blob: e9ca0dcb10930eaa3e12532ac1e5d368fb268807 [file] [log] [blame]
/*
* Copyright (C) 2017 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "libprotoutil"
#include <android/util/protobuf.h>
#include <android/util/ProtoOutputStream.h>
#include <cutils/log.h>
#include <cstring>
namespace android {
namespace util {
/**
* Position of the field type in a (long long) fieldId.
*/
const uint64_t FIELD_TYPE_SHIFT = 32;
/**
* Mask for the field types stored in a fieldId. Leaves a whole
* byte for future expansion, even though there are currently only 17 types.
*/
const uint64_t FIELD_TYPE_MASK = 0x0ffULL << FIELD_TYPE_SHIFT;
const uint64_t FIELD_TYPE_UNKNOWN = 0;
const uint64_t TYPE_DOUBLE = 1ULL << FIELD_TYPE_SHIFT; // double, exactly eight bytes on the wire.
const uint64_t TYPE_FLOAT = 2ULL << FIELD_TYPE_SHIFT; // float, exactly four bytes on the wire.
const uint64_t TYPE_INT64 = 3ULL << FIELD_TYPE_SHIFT; // int64, varint on the wire. Negative numbers
// take 10 bytes. Use TYPE_SINT64 if negative
// values are likely.
const uint64_t TYPE_UINT64 = 4ULL << FIELD_TYPE_SHIFT; // uint64, varint on the wire.
const uint64_t TYPE_INT32 = 5ULL << FIELD_TYPE_SHIFT; // int32, varint on the wire. Negative numbers
// take 10 bytes. Use TYPE_SINT32 if negative
// values are likely.
const uint64_t TYPE_FIXED64 = 6ULL << FIELD_TYPE_SHIFT; // uint64, exactly eight bytes on the wire.
const uint64_t TYPE_FIXED32 = 7ULL << FIELD_TYPE_SHIFT; // uint32, exactly four bytes on the wire.
const uint64_t TYPE_BOOL = 8ULL << FIELD_TYPE_SHIFT; // bool, varint on the wire.
const uint64_t TYPE_STRING = 9ULL << FIELD_TYPE_SHIFT; // UTF-8 text.
const uint64_t TYPE_GROUP = 10ULL << FIELD_TYPE_SHIFT; // Tag-delimited message. Deprecated.
const uint64_t TYPE_MESSAGE = 11ULL << FIELD_TYPE_SHIFT; // Length-delimited message.
const uint64_t TYPE_BYTES = 12ULL << FIELD_TYPE_SHIFT; // Arbitrary byte array.
const uint64_t TYPE_UINT32 = 13ULL << FIELD_TYPE_SHIFT; // uint32, varint on the wire
const uint64_t TYPE_ENUM = 14ULL << FIELD_TYPE_SHIFT; // Enum, varint on the wire
const uint64_t TYPE_SFIXED32 = 15ULL << FIELD_TYPE_SHIFT; // int32, exactly four bytes on the wire
const uint64_t TYPE_SFIXED64 = 16ULL << FIELD_TYPE_SHIFT; // int64, exactly eight bytes on the wire
const uint64_t TYPE_SINT32 = 17ULL << FIELD_TYPE_SHIFT; // int32, ZigZag-encoded varint on the wire
const uint64_t TYPE_SINT64 = 18ULL << FIELD_TYPE_SHIFT; // int64, ZigZag-encoded varint on the wire
//
// FieldId flags for whether the field is single, repeated or packed.
// TODO: packed is not supported yet.
