blob: 326b6ed77fe0a051d503e07e0878680e61a37e52 [file] [log] [blame]
/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "SkiaPipeline.h"
#include <include/android/SkSurfaceAndroid.h>
#include <include/gpu/ganesh/SkSurfaceGanesh.h>
#include <include/encode/SkPngEncoder.h>
#include <SkCanvas.h>
#include <SkColor.h>
#include <SkColorSpace.h>
#include <SkData.h>
#include <SkImage.h>
#include <SkImageAndroid.h>
#include <SkImageInfo.h>
#include <SkMatrix.h>
#include <SkMultiPictureDocument.h>
#include <SkOverdrawCanvas.h>
#include <SkOverdrawColorFilter.h>
#include <SkPicture.h>
#include <SkPictureRecorder.h>
#include <SkRect.h>
#include <SkRefCnt.h>
#include <SkSerialProcs.h>
#include <SkStream.h>
#include <SkString.h>
#include <SkTypeface.h>
#include <android-base/properties.h>
#include <gui/TraceUtils.h>
#include <unistd.h>
#include <sstream>
#include "LightingInfo.h"
#include "VectorDrawable.h"
#include "include/gpu/GpuTypes.h" // from Skia
#include "thread/CommonPool.h"
#include "tools/SkSharingProc.h"
#include "utils/Color.h"
#include "utils/String8.h"
using namespace android::uirenderer::renderthread;
namespace android {
namespace uirenderer {
namespace skiapipeline {
SkiaPipeline::SkiaPipeline(RenderThread& thread) : mRenderThread(thread) {
setSurfaceColorProperties(mColorMode);
}
SkiaPipeline::~SkiaPipeline() {
unpinImages();
}
void SkiaPipeline::onDestroyHardwareResources() {
unpinImages();
mRenderThread.cacheManager().trimStaleResources();
}
bool SkiaPipeline::pinImages(std::vector<SkImage*>& mutableImages) {
if (!mRenderThread.getGrContext()) {
ALOGD("Trying to pin an image with an invalid GrContext");
return false;
}
for (SkImage* image : mutableImages) {
if (skgpu::ganesh::PinAsTexture(mRenderThread.getGrContext(), image)) {
mPinnedImages.emplace_back(sk_ref_sp(image));
} else {
return false;
}
}
return true;
}
void SkiaPipeline::unpinImages() {
for (auto& image : mPinnedImages) {
skgpu::ganesh::UnpinTexture(mRenderThread.getGrContext(), image.get());
}
mPinnedImages.clear();
}
void SkiaPipeline::renderLayers(const LightGeometry& lightGeometry,
LayerUpdateQueue* layerUpdateQueue, bool opaque,
const LightInfo& lightInfo) {
LightingInfo::updateLighting(lightGeometry, lightInfo);
ATRACE_NAME("draw layers");
renderLayersImpl(*layerUpdateQueue, opaque);
layerUpdateQueue->clear();
}
void SkiaPipeline::renderLayersImpl(const LayerUpdateQueue& layers, bool opaque) {
sk_sp<GrDirectContext> cachedContext;
// Render all layers that need to be updated, in order.
for (size_t i = 0; i < layers.entries().size(); i++) {
RenderNode* layerNode = layers.entries()[i].renderNode.get();
// only schedule repaint if node still on layer - possible it may have been
// removed during a dropped frame, but layers may still remain scheduled so
// as not to lose info on what portion is damaged
if (CC_UNLIKELY(layerNode->getLayerSurface() == nullptr)) {
continue;
}
SkASSERT(layerNode->getLayerSurface());
SkiaDisplayList* displayList = layerNode->getDisplayList().asSkiaDl();
if (!displayList || displayList->isEmpty()) {
ALOGE("%p drawLayers(%s) : missing drawable", layerNode, layerNode->getName());
return;
}
const Rect& layerDamage = layers.entries()[i].damage;
SkCanvas* layerCanvas = layerNode->getLayerSurface()->getCanvas();
int saveCount = layerCanvas->save();
SkASSERT(saveCount == 1);
layerCanvas->androidFramework_setDeviceClipRestriction(layerDamage.toSkIRect());
// TODO: put localized light center calculation and storage to a drawable related code.
