blob: 3536e5a5c96246755ff3e8d06e57f7b83e31a390 [file] [log] [blame]
/*
* Copyright (C) 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include "frameworks/base/cmds/statsd/src/statsd_config.pb.h"
#include "annotations.h"
namespace android {
namespace os {
namespace statsd {
class HashableDimensionKey;
struct Matcher;
struct Field;
struct FieldValue;
const int32_t kAttributionField = 1;
const int32_t kMaxLogDepth = 2;
const int32_t kLastBitMask = 0x80;
const int32_t kClearLastBitDeco = 0x7f;
const int32_t kClearAllPositionMatcherMask = 0xffff00ff;
enum Type { UNKNOWN, INT, LONG, FLOAT, DOUBLE, STRING, STORAGE };
int32_t getEncodedField(int32_t pos[], int32_t depth, bool includeDepth);
int32_t encodeMatcherMask(int32_t mask[], int32_t depth);
// Get the encoded field for a leaf with a [field] number at depth 0;
inline int32_t getSimpleField(size_t field) {
return ((int32_t)field << 8 * 2);
}
/**
* Field is a wrapper class for 2 integers that represents the field of a log element in its Atom
* proto.
* [mTag]: the atom id.
* [mField]: encoded path from the root (atom) to leaf.
*
* For example:
* WakeLockStateChanged {
* repeated AttributionNode = 1;
* int state = 2;
* string tag = 3;
* }
* Read from logd, the items are structured as below:
* [[[1000, "tag"], [2000, "tag2"],], 2,"hello"]
*
* When we read through the list, we will encode each field in a 32bit integer.
* 8bit segments |--------|--------|--------|--------|
* Depth field0 [L]field1 [L]field1
*
* The first 8 bits are the depth of the field. for example, the uid 1000 has depth 2.
* The following 3 8-bit are for the item's position at each level.
* The first bit of each 8bits field is reserved to mark if the item is the last item at that level
* this is to make matching easier later.
*
* The above wakelock event is translated into FieldValue pairs.
* 0x02010101->1000
* 0x02010182->tag
* 0x02018201->2000
* 0x02018282->tag2
* 0x00020000->2
* 0x00030000->"hello"
*
* This encoding is the building block for the later operations.
* Please see the definition for Matcher below to see how the matching is done.
*/
struct Field {
private:
int32_t mTag;
int32_t mField;
public:
Field() {}
Field(int32_t tag, int32_t pos[], int32_t depth) : mTag(tag) {
mField = getEncodedField(pos, depth, true);
}
Field(const Field& from) : mTag(from.getTag()), mField(from.getField()) {
}
Field(int32_t tag, int32_t field) : mTag(tag), mField(field){};
inline void setField(int32_t field) {
mField = field;
}
inline void setTag(int32_t tag) {
mTag = tag;
}
inline void decorateLastPos(int32_t depth) {
int32_t mask = kLastBitMask << 8 * (kMaxLogDepth - depth);
mField |= mask;
}
inline int32_t getTag() const {
return mTag;
}
inline int32_t getDepth() const {
return (mField >> 24);
}
inline int32_t getPath(int32_t depth) const {
if (depth > 2 || depth < 0) return 0;
int32_t field = (mField & 0x00ffffff);
int32_t mask = 0xffffffff;
return (field & (mask << 8 * (kMaxLogDepth - depth)));
}
inline int32_t getPrefix(int32_t depth) const {
if (depth == 0) return 0;
return getPath(depth - 1);
}
inline int32_t getField() const {
return mField;
}
inline int32_t getRawPosAtDepth(int32_t depth) const {
int32_t field = (mField & 0x00ffffff);
int32_t shift = 8 * (kMaxLogDepth - depth);
int32_t mask = 0xff << shift;
return (field & mask) >> shift;
}
inline int32_t getPosAtDepth(int32_t depth) const {
return getRawPosAtDepth(depth) & kClearLastBitDeco;
}
// Check if the first bit of the 8-bit segment for depth is 1
inline bool isLastPos(int32_t depth) const {
int32_t field = (mField & 0x00ffffff);
int32_t mask = kLastBitMask << 8 * (kMaxLogDepth - depth);
return (field & mask) != 0;
}
// if the 8-bit segment is all 0's
inline bool isAnyPosMatcher(int32_t depth) const {
return getDepth() >= depth && getRawPosAtDepth(depth) == 0;
}
// if the 8bit is 0x80 (1000 0000)
inline bool isLastPosMatcher(int32_t depth) const {
return getDepth() >= depth && getRawPosAtDepth(depth) == kLastBitMask;
}
inline bool operator==(const Field& that) const {
return mTag == that.getTag() && mField == that.getField();
};
inline bool operator!=(const Field& that) const {
return mTag != that.getTag() || mField != that.getField();
};
bool operator<(const Field& that) const {
if (mTag != that.getTag()) {
return mTag < that.getTag();
}
if (mField != that.getField()) {
return mField < that.getField();
}
return false;
}
bool matches(const Matcher& that) const;
};
/**
* Matcher represents a leaf matcher in the FieldMatcher in statsd_config.