//
const uint64_t FIELD_COUNT_SHIFT = 40;
const uint64_t FIELD_COUNT_MASK = 0x0fULL << FIELD_COUNT_SHIFT;
const uint64_t FIELD_COUNT_UNKNOWN = 0;
const uint64_t FIELD_COUNT_SINGLE = 1ULL << FIELD_COUNT_SHIFT;
const uint64_t FIELD_COUNT_REPEATED = 2ULL << FIELD_COUNT_SHIFT;
const uint64_t FIELD_COUNT_PACKED = 4ULL << FIELD_COUNT_SHIFT;
ProtoOutputStream::ProtoOutputStream(int fd)
:mBuffer(),
mFd(fd),
mCopyBegin(0),
mCompact(false),
mDepth(0),
mObjectId(0),
mExpectedObjectToken(0LL)
{
}
ProtoOutputStream::~ProtoOutputStream()
{
}
bool
ProtoOutputStream::write(uint64_t fieldId, double val)
{
if (mCompact) return false;
const uint32_t id = (uint32_t)fieldId;
switch (fieldId & FIELD_TYPE_MASK) {
case TYPE_DOUBLE: writeDoubleImpl(id, (double)val); break;
case TYPE_FLOAT: writeFloatImpl(id, (float)val); break;
case TYPE_INT64: writeInt64Impl(id, (long long)val); break;
case TYPE_UINT64: writeUint64Impl(id, (uint64_t)val); break;
case TYPE_INT32: writeInt32Impl(id, (int)val); break;
case TYPE_FIXED64: writeFixed64Impl(id, (uint64_t)val); break;
case TYPE_FIXED32: writeFixed32Impl(id, (uint32_t)val); break;
case TYPE_UINT32: writeUint32Impl(id, (uint32_t)val); break;
case TYPE_SFIXED32: writeSFixed32Impl(id, (int)val); break;
case TYPE_SFIXED64: writeSFixed64Impl(id, (long long)val); break;
case TYPE_SINT32: writeZigzagInt32Impl(id, (int)val); break;
case TYPE_SINT64: writeZigzagInt64Impl(id, (long long)val); break;
default:
ALOGW("Field type %d is not supported when writing double val.",
(int)((fieldId & FIELD_TYPE_MASK) >> FIELD_TYPE_SHIFT));
return false;
}
return true;
}
bool
ProtoOutputStream::write(uint64_t fieldId, float val)
{
if (mCompact) return false;
const uint32_t id = (uint32_t)fieldId;
switch (fieldId & FIELD_TYPE_MASK) {
case TYPE_DOUBLE: writeDoubleImpl(id, (double)val); break;
case TYPE_FLOAT: writeFloatImpl(id, (float)val); break;
case TYPE_INT64: writeInt64Impl(id, (long long)val); break;
case TYPE_UINT64: writeUint64Impl(id, (uint64_t)val); break;
case TYPE_INT32: writeInt32Impl(id, (int)val); break;
case TYPE_FIXED64: writeFixed64Impl(id, (uint64_t)val); break;
case TYPE_FIXED32: writeFixed32Impl(id, (uint32_t)val); break;
case TYPE_UINT32: writeUint32Impl(id, (uint32_t)val); break;
case TYPE_SFIXED32: writeSFixed32Impl(id, (int)val); break;
case TYPE_SFIXED64: writeSFixed64Impl(id, (long long)val); break;
case TYPE_SINT32: writeZigzagInt32Impl(id, (int)val); break;
case TYPE_SINT64: writeZigzagInt64Impl(id, (long long)val); break;
default:
ALOGW("Field type %d is not supported when writing float val.",
(int)((fieldId & FIELD_TYPE_MASK) >> FIELD_TYPE_SHIFT));
return false;
}
return true;
}
bool
ProtoOutputStream::write(uint64_t fieldId, int val)
{
if (mCompact) return false;
const uint32_t id = (uint32_t)fieldId;
switch (fieldId & FIELD_TYPE_MASK) {
case TYPE_DOUBLE: writeDoubleImpl(id, (double)val); break;
case TYPE_FLOAT: writeFloatImpl(id, (float)val); break;
case TYPE_INT64: writeInt64Impl(id, (long long)val); break;
case TYPE_UINT64: writeUint64Impl(id, (uint64_t)val); break;
case TYPE_INT32: writeInt32Impl(id, (int)val); break;
case TYPE_FIXED64: writeFixed64Impl(id, (uint64_t)val); break;
case TYPE_FIXED32: writeFixed32Impl(id, (uint32_t)val); break;
case TYPE_UINT32: writeUint32Impl(id, (uint32_t)val); break;
case TYPE_SFIXED32: writeSFixed32Impl(id, (int)val); break;