// It does not seem right to store something localized in a global state
// fix here and in recordLayers
const Vector3 savedLightCenter(LightingInfo::getLightCenterRaw());
Vector3 transformedLightCenter(savedLightCenter);
// map current light center into RenderNode's coordinate space
layerNode->getSkiaLayer()->inverseTransformInWindow.mapPoint3d(transformedLightCenter);
LightingInfo::setLightCenterRaw(transformedLightCenter);
const RenderProperties& properties = layerNode->properties();
const SkRect bounds = SkRect::MakeWH(properties.getWidth(), properties.getHeight());
if (properties.getClipToBounds() && layerCanvas->quickReject(bounds)) {
return;
}
ATRACE_FORMAT("drawLayer [%s] %.1f x %.1f", layerNode->getName(), bounds.width(),
bounds.height());
layerNode->getSkiaLayer()->hasRenderedSinceRepaint = false;
layerCanvas->clear(SK_ColorTRANSPARENT);
RenderNodeDrawable root(layerNode, layerCanvas, false);
root.forceDraw(layerCanvas);
layerCanvas->restoreToCount(saveCount);
LightingInfo::setLightCenterRaw(savedLightCenter);
// cache the current context so that we can defer flushing it until
// either all the layers have been rendered or the context changes
GrDirectContext* currentContext =
GrAsDirectContext(layerNode->getLayerSurface()->getCanvas()->recordingContext());
if (cachedContext.get() != currentContext) {
if (cachedContext.get()) {
ATRACE_NAME("flush layers (context changed)");
cachedContext->flushAndSubmit();
}
cachedContext.reset(SkSafeRef(currentContext));
}
}
if (cachedContext.get()) {
ATRACE_NAME("flush layers");
cachedContext->flushAndSubmit();
}
}
bool SkiaPipeline::createOrUpdateLayer(RenderNode* node, const DamageAccumulator& damageAccumulator,
ErrorHandler* errorHandler) {
// compute the size of the surface (i.e. texture) to be allocated for this layer
const int surfaceWidth = ceilf(node->getWidth() / float(LAYER_SIZE)) * LAYER_SIZE;
const int surfaceHeight = ceilf(node->getHeight() / float(LAYER_SIZE)) * LAYER_SIZE;
SkSurface* layer = node->getLayerSurface();
if (!layer || layer->width() != surfaceWidth || layer->height() != surfaceHeight) {
SkImageInfo info;
info = SkImageInfo::Make(surfaceWidth, surfaceHeight, getSurfaceColorType(),
kPremul_SkAlphaType, getSurfaceColorSpace());
SkSurfaceProps props(0, kUnknown_SkPixelGeometry);
SkASSERT(mRenderThread.getGrContext() != nullptr);
node->setLayerSurface(SkSurfaces::RenderTarget(mRenderThread.getGrContext(),
skgpu::Budgeted::kYes, info, 0,
this->getSurfaceOrigin(), &props));
if (node->getLayerSurface()) {
// update the transform in window of the layer to reset its origin wrt light source
// position
Matrix4 windowTransform;
damageAccumulator.computeCurrentTransform(&windowTransform);
node->getSkiaLayer()->inverseTransformInWindow.loadInverse(windowTransform);
} else {
String8 cachesOutput;
mRenderThread.cacheManager().dumpMemoryUsage(cachesOutput,
&mRenderThread.renderState());
ALOGE("%s", cachesOutput.c_str());
if (errorHandler) {
std::ostringstream err;
err << "Unable to create layer for " << node->getName();
const int maxTextureSize = DeviceInfo::get()->maxTextureSize();
err << ", size " << info.width() << "x" << info.height() << " max size "
<< maxTextureSize << " color type " << (int)info.colorType() << " has context "
<< (int)(mRenderThread.getGrContext() != nullptr);
errorHandler->onError(err.str());
}
}
return true;
}
return false;
}
void SkiaPipeline::prepareToDraw(const RenderThread& thread, Bitmap* bitmap) {
GrDirectContext* context = thread.getGrContext();
if (context && !bitmap->isHardware()) {
ATRACE_FORMAT("Bitmap#prepareToDraw %dx%d", bitmap->width(), bitmap->height());
auto image = bitmap->makeImage();
if (image.get()) {
skgpu::ganesh::PinAsTexture(context, image.get());
skgpu::ganesh::UnpinTexture(context, image.get());
// A submit is necessary as there may not be a frame coming soon, so without a call
// to submit these texture uploads can just sit in the queue building up until
// we run out of RAM
context->flushAndSubmit();
}
}
}
static void savePictureAsync(const sk_sp<SkData>& data, const std::string& filename) {
CommonPool::post([data, filename] {
if (0 == access(filename.c_str(), F_OK)) {
return;
}
SkFILEWStream stream(filename.c_str());
if (stream.isValid()) {
stream.write(data->data(), data->size());
stream.flush();
ALOGD("SKP Captured Drawing Output (%zu bytes) for frame. %s", stream.bytesWritten(),
filename.c_str());
}
});
}
// Note multiple SkiaPipeline instances may be loaded if more than one app is visible.
