blob: 90397fddf6186b3bb889ec3690b67097f286c617 [file] [log] [blame]
/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "VulkanManager.h"
#include <gui/Surface.h>
#include "Properties.h"
#include "RenderThread.h"
#include "renderstate/RenderState.h"
#include "utils/FatVector.h"
#include <GrBackendSurface.h>
#include <GrContext.h>
#include <GrTypes.h>
#include <GrTypes.h>
#include <vk/GrVkExtensions.h>
#include <vk/GrVkTypes.h>
namespace android {
namespace uirenderer {
namespace renderthread {
static void free_features_extensions_structs(const VkPhysicalDeviceFeatures2& features) {
// All Vulkan structs that could be part of the features chain will start with the
// structure type followed by the pNext pointer. We cast to the CommonVulkanHeader
// so we can get access to the pNext for the next struct.
struct CommonVulkanHeader {
VkStructureType sType;
void* pNext;
};
void* pNext = features.pNext;
while (pNext) {
void* current = pNext;
pNext = static_cast<CommonVulkanHeader*>(current)->pNext;
free(current);
}
}
#define GET_PROC(F) m##F = (PFN_vk##F)vkGetInstanceProcAddr(VK_NULL_HANDLE, "vk" #F)
#define GET_INST_PROC(F) m##F = (PFN_vk##F)vkGetInstanceProcAddr(mInstance, "vk" #F)
#define GET_DEV_PROC(F) m##F = (PFN_vk##F)vkGetDeviceProcAddr(mDevice, "vk" #F)
VulkanManager::VulkanManager(RenderThread& thread) : mRenderThread(thread) {}
void VulkanManager::destroy() {
mRenderThread.setGrContext(nullptr);
// We don't need to explicitly free the command buffer since it automatically gets freed when we
// delete the VkCommandPool below.
mDummyCB = VK_NULL_HANDLE;
if (VK_NULL_HANDLE != mCommandPool) {
mDestroyCommandPool(mDevice, mCommandPool, nullptr);
mCommandPool = VK_NULL_HANDLE;
}
if (mDevice != VK_NULL_HANDLE) {
mDeviceWaitIdle(mDevice);
mDestroyDevice(mDevice, nullptr);
}
if (mInstance != VK_NULL_HANDLE) {
mDestroyInstance(mInstance, nullptr);
}
mGraphicsQueue = VK_NULL_HANDLE;
mPresentQueue = VK_NULL_HANDLE;
mDevice = VK_NULL_HANDLE;
mPhysicalDevice = VK_NULL_HANDLE;
mInstance = VK_NULL_HANDLE;
mInstanceExtensions.clear();
mDeviceExtensions.clear();
free_features_extensions_structs(mPhysicalDeviceFeatures2);
mPhysicalDeviceFeatures2 = {};
}
void VulkanManager::setupDevice(GrVkExtensions& grExtensions, VkPhysicalDeviceFeatures2& features) {
VkResult err;
constexpr VkApplicationInfo app_info = {
VK_STRUCTURE_TYPE_APPLICATION_INFO, // sType
nullptr, // pNext
"android framework", // pApplicationName
0, // applicationVersion
"android framework", // pEngineName
0, // engineVerison
mAPIVersion, // apiVersion
};
{
GET_PROC(EnumerateInstanceExtensionProperties);
uint32_t extensionCount = 0;
err = mEnumerateInstanceExtensionProperties(nullptr, &extensionCount, nullptr);
LOG_ALWAYS_FATAL_IF(VK_SUCCESS != err);
std::unique_ptr<VkExtensionProperties[]> extensions(
new VkExtensionProperties[extensionCount]);
err = mEnumerateInstanceExtensionProperties(nullptr, &extensionCount, extensions.get());
LOG_ALWAYS_FATAL_IF(VK_SUCCESS != err);
bool hasKHRSurfaceExtension = false;
bool hasKHRAndroidSurfaceExtension = false;
for (uint32_t i = 0; i < extensionCount; ++i) {
mInstanceExtensions.push_back(extensions[i].extensionName);
if (!strcmp(extensions[i].extensionName, VK_KHR_SURFACE_EXTENSION_NAME)) {
hasKHRSurfaceExtension = true;
}
if (!strcmp(extensions[i].extensionName,VK_KHR_ANDROID_SURFACE_EXTENSION_NAME)) {
hasKHRAndroidSurfaceExtension = true;
}
}
LOG_ALWAYS_FATAL_IF(!hasKHRSurfaceExtension || !hasKHRAndroidSurfaceExtension);
}
const VkInstanceCreateInfo instance_create = {
VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO, // sType
nullptr, // pNext
0, // flags
&app_info, // pApplicationInfo
0, // enabledLayerNameCount
nullptr, // ppEnabledLayerNames
(uint32_t) mInstanceExtensions.size(), // enabledExtensionNameCount
mInstanceExtensions.data(), // ppEnabledExtensionNames
};
GET_PROC(CreateInstance);
err = mCreateInstance(&instance_create, nullptr, &mInstance);
LOG_ALWAYS_FATAL_IF(err < 0);
GET_INST_PROC(DestroyInstance);
GET_INST_PROC(EnumeratePhysicalDevices);
GET_INST_PROC(GetPhysicalDeviceProperties);
GET_INST_PROC(GetPhysicalDeviceQueueFamilyProperties);
GET_INST_PROC(GetPhysicalDeviceFeatures2);
GET_INST_PROC(CreateDevice);
GET_INST_PROC(EnumerateDeviceExtensionProperties);
GET_INST_PROC(CreateAndroidSurfaceKHR);
GET_INST_PROC(DestroySurfaceKHR);
GET_INST_PROC(GetPhysicalDeviceSurfaceSupportKHR);
GET_INST_PROC(GetPhysicalDeviceSurfaceCapabilitiesKHR);
GET_INST_PROC(GetPhysicalDeviceSurfaceFormatsKHR);
GET_INST_PROC(GetPhysicalDeviceSurfacePresentModesKHR);
uint32_t gpuCount;
LOG_ALWAYS_FATAL_IF(mEnumeratePhysicalDevices(mInstance, &gpuCount, nullptr));
LOG_ALWAYS_FATAL_IF(!gpuCount);
// Just returning the first physical device instead of getting the whole array. Since there
// should only be one device on android.
gpuCount = 1;
err = mEnumeratePhysicalDevices(mInstance, &gpuCount, &mPhysicalDevice);
// VK_INCOMPLETE is returned when the count we provide is less than the total device count.
