuffers[1]; |
| submitInfo.signalSemaphoreCount = 1; |
| // When this command buffer finishes we will signal this semaphore so that we know it is now |
| // safe to present the image to the screen. |
| submitInfo.pSignalSemaphores = &backbuffer->mRenderSemaphore; |
| |
| // Attach second fence to submission here so we can track when the command buffer finishes. |
| mQueueSubmit(mGraphicsQueue, 1, &submitInfo, backbuffer->mUsageFences[1]); |
| |
| // Submit present operation to present queue. We use a semaphore here to make sure all rendering |
| // to the image is complete and that the layout has been change to present on the graphics |
| // queue. |
| const VkPresentInfoKHR presentInfo = { |
| VK_STRUCTURE_TYPE_PRESENT_INFO_KHR, // sType |
| NULL, // pNext |
| 1, // waitSemaphoreCount |
| &backbuffer->mRenderSemaphore, // pWaitSemaphores |
| 1, // swapchainCount |
| &surface->mSwapchain, // pSwapchains |
| &backbuffer->mImageIndex, // pImageIndices |
| NULL // pResults |
| }; |
| |
| mQueuePresentKHR(mPresentQueue, &presentInfo); |
| |
| surface->mBackbuffer.reset(); |
| surface->mImageInfos[backbuffer->mImageIndex].mLastUsed = surface->mCurrentTime; |
| surface->mImageInfos[backbuffer->mImageIndex].mInvalid = false; |
| surface->mCurrentTime++; |
| } |
| |
| int VulkanManager::getAge(VulkanSurface* surface) { |
| SkASSERT(surface->mBackbuffers); |
| VulkanSurface::BackbufferInfo* backbuffer = |
| surface->mBackbuffers + surface->mCurrentBackbufferIndex; |
| if (mSwapBehavior == SwapBehavior::Discard || |
| surface->mImageInfos[backbuffer->mImageIndex].mInvalid) { |
| return 0; |
| } |
| uint16_t lastUsed = surface->mImageInfos[backbuffer->mImageIndex].mLastUsed; |
| return surface->mCurrentTime - lastUsed; |
| } |
| |
| bool VulkanManager::setupDummyCommandBuffer() { |
| if (mDummyCB != VK_NULL_HANDLE) { |
| return true; |
| } |
| |
| VkCommandBufferAllocateInfo commandBuffersInfo; |
| memset(&commandBuffersInfo, 0, sizeof(VkCommandBufferAllocateInfo)); |
| commandBuffersInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO; |
| commandBuffersInfo.pNext = nullptr; |
| commandBuffersInfo.commandPool = mCommandPool; |
| commandBuffersInfo.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY; |
| commandBuffersInfo.commandBufferCount = 1; |
| |
| VkResult err = mAllocateCommandBuffers(mDevice, &commandBuffersInfo, &mDummyCB); |
| if (err != VK_SUCCESS) { |
| // It is probably unnecessary to set this back to VK_NULL_HANDLE, but we set it anyways to |
| // make sure the driver didn't set a value and then return a failure. |
| mDummyCB = VK_NULL_HANDLE; |
| return false; |
| } |
| |
| VkCommandBufferBeginInfo beginInfo; |
| memset(&beginInfo, 0, sizeof(VkCommandBufferBeginInfo)); |
| beginInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO; |
| beginInfo.flags = VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT; |
| |
| mBeginCommandBuffer(mDummyCB, &beginInfo); |
| mEndCommandBuffer(mDummyCB); |
| return true; |
| } |
| |
| status_t VulkanManager::fenceWait(sp<Fence>& fence) { |
| if (!hasVkContext()) { |
| ALOGE("VulkanManager::fenceWait: VkDevice not initialized"); |
| return INVALID_OPERATION; |
| } |
| |
| // Block GPU on the fence. |
| int fenceFd = fence->dup(); |
| if (fenceFd == -1) { |
| ALOGE("VulkanManager::fenceWait: error dup'ing fence fd: %d", errno); |
| return -errno; |
| } |
| |
| VkSemaphoreCreateInfo semaphoreInfo; |
| semaphoreInfo.sType = VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO; |
| semaphoreInfo.pNext = nullptr; |
| semaphoreInfo.flags = 0; |
| VkSemaphore semaphore; |
| VkResult err = mCreateSemaphore(mDevice, &semaphoreInfo, nullptr, &semaphore); |
| if (VK_SUCCESS != err) { |
| ALOGE("Failed to create import semaphore, err: %d", err); |
| return UNKNOWN_ERROR; |
| } |
| VkImportSemaphoreFdInfoKHR importInfo; |
| importInfo.sType = VK_STRUCTURE_TYPE_IMPORT_SEMAPHORE_FD_INFO_KHR; |
| importInfo.pNext = nullptr; |
| importInfo.semaphore = semaphore; |
| importInfo.flags = VK_SEMAPHORE_IMPORT_TEMPORARY_BIT; |