// Each instance may observe the filename changing and try to record to a file of the same name.
// Only the first one will succeed. There is no scope available here where we could coordinate
// to cause this function to return true for only one of the instances.
bool SkiaPipeline::shouldStartNewFileCapture() {
// Don't start a new file based capture if one is currently ongoing.
if (mCaptureMode != CaptureMode::None) { return false; }
// A new capture is started when the filename property changes.
// Read the filename property.
std::string prop = base::GetProperty(PROPERTY_CAPTURE_SKP_FILENAME, "0");
// if the filename property changed to a valid value
if (prop[0] != '0' && mCapturedFile != prop) {
// remember this new filename
mCapturedFile = prop;
// and get a property indicating how many frames to capture.
mCaptureSequence = base::GetIntProperty(PROPERTY_CAPTURE_SKP_FRAMES, 1);
if (mCaptureSequence <= 0) {
return false;
} else if (mCaptureSequence == 1) {
mCaptureMode = CaptureMode::SingleFrameSKP;
} else {
mCaptureMode = CaptureMode::MultiFrameSKP;
}
return true;
}
return false;
}
// performs the first-frame work of a multi frame SKP capture. Returns true if successful.
bool SkiaPipeline::setupMultiFrameCapture() {
ALOGD("Set up multi-frame capture, frames = %d", mCaptureSequence);
// We own this stream and need to hold it until close() finishes.
auto stream = std::make_unique<SkFILEWStream>(mCapturedFile.c_str());
if (stream->isValid()) {
mOpenMultiPicStream = std::move(stream);
mSerialContext.reset(new SkSharingSerialContext());
SkSerialProcs procs;
procs.fImageProc = SkSharingSerialContext::serializeImage;
procs.fImageCtx = mSerialContext.get();
procs.fTypefaceProc = [](SkTypeface* tf, void* ctx){
return tf->serialize(SkTypeface::SerializeBehavior::kDoIncludeData);
};
// SkDocuments don't take owership of the streams they write.
// we need to keep it until after mMultiPic.close()
// procs is passed as a pointer, but just as a method of having an optional default.
// procs doesn't need to outlive this Make call.
mMultiPic = SkMakeMultiPictureDocument(mOpenMultiPicStream.get(), &procs,
[sharingCtx = mSerialContext.get()](const SkPicture* pic) {
SkSharingSerialContext::collectNonTextureImagesFromPicture(pic, sharingCtx);
});
return true;
} else {
ALOGE("Could not open \"%s\" for writing.", mCapturedFile.c_str());
mCaptureSequence = 0;
mCaptureMode = CaptureMode::None;
return false;
}
}
// recurse through the rendernode's children, add any nodes which are layers to the queue.
static void collectLayers(RenderNode* node, LayerUpdateQueue* layers) {
SkiaDisplayList* dl = node->getDisplayList().asSkiaDl();
if (dl) {
const auto& prop = node->properties();
if (node->hasLayer()) {
layers->enqueueLayerWithDamage(node, Rect(prop.getWidth(), prop.getHeight()));
}
// The way to recurse through rendernodes is to call this with a lambda.
dl->updateChildren([&](RenderNode* child) { collectLayers(child, layers); });
}
}
// record the provided layers to the provided canvas as self-contained skpictures.