LOG_ALWAYS_FATAL_IF(err && VK_INCOMPLETE != err);
VkPhysicalDeviceProperties physDeviceProperties;
mGetPhysicalDeviceProperties(mPhysicalDevice, &physDeviceProperties);
LOG_ALWAYS_FATAL_IF(physDeviceProperties.apiVersion < VK_MAKE_VERSION(1, 1, 0));
// query to get the initial queue props size
uint32_t queueCount;
mGetPhysicalDeviceQueueFamilyProperties(mPhysicalDevice, &queueCount, nullptr);
LOG_ALWAYS_FATAL_IF(!queueCount);
// now get the actual queue props
std::unique_ptr<VkQueueFamilyProperties[]> queueProps(new VkQueueFamilyProperties[queueCount]);
mGetPhysicalDeviceQueueFamilyProperties(mPhysicalDevice, &queueCount, queueProps.get());
// iterate to find the graphics queue
mGraphicsQueueIndex = queueCount;
for (uint32_t i = 0; i < queueCount; i++) {
if (queueProps[i].queueFlags & VK_QUEUE_GRAPHICS_BIT) {
mGraphicsQueueIndex = i;
break;
}
}
LOG_ALWAYS_FATAL_IF(mGraphicsQueueIndex == queueCount);
// All physical devices and queue families on Android must be capable of
// presentation with any native window. So just use the first one.
mPresentQueueIndex = 0;
{
uint32_t extensionCount = 0;
err = mEnumerateDeviceExtensionProperties(mPhysicalDevice, nullptr, &extensionCount,
nullptr);
LOG_ALWAYS_FATAL_IF(VK_SUCCESS != err);
std::unique_ptr<VkExtensionProperties[]> extensions(
new VkExtensionProperties[extensionCount]);
err = mEnumerateDeviceExtensionProperties(mPhysicalDevice, nullptr, &extensionCount,
extensions.get());
LOG_ALWAYS_FATAL_IF(VK_SUCCESS != err);
bool hasKHRSwapchainExtension = false;
for (uint32_t i = 0; i < extensionCount; ++i) {
mDeviceExtensions.push_back(extensions[i].extensionName);
if (!strcmp(extensions[i].extensionName, VK_KHR_SWAPCHAIN_EXTENSION_NAME)) {
hasKHRSwapchainExtension = true;
}
}
LOG_ALWAYS_FATAL_IF(!hasKHRSwapchainExtension);
}
auto getProc = [] (const char* proc_name, VkInstance instance, VkDevice device) {
if (device != VK_NULL_HANDLE) {
return vkGetDeviceProcAddr(device, proc_name);
}
return vkGetInstanceProcAddr(instance, proc_name);
};
grExtensions.init(getProc, mInstance, mPhysicalDevice, mInstanceExtensions.size(),
mInstanceExtensions.data(), mDeviceExtensions.size(), mDeviceExtensions.data());
LOG_ALWAYS_FATAL_IF(!grExtensions.hasExtension(VK_KHR_EXTERNAL_SEMAPHORE_FD_EXTENSION_NAME, 1));
memset(&features, 0, sizeof(VkPhysicalDeviceFeatures2));
features.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FEATURES_2;
features.pNext = nullptr;
// Setup all extension feature structs we may want to use.
void** tailPNext = &features.pNext;
if (grExtensions.hasExtension(VK_EXT_BLEND_OPERATION_ADVANCED_EXTENSION_NAME, 2)) {
VkPhysicalDeviceBlendOperationAdvancedFeaturesEXT* blend;
blend = (VkPhysicalDeviceBlendOperationAdvancedFeaturesEXT*) malloc(
sizeof(VkPhysicalDeviceBlendOperationAdvancedFeaturesEXT));
LOG_ALWAYS_FATAL_IF(!blend);
blend->sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BLEND_OPERATION_ADVANCED_FEATURES_EXT;
blend->pNext = nullptr;
*tailPNext = blend;
tailPNext = &blend->pNext;
}
VkPhysicalDeviceSamplerYcbcrConversionFeatures* ycbcrFeature;
ycbcrFeature = (VkPhysicalDeviceSamplerYcbcrConversionFeatures*) malloc(
sizeof(VkPhysicalDeviceSamplerYcbcrConversionFeatures));
LOG_ALWAYS_FATAL_IF(!ycbcrFeature);
ycbcrFeature->sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_YCBCR_CONVERSION_FEATURES;
ycbcrFeature->pNext = nullptr;
*tailPNext = ycbcrFeature;
tailPNext = &ycbcrFeature->pNext;
// query to get the physical device features
mGetPhysicalDeviceFeatures2(mPhysicalDevice, &features);
// this looks like it would slow things down,
// and we can't depend on it on all platforms
features.features.robustBufferAccess = VK_FALSE;
float queuePriorities[1] = { 0.0 };
const VkDeviceQueueCreateInfo queueInfo[2] = {
{
VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO, // sType
nullptr, // pNext
0, // VkDeviceQueueCreateFlags
mGraphicsQueueIndex, // queueFamilyIndex
1, // queueCount
queuePriorities, // pQueuePriorities
},
{
VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO, // sType
nullptr, // pNext
0, // VkDeviceQueueCreateFlags
mPresentQueueIndex, // queueFamilyIndex
1, // queueCount
queuePriorities, // pQueuePriorities
}
};
uint32_t queueInfoCount = (mPresentQueueIndex != mGraphicsQueueIndex) ? 2 : 1;
const VkDeviceCreateInfo deviceInfo = {
VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO, // sType
&features, // pNext
0, // VkDeviceCreateFlags
queueInfoCount, // queueCreateInfoCount
queueInfo, // pQueueCreateInfos
0, // layerCount
nullptr, // ppEnabledLayerNames
(uint32_t) mDeviceExtensions.size(), // extensionCount
mDeviceExtensions.data(), // ppEnabledExtensionNames
nullptr, // ppEnabledFeatures
};
LOG_ALWAYS_FATAL_IF(mCreateDevice(mPhysicalDevice, &deviceInfo, nullptr, &mDevice));
GET_DEV_PROC(GetDeviceQueue);
GET_DEV_PROC(DeviceWaitIdle);
GET_DEV_PROC(DestroyDevice);
GET_DEV_PROC(CreateSwapchainKHR);
GET_DEV_PROC(DestroySwapchainKHR);
GET_DEV_PROC(GetSwapchainImagesKHR);
GET_DEV_PROC(AcquireNextImageKHR);
GET_DEV_PROC(QueuePresentKHR);
GET_DEV_PROC(CreateCommandPool);
GET_DEV_PROC(DestroyCommandPool);
GET_DEV_PROC(AllocateCommandBuffers);
GET_DEV_PROC(FreeCommandBuffers);
GET_DEV_PROC(ResetCommandBuffer);
GET_DEV_PROC(BeginCommandBuffer);
GET_DEV_PROC(EndCommandBuffer);
GET_DEV_PROC(CmdPipelineBarrier);
GET_DEV_PROC(GetDeviceQueue);
GET_DEV_PROC(QueueSubmit);
GET_DEV_PROC(QueueWaitIdle);
GET_DEV_PROC(DeviceWaitIdle);