| importInfo.handleType = VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_SYNC_FD_BIT; |
| importInfo.fd = fenceFd; |
| |
| err = mImportSemaphoreFdKHR(mDevice, &importInfo); |
| if (VK_SUCCESS != err) { |
| ALOGE("Failed to import semaphore, err: %d", err); |
| return UNKNOWN_ERROR; |
| } |
| |
| LOG_ALWAYS_FATAL_IF(mDummyCB == VK_NULL_HANDLE); |
| |
| VkPipelineStageFlags waitDstStageFlags = VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT; |
| |
| VkSubmitInfo submitInfo; |
| memset(&submitInfo, 0, sizeof(VkSubmitInfo)); |
| submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO; |
| submitInfo.waitSemaphoreCount = 1; |
| // Wait to make sure aquire semaphore set above has signaled. |
| submitInfo.pWaitSemaphores = &semaphore; |
| submitInfo.pWaitDstStageMask = &waitDstStageFlags; |
| submitInfo.commandBufferCount = 1; |
| submitInfo.pCommandBuffers = &mDummyCB; |
| submitInfo.signalSemaphoreCount = 0; |
| |
| mQueueSubmit(mGraphicsQueue, 1, &submitInfo, VK_NULL_HANDLE); |
| |
| // On Android when we import a semaphore, it is imported using temporary permanence. That |
| // means as soon as we queue the semaphore for a wait it reverts to its previous permanent |
| // state before importing. This means it will now be in an idle state with no pending |
| // signal or wait operations, so it is safe to immediately delete it. |
| mDestroySemaphore(mDevice, semaphore, nullptr); |
| return OK; |
| } |
| |
| status_t VulkanManager::createReleaseFence(sp<Fence>& nativeFence) { |
| if (!hasVkContext()) { |
| ALOGE("VulkanManager::createReleaseFence: VkDevice not initialized"); |
| return INVALID_OPERATION; |
| } |
| |
| VkExportSemaphoreCreateInfo exportInfo; |
| exportInfo.sType = VK_STRUCTURE_TYPE_EXPORT_SEMAPHORE_CREATE_INFO; |
| exportInfo.pNext = nullptr; |
| exportInfo.handleTypes = VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_SYNC_FD_BIT; |
| |
| VkSemaphoreCreateInfo semaphoreInfo; |
| semaphoreInfo.sType = VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO; |
| semaphoreInfo.pNext = &exportInfo; |
| semaphoreInfo.flags = 0; |
| VkSemaphore semaphore; |
| VkResult err = mCreateSemaphore(mDevice, &semaphoreInfo, nullptr, &semaphore); |
| if (VK_SUCCESS != err) { |
| ALOGE("VulkanManager::createReleaseFence: Failed to create semaphore"); |
| return INVALID_OPERATION; |
| } |
| |
| LOG_ALWAYS_FATAL_IF(mDummyCB == VK_NULL_HANDLE); |
| |
| VkSubmitInfo submitInfo; |
| memset(&submitInfo, 0, sizeof(VkSubmitInfo)); |
| submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO; |
| submitInfo.waitSemaphoreCount = 0; |
| submitInfo.pWaitSemaphores = nullptr; |
| submitInfo.pWaitDstStageMask = nullptr; |
| submitInfo.commandBufferCount = 1; |
| submitInfo.pCommandBuffers = &mDummyCB; |
| submitInfo.signalSemaphoreCount = 1; |
| submitInfo.pSignalSemaphores = &semaphore; |
| |
| mQueueSubmit(mGraphicsQueue, 1, &submitInfo, VK_NULL_HANDLE); |
| |
| VkSemaphoreGetFdInfoKHR getFdInfo; |
| getFdInfo.sType = VK_STRUCTURE_TYPE_SEMAPHORE_GET_FD_INFO_KHR; |
| getFdInfo.pNext = nullptr; |
| getFdInfo.semaphore = semaphore; |
| getFdInfo.handleType = VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_SYNC_FD_BIT; |
| |
| int fenceFd = 0; |
| |
| err = mGetSemaphoreFdKHR(mDevice, &getFdInfo, &fenceFd); |
| if (VK_SUCCESS != err) { |
| ALOGE("VulkanManager::createReleaseFence: Failed to get semaphore Fd"); |
| return INVALID_OPERATION; |
| } |
| nativeFence = new Fence(fenceFd); |
| |
| // Exporting a semaphore with copy transference via vkGetSemahporeFdKHR, has the same effect of |
| // destroying the semaphore and creating a new one with the same handle, and the payloads |
| // ownership is move to the Fd we created. Thus the semahpore is in a state that we can delete |
| // it and we don't need to wait on the command buffer we submitted to finish. |
| mDestroySemaphore(mDevice, semaphore, nullptr); |
| |
| return OK; |
| } |
| |
| } /* namespace renderthread */ |
| } /* namespace uirenderer */ |
| } /* namespace android */ |