static void recordLayers(const LayerUpdateQueue& layers,
SkCanvas* mskpCanvas) {
const Vector3 savedLightCenter(LightingInfo::getLightCenterRaw());
// Record the commands to re-draw each dirty layer into an SkPicture
for (size_t i = 0; i < layers.entries().size(); i++) {
RenderNode* layerNode = layers.entries()[i].renderNode.get();
const Rect& layerDamage = layers.entries()[i].damage;
const RenderProperties& properties = layerNode->properties();
// Temporarily map current light center into RenderNode's coordinate space
Vector3 transformedLightCenter(savedLightCenter);
layerNode->getSkiaLayer()->inverseTransformInWindow.mapPoint3d(transformedLightCenter);
LightingInfo::setLightCenterRaw(transformedLightCenter);
SkPictureRecorder layerRec;
auto* recCanvas = layerRec.beginRecording(properties.getWidth(),
properties.getHeight());
// This is not recorded but still causes clipping.
recCanvas->androidFramework_setDeviceClipRestriction(layerDamage.toSkIRect());
RenderNodeDrawable root(layerNode, recCanvas, false);
root.forceDraw(recCanvas);
// Now write this picture into the SKP canvas with an annotation indicating what it is
mskpCanvas->drawAnnotation(layerDamage.toSkRect(), String8::format(
"OffscreenLayerDraw|%" PRId64, layerNode->uniqueId()).c_str(), nullptr);
mskpCanvas->drawPicture(layerRec.finishRecordingAsPicture());
}
LightingInfo::setLightCenterRaw(savedLightCenter);
}
SkCanvas* SkiaPipeline::tryCapture(SkSurface* surface, RenderNode* root,
const LayerUpdateQueue& dirtyLayers) {
if (CC_LIKELY(!Properties::skpCaptureEnabled)) {
return surface->getCanvas(); // Bail out early when capture is not turned on.
}
// Note that shouldStartNewFileCapture tells us if this is the *first* frame of a capture.
bool firstFrameOfAnim = false;
if (shouldStartNewFileCapture() && mCaptureMode == CaptureMode::MultiFrameSKP) {
// set a reminder to record every layer near the end of this method, after we have set up
// the nway canvas.
firstFrameOfAnim = true;
if (!setupMultiFrameCapture()) {
return surface->getCanvas();
}
}
// Create a canvas pointer, fill it depending on what kind of capture is requested (if any)
SkCanvas* pictureCanvas = nullptr;
switch (mCaptureMode) {
case CaptureMode::CallbackAPI:
case CaptureMode::SingleFrameSKP:
mRecorder.reset(new SkPictureRecorder());
pictureCanvas = mRecorder->beginRecording(surface->width(), surface->height());
break;
case CaptureMode::MultiFrameSKP:
// If a multi frame recording is active, initialize recording for a single frame of a
// multi frame file.
pictureCanvas = mMultiPic->beginPage(surface->width(), surface->height());
break;
case CaptureMode::None:
// Returning here in the non-capture case means we can count on pictureCanvas being
// non-null below.
return surface->getCanvas();
}
// Setting up an nway canvas is common to any kind of capture.
mNwayCanvas = std::make_unique<SkNWayCanvas>(surface->width(), surface->height());
mNwayCanvas->addCanvas(surface->getCanvas());
mNwayCanvas->addCanvas(pictureCanvas);
if (firstFrameOfAnim) {
// On the first frame of any mskp capture we want to record any layers that are needed in
// frame but may have been rendered offscreen before recording began.
// We do not maintain a list of all layers, since it isn't needed outside this rare,
// recording use case. Traverse the tree to find them and put them in this LayerUpdateQueue.
LayerUpdateQueue luq;
collectLayers(root, &luq);
recordLayers(luq, mNwayCanvas.get());
} else {
// on non-first frames, we record any normal layer draws (dirty regions)
recordLayers(dirtyLayers, mNwayCanvas.get());
}
return mNwayCanvas.get();
}
void SkiaPipeline::endCapture(SkSurface* surface) {
if (CC_LIKELY(mCaptureMode == CaptureMode::None)) { return; }
mNwayCanvas.reset();
ATRACE_CALL();
if (mCaptureSequence > 0 && mCaptureMode == CaptureMode::MultiFrameSKP) {
mMultiPic->endPage();
mCaptureSequence--;
if (mCaptureSequence == 0) {
mCaptureMode = CaptureMode::None;
// Pass mMultiPic and mOpenMultiPicStream to a background thread, which will handle
// the heavyweight serialization work and destroy them. mOpenMultiPicStream is released
// to a bare pointer because keeping it in a smart pointer makes the lambda
// non-copyable. The lambda is only called once, so this is safe.