*
* It contains all information needed to match one or more leaf node.
* All information is encoded in a Field(2 ints) and a bit mask(1 int).
*
* For example, to match the first/any/last uid field in attribution chain in Atom 10,
* we have the following FieldMatcher in statsd_config
* FieldMatcher {
* field:10
* FieldMatcher {
* field:1
* position: any/last/first
* FieldMatcher {
* field:1
* }
* }
* }
*
* We translate the FieldMatcher into a Field, and mask
* First: [Matcher Field] 0x02010101 [Mask]0xff7f7f7f
* Last: [Matcher Field] 0x02018001 [Mask]0xff7f807f
* Any: [Matcher Field] 0x02010001 [Mask]0xff7f007f
* All: [Matcher Field] 0x02010001 [Mask]0xff7f7f7f
*
* [To match a log Field with a Matcher] we apply the bit mask to the log Field and check if
* the result is equal to the Matcher Field. That's a bit wise AND operation + check if 2 ints are
* equal. Nothing can beat the performance of this matching algorithm.
*
* TODO(b/110561213): ADD EXAMPLE HERE.
*/
struct Matcher {
Matcher(const Field& matcher, int32_t mask) : mMatcher(matcher), mMask(mask){};
const Field mMatcher;
const int32_t mMask;
inline const Field& getMatcher() const {
return mMatcher;
}
inline int32_t getMask() const {
return mMask;
}
inline int32_t getRawMaskAtDepth(int32_t depth) const {
int32_t field = (mMask & 0x00ffffff);
int32_t shift = 8 * (kMaxLogDepth - depth);
int32_t mask = 0xff << shift;
return (field & mask) >> shift;
}
bool hasAllPositionMatcher() const {
return mMatcher.getDepth() == 2 && getRawMaskAtDepth(1) == 0x7f;
}
bool hasAnyPositionMatcher(int* prefix) const {
if (mMatcher.getDepth() == 2 && mMatcher.getRawPosAtDepth(1) == 0) {
(*prefix) = mMatcher.getPrefix(1);
return true;
}
return false;
}
inline bool operator!=(const Matcher& that) const {
return mMatcher != that.getMatcher() || mMask != that.getMask();
}
inline bool operator==(const Matcher& that) const {
return mMatcher == that.mMatcher && mMask == that.mMask;
}
};
inline Matcher getSimpleMatcher(int32_t tag, size_t field) {
return Matcher(Field(tag, getSimpleField(field)), 0xff7f0000);
}
inline Matcher getFirstUidMatcher(int32_t atomId) {
int32_t pos[] = {1, 1, 1};
return Matcher(Field(atomId, pos, 2), 0xff7f7f7f);
}
/**
* A wrapper for a union type to contain multiple types of values.