GET_DEV_PROC(CreateSemaphore);
GET_DEV_PROC(DestroySemaphore);
GET_DEV_PROC(ImportSemaphoreFdKHR);
GET_DEV_PROC(GetSemaphoreFdKHR);
GET_DEV_PROC(CreateFence);
GET_DEV_PROC(DestroyFence);
GET_DEV_PROC(WaitForFences);
GET_DEV_PROC(ResetFences);
}
void VulkanManager::initialize() {
if (mDevice != VK_NULL_HANDLE) {
return;
}
GET_PROC(EnumerateInstanceVersion);
uint32_t instanceVersion;
LOG_ALWAYS_FATAL_IF(mEnumerateInstanceVersion(&instanceVersion));
LOG_ALWAYS_FATAL_IF(instanceVersion < VK_MAKE_VERSION(1, 1, 0));
GrVkExtensions extensions;
this->setupDevice(extensions, mPhysicalDeviceFeatures2);
mGetDeviceQueue(mDevice, mGraphicsQueueIndex, 0, &mGraphicsQueue);
auto getProc = [] (const char* proc_name, VkInstance instance, VkDevice device) {
if (device != VK_NULL_HANDLE) {
return vkGetDeviceProcAddr(device, proc_name);
}
return vkGetInstanceProcAddr(instance, proc_name);
};
GrVkBackendContext backendContext;
backendContext.fInstance = mInstance;
backendContext.fPhysicalDevice = mPhysicalDevice;
backendContext.fDevice = mDevice;
backendContext.fQueue = mGraphicsQueue;
backendContext.fGraphicsQueueIndex = mGraphicsQueueIndex;
backendContext.fMaxAPIVersion = mAPIVersion;
backendContext.fVkExtensions = &extensions;
backendContext.fDeviceFeatures2 = &mPhysicalDeviceFeatures2;
backendContext.fGetProc = std::move(getProc);
// create the command pool for the command buffers
if (VK_NULL_HANDLE == mCommandPool) {
VkCommandPoolCreateInfo commandPoolInfo;
memset(&commandPoolInfo, 0, sizeof(VkCommandPoolCreateInfo));
commandPoolInfo.sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO;
// this needs to be on the render queue
commandPoolInfo.queueFamilyIndex = mGraphicsQueueIndex;
commandPoolInfo.flags = VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT;
SkDEBUGCODE(VkResult res =) mCreateCommandPool(mDevice, &commandPoolInfo, nullptr,
&mCommandPool);
SkASSERT(VK_SUCCESS == res);
}
LOG_ALWAYS_FATAL_IF(mCommandPool == VK_NULL_HANDLE);
if (!setupDummyCommandBuffer()) {
this->destroy();
// Pass through will crash on next line.
}
LOG_ALWAYS_FATAL_IF(mDummyCB == VK_NULL_HANDLE);
mGetDeviceQueue(mDevice, mPresentQueueIndex, 0, &mPresentQueue);
GrContextOptions options;
options.fDisableDistanceFieldPaths = true;
// TODO: get a string describing the SPIR-V compiler version and use it here
mRenderThread.cacheManager().configureContext(&options, nullptr, 0);
sk_sp<GrContext> grContext(GrContext::MakeVulkan(backendContext, options));
LOG_ALWAYS_FATAL_IF(!grContext.get());
mRenderThread.setGrContext(grContext);
if (Properties::enablePartialUpdates && Properties::useBufferAge) {
mSwapBehavior = SwapBehavior::BufferAge;
}
}
VkFunctorInitParams VulkanManager::getVkFunctorInitParams() const {
return VkFunctorInitParams{
.instance = mInstance,
.physical_device = mPhysicalDevice,
.device = mDevice,
.queue = mGraphicsQueue,
.graphics_queue_index = mGraphicsQueueIndex,
.api_version = mAPIVersion,
.enabled_instance_extension_names = mInstanceExtensions.data(),
.enabled_instance_extension_names_length =
static_cast<uint32_t>(mInstanceExtensions.size()),
.enabled_device_extension_names = mDeviceExtensions.data(),
.enabled_device_extension_names_length =
static_cast<uint32_t>(mDeviceExtensions.size()),
.device_features_2 = &mPhysicalDeviceFeatures2,
};
}
// Returns the next BackbufferInfo to use for the next draw. The function will make sure all
// previous uses have finished before returning.
VulkanSurface::BackbufferInfo* VulkanManager::getAvailableBackbuffer(VulkanSurface* surface) {
SkASSERT(surface->mBackbuffers);
++surface->mCurrentBackbufferIndex;
if (surface->mCurrentBackbufferIndex > surface->mImageCount) {
surface->mCurrentBackbufferIndex = 0;
}
VulkanSurface::BackbufferInfo* backbuffer =
surface->mBackbuffers + surface->mCurrentBackbufferIndex;
// Before we reuse a backbuffer, make sure its fences have all signaled so that we can safely
// reuse its commands buffers.
VkResult res = mWaitForFences(mDevice, 2, backbuffer->mUsageFences, true, UINT64_MAX);
if (res != VK_SUCCESS) {
return nullptr;
}
return backbuffer;
}
static SkMatrix getPreTransformMatrix(int width, int height,
VkSurfaceTransformFlagBitsKHR transform) {
switch (transform) {
case VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR:
return SkMatrix::I();
case VK_SURFACE_TRANSFORM_ROTATE_90_BIT_KHR:
return SkMatrix::MakeAll(0, -1, height, 1, 0, 0, 0, 0, 1);
case VK_SURFACE_TRANSFORM_ROTATE_180_BIT_KHR:
return SkMatrix::MakeAll(-1, 0, width, 0, -1, height, 0, 0, 1);
case VK_SURFACE_TRANSFORM_ROTATE_270_BIT_KHR:
return SkMatrix::MakeAll(0, 1, 0, -1, 0, width, 0, 0, 1);
case VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_BIT_KHR:
return SkMatrix::MakeAll(-1, 0, width, 0, 1, 0, 0, 0, 1);
case VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_ROTATE_90_BIT_KHR:
return SkMatrix::MakeAll(0, -1, height, -1, 0, width, 0, 0, 1);
case VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_ROTATE_180_BIT_KHR:
return SkMatrix::MakeAll(1, 0, 0, 0, -1, height, 0, 0, 1);
case VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_ROTATE_270_BIT_KHR:
return SkMatrix::MakeAll(0, 1, 0, 1, 0, 0, 0, 0, 1);
default:
LOG_ALWAYS_FATAL("Unsupported pre transform of swapchain.");
}
return SkMatrix::I();
}
SkSurface* VulkanManager::getBackbufferSurface(VulkanSurface** surfaceOut) {
// Recreate VulkanSurface, if ANativeWindow has been resized.