SkFILEWStream* stream = mOpenMultiPicStream.release();
CommonPool::post([doc = std::move(mMultiPic), stream]{
ALOGD("Finalizing multi frame SKP");
doc->close();
delete stream;
ALOGD("Multi frame SKP complete.");
});
}
} else {
sk_sp<SkPicture> picture = mRecorder->finishRecordingAsPicture();
if (picture->approximateOpCount() > 0) {
if (mPictureCapturedCallback) {
std::invoke(mPictureCapturedCallback, std::move(picture));
} else {
// single frame skp to file
SkSerialProcs procs;
procs.fTypefaceProc = [](SkTypeface* tf, void* ctx){
return tf->serialize(SkTypeface::SerializeBehavior::kDoIncludeData);
};
procs.fImageProc = [](SkImage* img, void* ctx) -> sk_sp<SkData> {
GrDirectContext* dCtx = static_cast<GrDirectContext*>(ctx);
return SkPngEncoder::Encode(dCtx,
img,
SkPngEncoder::Options{});
};
procs.fImageCtx = mRenderThread.getGrContext();
auto data = picture->serialize(&procs);
savePictureAsync(data, mCapturedFile);
mCaptureSequence = 0;
mCaptureMode = CaptureMode::None;
}
}
mRecorder.reset();
}
}
void SkiaPipeline::renderFrame(const LayerUpdateQueue& layers, const SkRect& clip,
const std::vector<sp<RenderNode>>& nodes, bool opaque,
const Rect& contentDrawBounds, sk_sp<SkSurface> surface,
const SkMatrix& preTransform) {
bool previousSkpEnabled = Properties::skpCaptureEnabled;
if (mPictureCapturedCallback) {
Properties::skpCaptureEnabled = true;
}
// Initialize the canvas for the current frame, that might be a recording canvas if SKP
// capture is enabled.
SkCanvas* canvas = tryCapture(surface.get(), nodes[0].get(), layers);
// draw all layers up front
renderLayersImpl(layers, opaque);
renderFrameImpl(clip, nodes, opaque, contentDrawBounds, canvas, preTransform);
endCapture(surface.get());
if (CC_UNLIKELY(Properties::debugOverdraw)) {
renderOverdraw(clip, nodes, contentDrawBounds, surface, preTransform);
}
Properties::skpCaptureEnabled = previousSkpEnabled;
}
namespace {
static Rect nodeBounds(RenderNode& node) {
auto& props = node.properties();
return Rect(props.getLeft(), props.getTop(), props.getRight(), props.getBottom());
}
} // namespace
void SkiaPipeline::renderFrameImpl(const SkRect& clip,
const std::vector<sp<RenderNode>>& nodes, bool opaque,
const Rect& contentDrawBounds, SkCanvas* canvas,
const SkMatrix& preTransform) {
SkAutoCanvasRestore saver(canvas, true);
auto clipRestriction = preTransform.mapRect(clip).roundOut();
if (CC_UNLIKELY(isCapturingSkp())) {
canvas->drawAnnotation(SkRect::Make(clipRestriction), "AndroidDeviceClipRestriction",
nullptr);
} else {
// clip drawing to dirty region only when not recording SKP files (which should contain all
// draw ops on every frame)
canvas->androidFramework_setDeviceClipRestriction(clipRestriction);
}
canvas->concat(preTransform);
if (!opaque) {
canvas->clear(SK_ColorTRANSPARENT);
}
if (1 == nodes.size()) {
if (!nodes[0]->nothingToDraw()) {
RenderNodeDrawable root(nodes[0].get(), canvas);
root.draw(canvas);
}
} else if (0 == nodes.size()) {
// nothing to draw
} else {
// It there are multiple render nodes, they are laid out as follows:
// #0 - backdrop (content + caption)
// #1 - content (local bounds are at (0,0), will be translated and clipped to backdrop)
// #2 - additional overlay nodes
// Usually the backdrop cannot be seen since it will be entirely covered by the content.
// While
// resizing however it might become partially visible. The following render loop will crop
// the
// backdrop against the content and draw the remaining part of it. It will then draw the
// content
// cropped to the backdrop (since that indicates a shrinking of the window).
//
// Additional nodes will be drawn on top with no particular clipping semantics.