case TYPE_SFIXED64: writeSFixed64Impl(id, (long long)val); break;
case TYPE_SINT32: writeZigzagInt32Impl(id, (int)val); break;
case TYPE_SINT64: writeZigzagInt64Impl(id, (long long)val); break;
case TYPE_ENUM: writeEnumImpl(id, (int)val); break;
case TYPE_BOOL: writeBoolImpl(id, val != 0); break;
default:
ALOGW("Field type %d is not supported when writing int val.",
(int)((fieldId & FIELD_TYPE_MASK) >> FIELD_TYPE_SHIFT));
return false;
}
return true;
}
bool
ProtoOutputStream::write(uint64_t fieldId, long long val)
{
if (mCompact) return false;
const uint32_t id = (uint32_t)fieldId;
switch (fieldId & FIELD_TYPE_MASK) {
case TYPE_DOUBLE: writeDoubleImpl(id, (double)val); break;
case TYPE_FLOAT: writeFloatImpl(id, (float)val); break;
case TYPE_INT64: writeInt64Impl(id, (long long)val); break;
case TYPE_UINT64: writeUint64Impl(id, (uint64_t)val); break;
case TYPE_INT32: writeInt32Impl(id, (int)val); break;
case TYPE_FIXED64: writeFixed64Impl(id, (uint64_t)val); break;
case TYPE_FIXED32: writeFixed32Impl(id, (uint32_t)val); break;
case TYPE_UINT32: writeUint32Impl(id, (uint32_t)val); break;
case TYPE_SFIXED32: writeSFixed32Impl(id, (int)val); break;
case TYPE_SFIXED64: writeSFixed64Impl(id, (long long)val); break;
case TYPE_SINT32: writeZigzagInt32Impl(id, (int)val); break;
case TYPE_SINT64: writeZigzagInt64Impl(id, (long long)val); break;
case TYPE_ENUM: writeEnumImpl(id, (int)val); break;
case TYPE_BOOL: writeBoolImpl(id, val != 0); break;
default:
ALOGW("Field type %d is not supported when writing long long val.",
(int)((fieldId & FIELD_TYPE_MASK) >> FIELD_TYPE_SHIFT));
return false;
}
return true;
}
bool
ProtoOutputStream::write(uint64_t fieldId, bool val)
{
if (mCompact) return false;
const uint32_t id = (uint32_t)fieldId;
switch (fieldId & FIELD_TYPE_MASK) {
case TYPE_BOOL:
writeBoolImpl(id, val);
return true;
default:
ALOGW("Field type %d is not supported when writing bool val.",
(int)((fieldId & FIELD_TYPE_MASK) >> FIELD_TYPE_SHIFT));
return false;
}
}
bool
ProtoOutputStream::write(uint64_t fieldId, string val)
{
if (mCompact) return false;
const uint32_t id = (uint32_t)fieldId;
switch (fieldId & FIELD_TYPE_MASK) {
case TYPE_STRING:
writeUtf8StringImpl(id, val.c_str(), val.size());
return true;
default:
ALOGW("Field type %d is not supported when writing string val.",
(int)((fieldId & FIELD_TYPE_MASK) >> FIELD_TYPE_SHIFT));
return false;
}
}
bool
ProtoOutputStream::write(uint64_t fieldId, const char* val)
{
if (mCompact) return false;
const uint32_t id = (uint32_t)fieldId;
int size = 0;
while (val[size] != '\0') size++;
switch (fieldId & FIELD_TYPE_MASK) {
case TYPE_STRING:
writeUtf8StringImpl(id, val, size);
return true;
default:
ALOGW("Field type %d is not supported when writing char[] val.",
(int)((fieldId & FIELD_TYPE_MASK) >> FIELD_TYPE_SHIFT));
return false;
}
}
/**
* Make a token.
* Bits 61-63 - tag size (So we can go backwards later if the object had not data)
* - 3 bits, max value 7, max value needed 5
* Bit 60 - true if the object is repeated
* Bits 59-51 - depth (For error checking)
* - 9 bits, max value 512, when checking, value is masked (if we really
* are more than 512 levels deep)
* Bits 32-50 - objectId (For error checking)
* - 19 bits, max value 524,288. that's a lot of objects. IDs will wrap
* because of the overflow, and only the tokens are compared.
* Bits 0-31 - offset of the first size field in the buffer.