VulkanSurface* surface = *surfaceOut;
int windowWidth = 0, windowHeight = 0;
ANativeWindow* window = surface->mNativeWindow;
window->query(window, NATIVE_WINDOW_WIDTH, &windowWidth);
window->query(window, NATIVE_WINDOW_HEIGHT, &windowHeight);
if (windowWidth != surface->mWindowWidth || windowHeight != surface->mWindowHeight) {
ColorMode colorMode = surface->mColorMode;
sk_sp<SkColorSpace> colorSpace = surface->mColorSpace;
SkColorType colorType = surface->mColorType;
destroySurface(surface);
*surfaceOut = createSurface(window, colorMode, colorSpace, colorType);
surface = *surfaceOut;
if (!surface) {
return nullptr;
}
}
VulkanSurface::BackbufferInfo* backbuffer = getAvailableBackbuffer(surface);
SkASSERT(backbuffer);
VkResult res;
res = mResetFences(mDevice, 2, backbuffer->mUsageFences);
SkASSERT(VK_SUCCESS == res);
// The acquire will signal the attached mAcquireSemaphore. We use this to know the image has
// finished presenting and that it is safe to begin sending new commands to the returned image.
res = mAcquireNextImageKHR(mDevice, surface->mSwapchain, UINT64_MAX,
backbuffer->mAcquireSemaphore, VK_NULL_HANDLE,
&backbuffer->mImageIndex);
if (VK_ERROR_SURFACE_LOST_KHR == res) {
// need to figure out how to create a new vkSurface without the platformData*
// maybe use attach somehow? but need a Window
return nullptr;
}
if (VK_ERROR_OUT_OF_DATE_KHR == res || VK_SUBOPTIMAL_KHR == res) {
// tear swapchain down and try again
if (!createSwapchain(surface)) {
return nullptr;
}
backbuffer = getAvailableBackbuffer(surface);
res = mResetFences(mDevice, 2, backbuffer->mUsageFences);
SkASSERT(VK_SUCCESS == res);
// acquire the image
res = mAcquireNextImageKHR(mDevice, surface->mSwapchain, UINT64_MAX,
backbuffer->mAcquireSemaphore, VK_NULL_HANDLE,
&backbuffer->mImageIndex);
if (VK_SUCCESS != res) {
return nullptr;
}
}
// set up layout transfer from initial to color attachment
VkImageLayout layout = surface->mImageInfos[backbuffer->mImageIndex].mImageLayout;
SkASSERT(VK_IMAGE_LAYOUT_UNDEFINED == layout || VK_IMAGE_LAYOUT_PRESENT_SRC_KHR == layout);
VkPipelineStageFlags srcStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
VkPipelineStageFlags dstStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
VkAccessFlags srcAccessMask = 0;
VkAccessFlags dstAccessMask = VK_ACCESS_COLOR_ATTACHMENT_READ_BIT |
VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
VkImageMemoryBarrier imageMemoryBarrier = {
VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER, // sType
NULL, // pNext
srcAccessMask, // outputMask
dstAccessMask, // inputMask
layout, // oldLayout
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL, // newLayout
mPresentQueueIndex, // srcQueueFamilyIndex
mGraphicsQueueIndex, // dstQueueFamilyIndex
surface->mImages[backbuffer->mImageIndex], // image
{VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1} // subresourceRange
};
mResetCommandBuffer(backbuffer->mTransitionCmdBuffers[0], 0);
VkCommandBufferBeginInfo info;
memset(&info, 0, sizeof(VkCommandBufferBeginInfo));
info.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO;
info.flags = 0;
mBeginCommandBuffer(backbuffer->mTransitionCmdBuffers[0], &info);
mCmdPipelineBarrier(backbuffer->mTransitionCmdBuffers[0], srcStageMask, dstStageMask, 0, 0,
nullptr, 0, nullptr, 1, &imageMemoryBarrier);
mEndCommandBuffer(backbuffer->mTransitionCmdBuffers[0]);
VkPipelineStageFlags waitDstStageFlags = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
// insert the layout transfer into the queue and wait on the acquire
VkSubmitInfo submitInfo;
memset(&submitInfo, 0, sizeof(VkSubmitInfo));
submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
submitInfo.waitSemaphoreCount = 1;
// Wait to make sure aquire semaphore set above has signaled.
submitInfo.pWaitSemaphores = &backbuffer->mAcquireSemaphore;
submitInfo.pWaitDstStageMask = &waitDstStageFlags;
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &backbuffer->mTransitionCmdBuffers[0];
submitInfo.signalSemaphoreCount = 0;
// Attach first fence to submission here so we can track when the command buffer finishes.
mQueueSubmit(mGraphicsQueue, 1, &submitInfo, backbuffer->mUsageFences[0]);
// We need to notify Skia that we changed the layout of the wrapped VkImage
sk_sp<SkSurface> skSurface = surface->mImageInfos[backbuffer->mImageIndex].mSurface;
GrBackendRenderTarget backendRT = skSurface->getBackendRenderTarget(
SkSurface::kFlushRead_BackendHandleAccess);
if (!backendRT.isValid()) {
SkASSERT(backendRT.isValid());
return nullptr;
}
backendRT.setVkImageLayout(VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL);
surface->mPreTransform = getPreTransformMatrix(surface->windowWidth(),
surface->windowHeight(),
surface->mTransform);
surface->mBackbuffer = std::move(skSurface);
return surface->mBackbuffer.get();
}
void VulkanManager::destroyBuffers(VulkanSurface* surface) {
if (surface->mBackbuffers) {
for (uint32_t i = 0; i < surface->mImageCount + 1; ++i) {
mWaitForFences(mDevice, 2, surface->mBackbuffers[i].mUsageFences, true, UINT64_MAX);
surface->mBackbuffers[i].mImageIndex = -1;
mDestroySemaphore(mDevice, surface->mBackbuffers[i].mAcquireSemaphore, nullptr);
mDestroySemaphore(mDevice, surface->mBackbuffers[i].mRenderSemaphore, nullptr);
mFreeCommandBuffers(mDevice, mCommandPool, 2,
surface->mBackbuffers[i].mTransitionCmdBuffers);
mDestroyFence(mDevice, surface->mBackbuffers[i].mUsageFences[0], 0);
mDestroyFence(mDevice, surface->mBackbuffers[i].mUsageFences[1], 0);
}
}
delete[] surface->mBackbuffers;
surface->mBackbuffers = nullptr;
delete[] surface->mImageInfos;
surface->mImageInfos = nullptr;
delete[] surface->mImages;
surface->mImages = nullptr;
}
void VulkanManager::destroySurface(VulkanSurface* surface) {
// Make sure all submit commands have finished before starting to destroy objects.