// Usually the contents bounds should be mContentDrawBounds - however - we will
// move it towards the fixed edge to give it a more stable appearance (for the moment).
// If there is no content bounds we ignore the layering as stated above and start with 2.
// Backdrop bounds in render target space
const Rect backdrop = nodeBounds(*nodes[0]);
// Bounds that content will fill in render target space (note content node bounds may be
// bigger)
Rect content(contentDrawBounds.getWidth(), contentDrawBounds.getHeight());
content.translate(backdrop.left, backdrop.top);
if (!content.contains(backdrop) && !nodes[0]->nothingToDraw()) {
// Content doesn't entirely overlap backdrop, so fill around content (right/bottom)
// Note: in the future, if content doesn't snap to backdrop's left/top, this may need to
// also fill left/top. Currently, both 2up and freeform position content at the top/left
// of
// the backdrop, so this isn't necessary.
RenderNodeDrawable backdropNode(nodes[0].get(), canvas);
if (content.right < backdrop.right) {
// draw backdrop to right side of content
SkAutoCanvasRestore acr(canvas, true);
canvas->clipRect(SkRect::MakeLTRB(content.right, backdrop.top, backdrop.right,
backdrop.bottom));
backdropNode.draw(canvas);
}
if (content.bottom < backdrop.bottom) {
// draw backdrop to bottom of content
// Note: bottom fill uses content left/right, to avoid overdrawing left/right fill
SkAutoCanvasRestore acr(canvas, true);
canvas->clipRect(SkRect::MakeLTRB(content.left, content.bottom, content.right,
backdrop.bottom));
backdropNode.draw(canvas);
}
}
RenderNodeDrawable contentNode(nodes[1].get(), canvas);
if (!backdrop.isEmpty()) {
// content node translation to catch up with backdrop
float dx = backdrop.left - contentDrawBounds.left;
float dy = backdrop.top - contentDrawBounds.top;
SkAutoCanvasRestore acr(canvas, true);
canvas->translate(dx, dy);
const SkRect contentLocalClip =
SkRect::MakeXYWH(contentDrawBounds.left, contentDrawBounds.top,
backdrop.getWidth(), backdrop.getHeight());
canvas->clipRect(contentLocalClip);
contentNode.draw(canvas);
} else {
SkAutoCanvasRestore acr(canvas, true);
contentNode.draw(canvas);
}
// remaining overlay nodes, simply defer
for (size_t index = 2; index < nodes.size(); index++) {
if (!nodes[index]->nothingToDraw()) {
SkAutoCanvasRestore acr(canvas, true);
RenderNodeDrawable overlayNode(nodes[index].get(), canvas);
overlayNode.draw(canvas);
}
}
}
}
void SkiaPipeline::dumpResourceCacheUsage() const {
int resources;
size_t bytes;
mRenderThread.getGrContext()->getResourceCacheUsage(&resources, &bytes);
size_t maxBytes = mRenderThread.getGrContext()->getResourceCacheLimit();
SkString log("Resource Cache Usage:\n");
log.appendf("%8d items\n", resources);
log.appendf("%8zu bytes (%.2f MB) out of %.2f MB maximum\n", bytes,
bytes * (1.0f / (1024.0f * 1024.0f)), maxBytes * (1.0f / (1024.0f * 1024.0f)));
ALOGD("%s", log.c_str());
}
void SkiaPipeline::setHardwareBuffer(AHardwareBuffer* buffer) {
if (mHardwareBuffer) {
AHardwareBuffer_release(mHardwareBuffer);
mHardwareBuffer = nullptr;
}
if (buffer) {
AHardwareBuffer_acquire(buffer);
mHardwareBuffer = buffer;
}
}
sk_sp<SkSurface> SkiaPipeline::getBufferSkSurface(
const renderthread::HardwareBufferRenderParams& bufferParams) {
auto bufferColorSpace = bufferParams.getColorSpace();
if (mBufferSurface == nullptr || mBufferColorSpace == nullptr ||
!SkColorSpace::Equals(mBufferColorSpace.get(), bufferColorSpace.get())) {