*/
long long
makeToken(int tagSize, bool repeated, int depth, int objectId, int sizePos) {
return ((0x07L & (long long)tagSize) << 61)
| (repeated ? (1LL << 60) : 0)
| (0x01ffL & (long long)depth) << 51
| (0x07ffffL & (long long)objectId) << 32
| (0x0ffffffffL & (long long)sizePos);
}
/**
* Get the encoded tag size from the token.
*/
static int getTagSizeFromToken(long long token) {
return (int)(0x7 & (token >> 61));
}
/**
* Get the nesting depth of startObject calls from the token.
*/
static int getDepthFromToken(long long token) {
return (int)(0x01ff & (token >> 51));
}
/**
* Get the location of the childRawSize (the first 32 bit size field) in this object.
*/
static int getSizePosFromToken(long long token) {
return (int)token;
}
long long
ProtoOutputStream::start(uint64_t fieldId)
{
if ((fieldId & FIELD_TYPE_MASK) != TYPE_MESSAGE) {
ALOGE("Can't call start for non-message type field: 0x%llx", (long long)fieldId);
return 0;
}
uint32_t id = (uint32_t)fieldId;
mBuffer.writeHeader(id, WIRE_TYPE_LENGTH_DELIMITED);
size_t sizePos = mBuffer.wp()->pos();
mDepth++;
mObjectId++;
mBuffer.writeRawFixed64(mExpectedObjectToken); // push previous token into stack.
mExpectedObjectToken = makeToken(get_varint_size(id),
(bool)(fieldId & FIELD_COUNT_REPEATED), mDepth, mObjectId, sizePos);
return mExpectedObjectToken;
}
void
ProtoOutputStream::end(long long token)
{
if (token != mExpectedObjectToken) {
ALOGE("Unexpected token: 0x%llx, should be 0x%llx", token, mExpectedObjectToken);
return;
}
int depth = getDepthFromToken(token);
if (depth != (mDepth & 0x01ff)) {
ALOGE("Unexpected depth: %d, should be %d", depth, mDepth);
return;
}
mDepth--;
int sizePos = getSizePosFromToken(token);
// number of bytes written in this start-end session.
int childRawSize = mBuffer.wp()->pos() - sizePos - 8;
// retrieve the old token from stack.
mBuffer.ep()->rewind()->move(sizePos);
mExpectedObjectToken = mBuffer.readRawFixed64();
// If raw size is larger than 0, write the negative value here to indicate a compact is needed.
if (childRawSize > 0) {
mBuffer.editRawFixed32(sizePos, -childRawSize);
mBuffer.editRawFixed32(sizePos+4, -1);
} else {
// reset wp which erase the header tag of the message when its size is 0.
mBuffer.wp()->rewind()->move(sizePos - getTagSizeFromToken(token));
}
}
bool
ProtoOutputStream::compact() {
if (mCompact) return true;
if (mDepth != 0) {
ALOGE("Can't compact when depth(%d) is not zero. Missing calls to end.", mDepth);
return false;
}
// record the size of the original buffer.
size_t rawBufferSize = mBuffer.size();
if (rawBufferSize == 0) return true; // nothing to do if the buffer is empty;
// reset edit pointer and recursively compute encoded size of messages.
mBuffer.ep()->rewind();
if (editEncodedSize(rawBufferSize) == 0) {
ALOGE("Failed to editEncodedSize.");
return false;
}
// reset both edit pointer and write pointer, and compact recursively.
mBuffer.ep()->rewind();
mBuffer.wp()->rewind();
if (!compactSize(rawBufferSize)) {
ALOGE("Failed to compactSize.");
return false;
}
// copy the reset to the buffer.
if (mCopyBegin < rawBufferSize) {
mBuffer.copy(mCopyBegin, rawBufferSize - mCopyBegin);
}
// mark true means it is not legal to write to this ProtoOutputStream anymore
mCompact = true;
return true;
}
/**
* First compaction pass. Iterate through the data, and fill in the
* nested object sizes so the next pass can compact them.