if (VK_NULL_HANDLE != mPresentQueue) {
mQueueWaitIdle(mPresentQueue);
}
mDeviceWaitIdle(mDevice);
destroyBuffers(surface);
if (VK_NULL_HANDLE != surface->mSwapchain) {
mDestroySwapchainKHR(mDevice, surface->mSwapchain, nullptr);
surface->mSwapchain = VK_NULL_HANDLE;
}
if (VK_NULL_HANDLE != surface->mVkSurface) {
mDestroySurfaceKHR(mInstance, surface->mVkSurface, nullptr);
surface->mVkSurface = VK_NULL_HANDLE;
}
delete surface;
}
void VulkanManager::createBuffers(VulkanSurface* surface, VkFormat format, VkExtent2D extent) {
mGetSwapchainImagesKHR(mDevice, surface->mSwapchain, &surface->mImageCount, nullptr);
SkASSERT(surface->mImageCount);
surface->mImages = new VkImage[surface->mImageCount];
mGetSwapchainImagesKHR(mDevice, surface->mSwapchain, &surface->mImageCount, surface->mImages);
SkSurfaceProps props(0, kUnknown_SkPixelGeometry);
// set up initial image layouts and create surfaces
surface->mImageInfos = new VulkanSurface::ImageInfo[surface->mImageCount];
for (uint32_t i = 0; i < surface->mImageCount; ++i) {
GrVkImageInfo info;
info.fImage = surface->mImages[i];
info.fAlloc = GrVkAlloc();
info.fImageLayout = VK_IMAGE_LAYOUT_UNDEFINED;
info.fImageTiling = VK_IMAGE_TILING_OPTIMAL;
info.fFormat = format;
info.fLevelCount = 1;
GrBackendRenderTarget backendRT(extent.width, extent.height, 0, 0, info);
VulkanSurface::ImageInfo& imageInfo = surface->mImageInfos[i];
imageInfo.mSurface = SkSurface::MakeFromBackendRenderTarget(
mRenderThread.getGrContext(), backendRT, kTopLeft_GrSurfaceOrigin,
surface->mColorType, surface->mColorSpace, &props);
}
SkASSERT(mCommandPool != VK_NULL_HANDLE);
// set up the backbuffers
VkSemaphoreCreateInfo semaphoreInfo;
memset(&semaphoreInfo, 0, sizeof(VkSemaphoreCreateInfo));
semaphoreInfo.sType = VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO;
semaphoreInfo.pNext = nullptr;
semaphoreInfo.flags = 0;
VkCommandBufferAllocateInfo commandBuffersInfo;
memset(&commandBuffersInfo, 0, sizeof(VkCommandBufferAllocateInfo));
commandBuffersInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO;
commandBuffersInfo.pNext = nullptr;
commandBuffersInfo.commandPool = mCommandPool;
commandBuffersInfo.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY;
commandBuffersInfo.commandBufferCount = 2;
VkFenceCreateInfo fenceInfo;
memset(&fenceInfo, 0, sizeof(VkFenceCreateInfo));
fenceInfo.sType = VK_STRUCTURE_TYPE_FENCE_CREATE_INFO;
fenceInfo.pNext = nullptr;
fenceInfo.flags = VK_FENCE_CREATE_SIGNALED_BIT;
// we create one additional backbuffer structure here, because we want to
// give the command buffers they contain a chance to finish before we cycle back
surface->mBackbuffers = new VulkanSurface::BackbufferInfo[surface->mImageCount + 1];
for (uint32_t i = 0; i < surface->mImageCount + 1; ++i) {
SkDEBUGCODE(VkResult res);
surface->mBackbuffers[i].mImageIndex = -1;
SkDEBUGCODE(res =) mCreateSemaphore(mDevice, &semaphoreInfo, nullptr,
&surface->mBackbuffers[i].mAcquireSemaphore);
SkDEBUGCODE(res =) mCreateSemaphore(mDevice, &semaphoreInfo, nullptr,
&surface->mBackbuffers[i].mRenderSemaphore);
SkDEBUGCODE(res =) mAllocateCommandBuffers(mDevice, &commandBuffersInfo,
surface->mBackbuffers[i].mTransitionCmdBuffers);
SkDEBUGCODE(res =) mCreateFence(mDevice, &fenceInfo, nullptr,
&surface->mBackbuffers[i].mUsageFences[0]);
SkDEBUGCODE(res =) mCreateFence(mDevice, &fenceInfo, nullptr,
&surface->mBackbuffers[i].mUsageFences[1]);
SkASSERT(VK_SUCCESS == res);
}
surface->mCurrentBackbufferIndex = surface->mImageCount;
}
bool VulkanManager::createSwapchain(VulkanSurface* surface) {
// check for capabilities
VkSurfaceCapabilitiesKHR caps;
VkResult res = mGetPhysicalDeviceSurfaceCapabilitiesKHR(mPhysicalDevice,
surface->mVkSurface, &caps);
if (VK_SUCCESS != res) {
return false;
}
uint32_t surfaceFormatCount;
res = mGetPhysicalDeviceSurfaceFormatsKHR(mPhysicalDevice, surface->mVkSurface,
&surfaceFormatCount, nullptr);
if (VK_SUCCESS != res) {
return false;
}
FatVector<VkSurfaceFormatKHR, 4> surfaceFormats(surfaceFormatCount);
res = mGetPhysicalDeviceSurfaceFormatsKHR(mPhysicalDevice, surface->mVkSurface,
&surfaceFormatCount, surfaceFormats.data());
if (VK_SUCCESS != res) {
return false;
}
uint32_t presentModeCount;
res = mGetPhysicalDeviceSurfacePresentModesKHR(mPhysicalDevice,
surface->mVkSurface, &presentModeCount, nullptr);
if (VK_SUCCESS != res) {
return false;
}
FatVector<VkPresentModeKHR, VK_PRESENT_MODE_RANGE_SIZE_KHR> presentModes(presentModeCount);
res = mGetPhysicalDeviceSurfacePresentModesKHR(mPhysicalDevice,
surface->mVkSurface, &presentModeCount,
presentModes.data());
if (VK_SUCCESS != res) {
return false;
}
if (!SkToBool(caps.supportedTransforms & VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR)) {
return false;
}
VkSurfaceTransformFlagBitsKHR transform;
if (SkToBool(caps.supportedTransforms & caps.currentTransform) &&
!SkToBool(caps.currentTransform & VK_SURFACE_TRANSFORM_INHERIT_BIT_KHR)) {
transform = caps.currentTransform;
} else {
transform = VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR;
}
VkExtent2D extent = caps.currentExtent;
// clamp width; to handle currentExtent of -1 and protect us from broken hints
if (extent.width < caps.minImageExtent.width) {
extent.width = caps.minImageExtent.width;
}
SkASSERT(extent.width <= caps.maxImageExtent.width);
// clamp height
if (extent.height < caps.minImageExtent.height) {
extent.height = caps.minImageExtent.height;
}
SkASSERT(extent.height <= caps.maxImageExtent.height);
VkExtent2D swapExtent = extent;
if (transform == VK_SURFACE_TRANSFORM_ROTATE_90_BIT_KHR ||
transform == VK_SURFACE_TRANSFORM_ROTATE_270_BIT_KHR ||
transform == VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_ROTATE_90_BIT_KHR ||
transform == VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_ROTATE_270_BIT_KHR) {
swapExtent.width = extent.height;
swapExtent.height = extent.width;
}
surface->mWindowWidth = extent.width;
surface->mWindowHeight = extent.height;
uint32_t imageCount = std::max<uint32_t>(3, caps.minImageCount);
if (caps.maxImageCount > 0 && imageCount > caps.maxImageCount) {
// Application must settle for fewer images than desired:
imageCount = caps.maxImageCount;
}
// Currently Skia requires the images to be color attchments and support all transfer
// operations.