mBufferSurface = SkSurfaces::WrapAndroidHardwareBuffer(
mRenderThread.getGrContext(), mHardwareBuffer, kTopLeft_GrSurfaceOrigin,
bufferColorSpace, nullptr, true);
mBufferColorSpace = bufferColorSpace;
}
return mBufferSurface;
}
void SkiaPipeline::setSurfaceColorProperties(ColorMode colorMode) {
mColorMode = colorMode;
switch (colorMode) {
case ColorMode::Default:
mSurfaceColorType = SkColorType::kN32_SkColorType;
mSurfaceColorSpace = SkColorSpace::MakeSRGB();
break;
case ColorMode::WideColorGamut:
mSurfaceColorType = DeviceInfo::get()->getWideColorType();
mSurfaceColorSpace = DeviceInfo::get()->getWideColorSpace();
break;
case ColorMode::Hdr:
if (DeviceInfo::get()->isSupportFp16ForHdr()) {
mSurfaceColorType = SkColorType::kRGBA_F16_SkColorType;
mSurfaceColorSpace = SkColorSpace::MakeSRGB();
} else {
mSurfaceColorType = SkColorType::kN32_SkColorType;
mSurfaceColorSpace = SkColorSpace::MakeRGB(
GetExtendedTransferFunction(mTargetSdrHdrRatio), SkNamedGamut::kDisplayP3);
}
break;
case ColorMode::Hdr10:
mSurfaceColorType = SkColorType::kRGBA_1010102_SkColorType;
mSurfaceColorSpace = SkColorSpace::MakeRGB(
GetExtendedTransferFunction(mTargetSdrHdrRatio), SkNamedGamut::kDisplayP3);
break;
case ColorMode::A8:
mSurfaceColorType = SkColorType::kAlpha_8_SkColorType;
mSurfaceColorSpace = nullptr;
break;
}
}
void SkiaPipeline::setTargetSdrHdrRatio(float ratio) {
if (mColorMode == ColorMode::Hdr || mColorMode == ColorMode::Hdr10) {
mTargetSdrHdrRatio = ratio;
if (mColorMode == ColorMode::Hdr && DeviceInfo::get()->isSupportFp16ForHdr()) {
mSurfaceColorSpace = SkColorSpace::MakeSRGB();
} else {
mSurfaceColorSpace = SkColorSpace::MakeRGB(
GetExtendedTransferFunction(mTargetSdrHdrRatio), SkNamedGamut::kDisplayP3);
}
} else {
mTargetSdrHdrRatio = 1.f;
}
}
// Overdraw debugging
// These colors should be kept in sync with Caches::getOverdrawColor() with a few differences.
// This implementation requires transparent entries for "no overdraw" and "single draws".
static const SkColor kOverdrawColors[2][6] = {
{
0x00000000,
0x00000000,
0x2f0000ff,
0x2f00ff00,
0x3fff0000,
0x7fff0000,
},
{
0x00000000,
0x00000000,
0x2f0000ff,
0x4fffff00,
0x5fff89d7,
0x7fff0000,
},
};
void SkiaPipeline::renderOverdraw(const SkRect& clip,
const std::vector<sp<RenderNode>>& nodes,
const Rect& contentDrawBounds, sk_sp<SkSurface> surface,
const SkMatrix& preTransform) {
// Set up the overdraw canvas.
SkImageInfo offscreenInfo = SkImageInfo::MakeA8(surface->width(), surface->height());
sk_sp<SkSurface> offscreen = surface->makeSurface(offscreenInfo);
LOG_ALWAYS_FATAL_IF(!offscreen, "Failed to create offscreen SkSurface for overdraw viz.");
SkOverdrawCanvas overdrawCanvas(offscreen->getCanvas());
// Fake a redraw to replay the draw commands. This will increment the alpha channel
// each time a pixel would have been drawn.
// Pass true for opaque so we skip the clear - the overdrawCanvas is already zero
// initialized.
renderFrameImpl(clip, nodes, true, contentDrawBounds, &overdrawCanvas, preTransform);
sk_sp<SkImage> counts = offscreen->makeImageSnapshot();
// Draw overdraw colors to the canvas. The color filter will convert counts to colors.
SkPaint paint;
const SkColor* colors = kOverdrawColors[static_cast<int>(Properties::overdrawColorSet)];
paint.setColorFilter(SkOverdrawColorFilter::MakeWithSkColors(colors));
surface->getCanvas()->drawImage(counts.get(), 0.0f, 0.0f, SkSamplingOptions(), &paint);
}
} /* namespace skiapipeline */
} /* namespace uirenderer */
} /* namespace android */