*/
size_t
ProtoOutputStream::editEncodedSize(size_t rawSize)
{
size_t objectStart = mBuffer.ep()->pos();
size_t objectEnd = objectStart + rawSize;
size_t encodedSize = 0;
int childRawSize, childEncodedSize;
size_t childEncodedSizePos;
while (mBuffer.ep()->pos() < objectEnd) {
uint32_t tag = (uint32_t)mBuffer.readRawVarint();
encodedSize += get_varint_size(tag);
switch (read_wire_type(tag)) {
case WIRE_TYPE_VARINT:
do {
encodedSize++;
} while ((mBuffer.readRawByte() & 0x80) != 0);
break;
case WIRE_TYPE_FIXED64:
encodedSize += 8;
mBuffer.ep()->move(8);
break;
case WIRE_TYPE_LENGTH_DELIMITED:
childRawSize = (int)mBuffer.readRawFixed32();
childEncodedSizePos = mBuffer.ep()->pos();
childEncodedSize = (int)mBuffer.readRawFixed32();
if (childRawSize >= 0 && childRawSize == childEncodedSize) {
mBuffer.ep()->move(childRawSize);
} else if (childRawSize < 0 && childEncodedSize == -1){
childEncodedSize = editEncodedSize(-childRawSize);
mBuffer.editRawFixed32(childEncodedSizePos, childEncodedSize);
} else {
ALOGE("Bad raw or encoded values: raw=%d, encoded=%d at %zu",
childRawSize, childEncodedSize, childEncodedSizePos);
return 0;
}
encodedSize += get_varint_size(childEncodedSize) + childEncodedSize;
break;
case WIRE_TYPE_FIXED32:
encodedSize += 4;
mBuffer.ep()->move(4);
break;
default:
ALOGE("Unexpected wire type %d in editEncodedSize at [%zu, %zu]",
read_wire_type(tag), objectStart, objectEnd);
return 0;
}
}
return encodedSize;
}
/**
* Second compaction pass. Iterate through the data, and copy the data
* forward in the buffer, converting the pairs of uint32s into a single
* unsigned varint of the size.
*/
bool
ProtoOutputStream::compactSize(size_t rawSize)
{
size_t objectStart = mBuffer.ep()->pos();
size_t objectEnd = objectStart + rawSize;
int childRawSize, childEncodedSize;
while (mBuffer.ep()->pos() < objectEnd) {
uint32_t tag = (uint32_t)mBuffer.readRawVarint();
switch (read_wire_type(tag)) {
case WIRE_TYPE_VARINT:
while ((mBuffer.readRawByte() & 0x80) != 0) {}
break;
case WIRE_TYPE_FIXED64:
mBuffer.ep()->move(8);
break;
case WIRE_TYPE_LENGTH_DELIMITED:
mBuffer.copy(mCopyBegin, mBuffer.ep()->pos() - mCopyBegin);
childRawSize = (int)mBuffer.readRawFixed32();
childEncodedSize = (int)mBuffer.readRawFixed32();
mCopyBegin = mBuffer.ep()->pos();
// write encoded size to buffer.
mBuffer.writeRawVarint32(childEncodedSize);
if (childRawSize >= 0 && childRawSize == childEncodedSize) {
mBuffer.ep()->move(childEncodedSize);
} else if (childRawSize < 0){
if (!compactSize(-childRawSize)) return false;
} else {
ALOGE("Bad raw or encoded values: raw=%d, encoded=%d",
childRawSize, childEncodedSize);
return false;
}
break;
case WIRE_TYPE_FIXED32:
mBuffer.ep()->move(4);
break;
default:
ALOGE("Unexpected wire type %d in compactSize at [%zu, %zu]",
read_wire_type(tag), objectStart, objectEnd);
return false;
}
}
return true;
}
static bool write_all(int fd, uint8_t const* buf, size_t size)
{
while (size > 0) {
ssize_t amt = ::write(fd, buf, size);
if (amt < 0) {
return false;
}
size -= amt;
buf += amt;
}
return true;
}
bool
ProtoOutputStream::flush()
{
if (mFd < 0) return false;
if (!compact()) return false;
EncodedBuffer::iterator it = mBuffer.begin();
while (it.readBuffer() != NULL) {