VkImageUsageFlags usageFlags = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT |
VK_IMAGE_USAGE_TRANSFER_SRC_BIT |
VK_IMAGE_USAGE_TRANSFER_DST_BIT;
SkASSERT((caps.supportedUsageFlags & usageFlags) == usageFlags);
SkASSERT(caps.supportedCompositeAlpha &
(VK_COMPOSITE_ALPHA_OPAQUE_BIT_KHR | VK_COMPOSITE_ALPHA_INHERIT_BIT_KHR));
VkCompositeAlphaFlagBitsKHR composite_alpha =
(caps.supportedCompositeAlpha & VK_COMPOSITE_ALPHA_INHERIT_BIT_KHR)
? VK_COMPOSITE_ALPHA_INHERIT_BIT_KHR
: VK_COMPOSITE_ALPHA_OPAQUE_BIT_KHR;
VkFormat surfaceFormat = VK_FORMAT_R8G8B8A8_UNORM;
VkColorSpaceKHR colorSpace = VK_COLORSPACE_SRGB_NONLINEAR_KHR;
if (surface->mColorType == SkColorType::kRGBA_F16_SkColorType) {
surfaceFormat = VK_FORMAT_R16G16B16A16_SFLOAT;
}
if (surface->mColorMode == ColorMode::WideColorGamut) {
skcms_Matrix3x3 surfaceGamut;
LOG_ALWAYS_FATAL_IF(!surface->mColorSpace->toXYZD50(&surfaceGamut),
"Could not get gamut matrix from color space");
if (memcmp(&surfaceGamut, &SkNamedGamut::kSRGB, sizeof(surfaceGamut)) == 0) {
colorSpace = VK_COLOR_SPACE_EXTENDED_SRGB_NONLINEAR_EXT;
} else if (memcmp(&surfaceGamut, &SkNamedGamut::kDCIP3, sizeof(surfaceGamut)) == 0) {
colorSpace = VK_COLOR_SPACE_DISPLAY_P3_NONLINEAR_EXT;
} else {
LOG_ALWAYS_FATAL("Unreachable: unsupported wide color space.");
}
}
bool foundSurfaceFormat = false;
for (uint32_t i = 0; i < surfaceFormatCount; ++i) {
if (surfaceFormat == surfaceFormats[i].format
&& colorSpace == surfaceFormats[i].colorSpace) {
foundSurfaceFormat = true;
break;
}
}
if (!foundSurfaceFormat) {
return false;
}
// FIFO is always available and will match what we do on GL so just pick that here.
VkPresentModeKHR mode = VK_PRESENT_MODE_FIFO_KHR;
VkSwapchainCreateInfoKHR swapchainCreateInfo;
memset(&swapchainCreateInfo, 0, sizeof(VkSwapchainCreateInfoKHR));
swapchainCreateInfo.sType = VK_STRUCTURE_TYPE_SWAPCHAIN_CREATE_INFO_KHR;
swapchainCreateInfo.surface = surface->mVkSurface;
swapchainCreateInfo.minImageCount = imageCount;
swapchainCreateInfo.imageFormat = surfaceFormat;
swapchainCreateInfo.imageColorSpace = colorSpace;
swapchainCreateInfo.imageExtent = swapExtent;
swapchainCreateInfo.imageArrayLayers = 1;
swapchainCreateInfo.imageUsage = usageFlags;
uint32_t queueFamilies[] = {mGraphicsQueueIndex, mPresentQueueIndex};
if (mGraphicsQueueIndex != mPresentQueueIndex) {
swapchainCreateInfo.imageSharingMode = VK_SHARING_MODE_CONCURRENT;
swapchainCreateInfo.queueFamilyIndexCount = 2;
swapchainCreateInfo.pQueueFamilyIndices = queueFamilies;
} else {
swapchainCreateInfo.imageSharingMode = VK_SHARING_MODE_EXCLUSIVE;
swapchainCreateInfo.queueFamilyIndexCount = 0;
swapchainCreateInfo.pQueueFamilyIndices = nullptr;
}
swapchainCreateInfo.preTransform = transform;
swapchainCreateInfo.compositeAlpha = composite_alpha;
swapchainCreateInfo.presentMode = mode;
swapchainCreateInfo.clipped = true;
swapchainCreateInfo.oldSwapchain = surface->mSwapchain;
res = mCreateSwapchainKHR(mDevice, &swapchainCreateInfo, nullptr, &surface->mSwapchain);
if (VK_SUCCESS != res) {
return false;
}
surface->mTransform = transform;
// destroy the old swapchain
if (swapchainCreateInfo.oldSwapchain != VK_NULL_HANDLE) {
mDeviceWaitIdle(mDevice);
destroyBuffers(surface);
mDestroySwapchainKHR(mDevice, swapchainCreateInfo.oldSwapchain, nullptr);
}
createBuffers(surface, surfaceFormat, swapExtent);
// The window content is not updated (frozen) until a buffer of the window size is received.
// This prevents temporary stretching of the window after it is resized, but before the first
// buffer with new size is enqueued.
native_window_set_scaling_mode(surface->mNativeWindow, NATIVE_WINDOW_SCALING_MODE_FREEZE);
return true;
}
VulkanSurface* VulkanManager::createSurface(ANativeWindow* window, ColorMode colorMode,
sk_sp<SkColorSpace> surfaceColorSpace,
SkColorType surfaceColorType) {
initialize();
if (!window) {
return nullptr;
}
VulkanSurface* surface = new VulkanSurface(colorMode, window, surfaceColorSpace,
surfaceColorType);
VkAndroidSurfaceCreateInfoKHR surfaceCreateInfo;
memset(&surfaceCreateInfo, 0, sizeof(VkAndroidSurfaceCreateInfoKHR));
surfaceCreateInfo.sType = VK_STRUCTURE_TYPE_ANDROID_SURFACE_CREATE_INFO_KHR;
surfaceCreateInfo.pNext = nullptr;
surfaceCreateInfo.flags = 0;
surfaceCreateInfo.window = window;
VkResult res = mCreateAndroidSurfaceKHR(mInstance, &surfaceCreateInfo, nullptr,
&surface->mVkSurface);
if (VK_SUCCESS != res) {
delete surface;
return nullptr;
}
SkDEBUGCODE(VkBool32 supported; res = mGetPhysicalDeviceSurfaceSupportKHR(
mPhysicalDevice, mPresentQueueIndex, surface->mVkSurface, &supported);
// All physical devices and queue families on Android must be capable of
// presentation with any native window.