*
*/
struct Value {
Value() : type(UNKNOWN) {}
Value(int32_t v) {
int_value = v;
type = INT;
}
Value(int64_t v) {
long_value = v;
type = LONG;
}
Value(float v) {
float_value = v;
type = FLOAT;
}
Value(double v) {
double_value = v;
type = DOUBLE;
}
Value(const std::string& v) {
str_value = v;
type = STRING;
}
Value(const std::vector<uint8_t>& v) {
storage_value = v;
type = STORAGE;
}
void setInt(int32_t v) {
int_value = v;
type = INT;
}
void setLong(int64_t v) {
long_value = v;
type = LONG;
}
void setFloat(float v) {
float_value = v;
type = FLOAT;
}
void setDouble(double v) {
double_value = v;
type = DOUBLE;
}
union {
int32_t int_value;
int64_t long_value;
float float_value;
double double_value;
};
std::string str_value;
std::vector<uint8_t> storage_value;
Type type;
std::string toString() const;
bool isZero() const;
Type getType() const {
return type;
}
double getDouble() const;
Value(const Value& from);
bool operator==(const Value& that) const;
bool operator!=(const Value& that) const;
bool operator<(const Value& that) const;
bool operator>(const Value& that) const;
bool operator>=(const Value& that) const;
Value operator-(const Value& that) const;
Value& operator+=(const Value& that);
Value& operator=(const Value& that);
};
class Annotations {
public:
Annotations() {}
// This enum stores where particular annotations can be found in the
// bitmask. Note that these pos do not correspond to annotation ids.
enum {
NESTED_POS = 0x0,
PRIMARY_POS = 0x1,
EXCLUSIVE_POS = 0x2
};
inline void setNested(bool nested) { setBitmaskAtPos(NESTED_POS, nested); }
inline void setPrimaryField(bool primary) { setBitmaskAtPos(PRIMARY_POS, primary); }
inline void setExclusiveState(bool exclusive) { setBitmaskAtPos(EXCLUSIVE_POS, exclusive); }
inline void setResetState(int resetState) { mResetState = resetState; }
// Default value = false
inline bool isNested() const { return getValueFromBitmask(NESTED_POS); }
// Default value = false
inline bool isPrimaryField() const { return getValueFromBitmask(PRIMARY_POS); }
// Default value = false
inline bool isExclusiveState() const { return getValueFromBitmask(EXCLUSIVE_POS); }
// If a reset state is not sent in the StatsEvent, returns -1. Note that a
// reset satate is only sent if and only if a reset should be triggered.
inline int getResetState() const { return mResetState; }
private:
inline void setBitmaskAtPos(int pos, bool value) {
mBooleanBitmask &= ~(1 << pos); // clear
mBooleanBitmask |= (value << pos); // set
}
inline bool getValueFromBitmask(int pos) const {
return (mBooleanBitmask >> pos) & 0x1;
}
// This is a bitmask over all annotations stored in boolean form. Because
// there are only 3 booleans, just one byte is required.
uint8_t mBooleanBitmask = 0;
int mResetState = -1;
};
/**
* Represents a log item, or a dimension item (They are essentially the same).
*/
struct FieldValue {
FieldValue() {}
FieldValue(const Field& field, const Value& value) : mField(field), mValue(value) {
}
bool operator==(const FieldValue& that) const {
return mField == that.mField && mValue == that.mValue;
}
bool operator!=(const FieldValue& that) const {
return mField != that.mField || mValue != that.mValue;
}
bool operator<(const FieldValue& that) const {
if (mField != that.mField) {
return mField < that.mField;
}
if (mValue != that.mValue) {
return mValue < that.mValue;
}
return false;
}
Field mField;
Value mValue;
Annotations mAnnotations;
};
bool HasPositionANY(const FieldMatcher& matcher);
bool HasPositionALL(const FieldMatcher& matcher);
bool isAttributionUidField(const FieldValue& value);
/* returns uid if the field is uid field, or -1 if the field is not a uid field */
int getUidIfExists(const FieldValue& value);
void translateFieldMatcher(const FieldMatcher& matcher, std::vector<Matcher>* output);
bool isAttributionUidField(const Field& field, const Value& value);
bool isUidField(const Field& field, const Value& value);
bool equalDimensions(const std::vector<Matcher>& dimension_a,
const std::vector<Matcher>& dimension_b);
// Returns true if dimension_a is a subset of dimension_b.
bool subsetDimensions(const std::vector<Matcher>& dimension_a,
const std::vector<Matcher>& dimension_b);
} // namespace statsd
} // namespace os
} // namespace android