if (!write_all(mFd, it.readBuffer(), it.currentToRead())) return false;
it.rp()->move(it.currentToRead());
}
return true;
}
// =========================================================================
// Private functions
/**
* bit_cast
*/
template <class From, class To>
inline To bit_cast(From const &from) {
To to;
memcpy(&to, &from, sizeof(to));
return to;
}
inline void
ProtoOutputStream::writeDoubleImpl(uint32_t id, double val)
{
if (val == 0.0) return;
mBuffer.writeHeader(id, WIRE_TYPE_FIXED64);
mBuffer.writeRawFixed64(bit_cast<double, uint64_t>(val));
}
inline void
ProtoOutputStream::writeFloatImpl(uint32_t id, float val)
{
if (val == 0.0) return;
mBuffer.writeHeader(id, WIRE_TYPE_FIXED32);
mBuffer.writeRawFixed32(bit_cast<float, uint32_t>(val));
}
inline void
ProtoOutputStream::writeInt64Impl(uint32_t id, long long val)
{
if (val == 0) return;
mBuffer.writeHeader(id, WIRE_TYPE_VARINT);
mBuffer.writeRawVarint64((uint64_t)val);
}
inline void
ProtoOutputStream::writeInt32Impl(uint32_t id, int val)
{
if (val == 0) return;
mBuffer.writeHeader(id, WIRE_TYPE_VARINT);
mBuffer.writeRawVarint32((uint32_t)val);
}
inline void
ProtoOutputStream::writeUint64Impl(uint32_t id, uint64_t val)
{
if (val == 0) return;
mBuffer.writeHeader(id, WIRE_TYPE_VARINT);
mBuffer.writeRawVarint64(val);
}
inline void
ProtoOutputStream::writeUint32Impl(uint32_t id, uint32_t val)
{
if (val == 0) return;
mBuffer.writeHeader(id, WIRE_TYPE_VARINT);
mBuffer.writeRawVarint32(val);
}
inline void
ProtoOutputStream::writeFixed64Impl(uint32_t id, uint64_t val)
{
if (val == 0) return;
mBuffer.writeHeader(id, WIRE_TYPE_FIXED64);
mBuffer.writeRawFixed64(val);
}
inline void
ProtoOutputStream::writeFixed32Impl(uint32_t id, uint32_t val)
{
if (val == 0) return;
mBuffer.writeHeader(id, WIRE_TYPE_FIXED32);
mBuffer.writeRawFixed32(val);
}
inline void
ProtoOutputStream::writeSFixed64Impl(uint32_t id, long long val)
{
if (val == 0) return;
mBuffer.writeHeader(id, WIRE_TYPE_FIXED64);
mBuffer.writeRawFixed64((uint64_t)val);
}
inline void
ProtoOutputStream::writeSFixed32Impl(uint32_t id, int val)
{
if (val == 0) return;
mBuffer.writeHeader(id, WIRE_TYPE_FIXED32);
mBuffer.writeRawFixed32((uint32_t)val);
}
inline void
ProtoOutputStream::writeZigzagInt64Impl(uint32_t id, long long val)
{
if (val == 0) return;
mBuffer.writeHeader(id, WIRE_TYPE_VARINT);
mBuffer.writeRawVarint64((val << 1) ^ (val >> 63));
}
inline void
ProtoOutputStream::writeZigzagInt32Impl(uint32_t id, int val)
{
if (val == 0) return;
mBuffer.writeHeader(id, WIRE_TYPE_VARINT);
mBuffer.writeRawVarint32((val << 1) ^ (val >> 31));
}
inline void
ProtoOutputStream::writeEnumImpl(uint32_t id, int val)
{
mBuffer.writeHeader(id, WIRE_TYPE_VARINT);
mBuffer.writeRawVarint32((uint32_t) val);
}
inline void
ProtoOutputStream::writeBoolImpl(uint32_t id, bool val)
{
if (!val) return;
mBuffer.writeHeader(id, WIRE_TYPE_VARINT);
mBuffer.writeRawVarint32(val ? 1 : 0);
}
inline void
ProtoOutputStream::writeUtf8StringImpl(uint32_t id, const char* val, size_t size)
{
if (val == NULL || size == 0) return;
mBuffer.writeHeader(id, WIRE_TYPE_LENGTH_DELIMITED);
mBuffer.writeRawFixed32(size);
mBuffer.writeRawFixed32(size);
for (size_t i=0; i<size; i++) {
mBuffer.writeRawByte((uint8_t)val[i]);
}
}
} // util
} // android