SkASSERT(VK_SUCCESS == res && supported););
if (!createSwapchain(surface)) {
destroySurface(surface);
return nullptr;
}
return surface;
}
// Helper to know which src stage flags we need to set when transitioning to the present layout
static VkPipelineStageFlags layoutToPipelineSrcStageFlags(const VkImageLayout layout) {
if (VK_IMAGE_LAYOUT_GENERAL == layout) {
return VK_PIPELINE_STAGE_ALL_COMMANDS_BIT;
} else if (VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL == layout ||
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL == layout) {
return VK_PIPELINE_STAGE_TRANSFER_BIT;
} else if (VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL == layout) {
return VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
} else if (VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL == layout ||
VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL == layout) {
return VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT;
} else if (VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL == layout) {
return VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT;
} else if (VK_IMAGE_LAYOUT_PREINITIALIZED == layout) {
return VK_PIPELINE_STAGE_HOST_BIT;
}
SkASSERT(VK_IMAGE_LAYOUT_UNDEFINED == layout);
return VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT;
}
// Helper to know which src access mask we need to set when transitioning to the present layout
static VkAccessFlags layoutToSrcAccessMask(const VkImageLayout layout) {
VkAccessFlags flags = 0;
if (VK_IMAGE_LAYOUT_GENERAL == layout) {
flags = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT |
VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT | VK_ACCESS_TRANSFER_WRITE_BIT |
VK_ACCESS_TRANSFER_READ_BIT | VK_ACCESS_SHADER_READ_BIT | VK_ACCESS_HOST_WRITE_BIT |
VK_ACCESS_HOST_READ_BIT;
} else if (VK_IMAGE_LAYOUT_PREINITIALIZED == layout) {
flags = VK_ACCESS_HOST_WRITE_BIT;
} else if (VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL == layout) {
flags = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
} else if (VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL == layout) {
flags = VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT;
} else if (VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL == layout) {
flags = VK_ACCESS_TRANSFER_WRITE_BIT;
} else if (VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL == layout) {
flags = VK_ACCESS_TRANSFER_READ_BIT;
} else if (VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL == layout) {
flags = VK_ACCESS_SHADER_READ_BIT;
}
return flags;
}
void VulkanManager::swapBuffers(VulkanSurface* surface) {
if (CC_UNLIKELY(Properties::waitForGpuCompletion)) {
ATRACE_NAME("Finishing GPU work");
mDeviceWaitIdle(mDevice);
}
SkASSERT(surface->mBackbuffers);
VulkanSurface::BackbufferInfo* backbuffer =
surface->mBackbuffers + surface->mCurrentBackbufferIndex;
SkSurface* skSurface = surface->mImageInfos[backbuffer->mImageIndex].mSurface.get();
GrBackendRenderTarget backendRT = skSurface->getBackendRenderTarget(
SkSurface::kFlushRead_BackendHandleAccess);
SkASSERT(backendRT.isValid());
GrVkImageInfo imageInfo;
SkAssertResult(backendRT.getVkImageInfo(&imageInfo));
// Check to make sure we never change the actually wrapped image
SkASSERT(imageInfo.fImage == surface->mImages[backbuffer->mImageIndex]);
// We need to transition the image to VK_IMAGE_LAYOUT_PRESENT_SRC_KHR and make sure that all
// previous work is complete for before presenting. So we first add the necessary barrier here.
VkImageLayout layout = imageInfo.fImageLayout;
VkPipelineStageFlags srcStageMask = layoutToPipelineSrcStageFlags(layout);
VkPipelineStageFlags dstStageMask = VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT;
VkAccessFlags srcAccessMask = layoutToSrcAccessMask(layout);
VkAccessFlags dstAccessMask = 0;
VkImageMemoryBarrier imageMemoryBarrier = {
VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER, // sType
NULL, // pNext
srcAccessMask, // outputMask
dstAccessMask, // inputMask
layout, // oldLayout
VK_IMAGE_LAYOUT_PRESENT_SRC_KHR, // newLayout
mGraphicsQueueIndex, // srcQueueFamilyIndex
mPresentQueueIndex, // dstQueueFamilyIndex
surface->mImages[backbuffer->mImageIndex], // image
{VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1} // subresourceRange
};
mResetCommandBuffer(backbuffer->mTransitionCmdBuffers[1], 0);
VkCommandBufferBeginInfo info;
memset(&info, 0, sizeof(VkCommandBufferBeginInfo));
info.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO;
info.flags = 0;
mBeginCommandBuffer(backbuffer->mTransitionCmdBuffers[1], &info);
mCmdPipelineBarrier(backbuffer->mTransitionCmdBuffers[1], srcStageMask, dstStageMask, 0, 0,
nullptr, 0, nullptr, 1, &imageMemoryBarrier);
mEndCommandBuffer(backbuffer->mTransitionCmdBuffers[1]);
surface->mImageInfos[backbuffer->mImageIndex].mImageLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR;
// insert the layout transfer into the queue and wait on the acquire
VkSubmitInfo submitInfo;
memset(&submitInfo, 0, sizeof(VkSubmitInfo));
submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
submitInfo.waitSemaphoreCount = 0;
submitInfo.pWaitDstStageMask = 0;
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &backbuffer->mTransitionCmdBuffers[1];
submitInfo.signalSemaphoreCount = 1;
// When this command buffer finishes we will signal this semaphore so that we know it is now
// safe to present the image to the screen.
submitInfo.pSignalSemaphores = &backbuffer->mRenderSemaphore;
// Attach second fence to submission here so we can track when the command buffer finishes.
mQueueSubmit(mGraphicsQueue, 1, &submitInfo, backbuffer->mUsageFences[1]);
// Submit present operation to present queue. We use a semaphore here to make sure all rendering
// to the image is complete and that the layout has been change to present on the graphics
// queue.
const VkPresentInfoKHR presentInfo = {
VK_STRUCTURE_TYPE_PRESENT_INFO_KHR, // sType
NULL, // pNext
1, // waitSemaphoreCount
&backbuffer->mRenderSemaphore, // pWaitSemaphores
1, // swapchainCount
&surface->mSwapchain, // pSwapchains
&backbuffer->mImageIndex, // pImageIndices
NULL // pResults
};
mQueuePresentKHR(mPresentQueue, &presentInfo);
surface->mBackbuffer.reset();
surface->mImageInfos[backbuffer->mImageIndex].mLastUsed = surface->mCurrentTime;
surface->mImageInfos[backbuffer->mImageIndex].mInvalid = false;
surface->mCurrentTime++;
}
int VulkanManager::getAge(VulkanSurface* surface) {
SkASSERT(surface->mBackbuffers);
VulkanSurface::BackbufferInfo* backbuffer =
surface->mBackbuffers + surface->mCurrentBackbufferIndex;
if (mSwapBehavior == SwapBehavior::Discard ||
surface->mImageInfos[backbuffer->mImageIndex].mInvalid) {
return 0;
}
uint16_t lastUsed = surface->mImageInfos[backbuffer->mImageIndex].mLastUsed;
return surface->mCurrentTime - lastUsed;
}
bool VulkanManager::setupDummyCommandBuffer() {
if (mDummyCB != VK_NULL_HANDLE) {
return true;
}
VkCommandBufferAllocateInfo commandBuffersInfo;
memset(&commandBuffersInfo, 0, sizeof(VkCommandBufferAllocateInfo));
commandBuffersInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO;
commandBuffersInfo.pNext = nullptr;
commandBuffersInfo.commandPool = mCommandPool;
commandBuffersInfo.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY;
commandBuffersInfo.commandBufferCount = 1;
VkResult err = mAllocateCommandBuffers(mDevice, &commandBuffersInfo, &mDummyCB);
if (err != VK_SUCCESS) {
// It is probably unnecessary to set this back to VK_NULL_HANDLE, but we set it anyways to
// make sure the driver didn't set a value and then return a failure.
mDummyCB = VK_NULL_HANDLE;
return false;
}
VkCommandBufferBeginInfo beginInfo;
memset(&beginInfo, 0, sizeof(VkCommandBufferBeginInfo));
beginInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO;
beginInfo.flags = VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT;
mBeginCommandBuffer(mDummyCB, &beginInfo);
mEndCommandBuffer(mDummyCB);
return true;
}
status_t VulkanManager::fenceWait(sp<Fence>& fence) {
if (!hasVkContext()) {
ALOGE("VulkanManager::fenceWait: VkDevice not initialized");
return INVALID_OPERATION;
}
// Block GPU on the fence.
int fenceFd = fence->dup();
if (fenceFd == -1) {
ALOGE("VulkanManager::fenceWait: error dup'ing fence fd: %d", errno);
return -errno;
}
VkSemaphoreCreateInfo semaphoreInfo;
semaphoreInfo.sType = VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO;
semaphoreInfo.pNext = nullptr;
semaphoreInfo.flags = 0;
VkSemaphore semaphore;
VkResult err = mCreateSemaphore(mDevice, &semaphoreInfo, nullptr, &semaphore);
if (VK_SUCCESS != err) {
ALOGE("Failed to create import semaphore, err: %d", err);
return UNKNOWN_ERROR;
}
VkImportSemaphoreFdInfoKHR importInfo;
importInfo.sType = VK_STRUCTURE_TYPE_IMPORT_SEMAPHORE_FD_INFO_KHR;
importInfo.pNext = nullptr;
importInfo.semaphore = semaphore;
importInfo.flags = VK_SEMAPHORE_IMPORT_TEMPORARY_BIT;
importInfo.handleType = VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_SYNC_FD_BIT;
importInfo.fd = fenceFd;
err = mImportSemaphoreFdKHR(mDevice, &importInfo);
if (VK_SUCCESS != err) {
ALOGE("Failed to import semaphore, err: %d", err);
return UNKNOWN_ERROR;
}
LOG_ALWAYS_FATAL_IF(mDummyCB == VK_NULL_HANDLE);
VkPipelineStageFlags waitDstStageFlags = VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT;
VkSubmitInfo submitInfo;
memset(&submitInfo, 0, sizeof(VkSubmitInfo));
submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
submitInfo.waitSemaphoreCount = 1;
// Wait to make sure aquire semaphore set above has signaled.
submitInfo.pWaitSemaphores = &semaphore;
submitInfo.pWaitDstStageMask = &waitDstStageFlags;
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &mDummyCB;
submitInfo.signalSemaphoreCount = 0;
mQueueSubmit(mGraphicsQueue, 1, &submitInfo, VK_NULL_HANDLE);
// On Android when we import a semaphore, it is imported using temporary permanence. That
// means as soon as we queue the semaphore for a wait it reverts to its previous permanent
// state before importing. This means it will now be in an idle state with no pending
// signal or wait operations, so it is safe to immediately delete it.
mDestroySemaphore(mDevice, semaphore, nullptr);
return OK;
}
status_t VulkanManager::createReleaseFence(sp<Fence>& nativeFence) {
if (!hasVkContext()) {
ALOGE("VulkanManager::createReleaseFence: VkDevice not initialized");
return INVALID_OPERATION;
}
VkExportSemaphoreCreateInfo exportInfo;
exportInfo.sType = VK_STRUCTURE_TYPE_EXPORT_SEMAPHORE_CREATE_INFO;
exportInfo.pNext = nullptr;
exportInfo.handleTypes = VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_SYNC_FD_BIT;
VkSemaphoreCreateInfo semaphoreInfo;
semaphoreInfo.sType = VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO;
semaphoreInfo.pNext = &exportInfo;
semaphoreInfo.flags = 0;
VkSemaphore semaphore;
VkResult err = mCreateSemaphore(mDevice, &semaphoreInfo, nullptr, &semaphore);
if (VK_SUCCESS != err) {
ALOGE("VulkanManager::createReleaseFence: Failed to create semaphore");
return INVALID_OPERATION;
}
LOG_ALWAYS_FATAL_IF(mDummyCB == VK_NULL_HANDLE);
VkSubmitInfo submitInfo;
memset(&submitInfo, 0, sizeof(VkSubmitInfo));
submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
submitInfo.waitSemaphoreCount = 0;
submitInfo.pWaitSemaphores = nullptr;
submitInfo.pWaitDstStageMask = nullptr;
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &mDummyCB;
submitInfo.signalSemaphoreCount = 1;
submitInfo.pSignalSemaphores = &semaphore;
mQueueSubmit(mGraphicsQueue, 1, &submitInfo, VK_NULL_HANDLE);
VkSemaphoreGetFdInfoKHR getFdInfo;
getFdInfo.sType = VK_STRUCTURE_TYPE_SEMAPHORE_GET_FD_INFO_KHR;
getFdInfo.pNext = nullptr;
getFdInfo.semaphore = semaphore;
getFdInfo.handleType = VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_SYNC_FD_BIT;
int fenceFd = 0;
err = mGetSemaphoreFdKHR(mDevice, &getFdInfo, &fenceFd);
if (VK_SUCCESS != err) {
ALOGE("VulkanManager::createReleaseFence: Failed to get semaphore Fd");
return INVALID_OPERATION;
}
nativeFence = new Fence(fenceFd);
// Exporting a semaphore with copy transference via vkGetSemahporeFdKHR, has the same effect of
// destroying the semaphore and creating a new one with the same handle, and the payloads
// ownership is move to the Fd we created. Thus the semahpore is in a state that we can delete
// it and we don't need to wait on the command buffer we submitted to finish.
mDestroySemaphore(mDevice, semaphore, nullptr);
return OK;
}
} /* namespace renderthread */
} /* namespace uirenderer */
} /* namespace android */