blob: 43b79cc4d7842dbbd3496863a542e6e583d7f1a7 [file] [log] [blame]
#include "Collation.h"
#include "frameworks/base/cmds/statsd/src/atoms.pb.h"
#include <set>
#include <vector>
#include <getopt.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "android-base/strings.h"
using namespace google::protobuf;
using namespace std;
namespace android {
namespace stats_log_api_gen {
const int PULL_ATOM_START_ID = 1000;
int maxPushedAtomId = 2;
const string DEFAULT_MODULE_NAME = "DEFAULT";
const string DEFAULT_CPP_NAMESPACE = "android,util";
const string DEFAULT_CPP_HEADER_IMPORT = "statslog.h";
const string DEFAULT_JAVA_PACKAGE = "android.util";
const string DEFAULT_JAVA_CLASS = "StatsLogInternal";
const int JAVA_MODULE_REQUIRES_FLOAT = 0x01;
const int JAVA_MODULE_REQUIRES_ATTRIBUTION = 0x02;
using android::os::statsd::Atom;
/**
* Turn lower and camel case into upper case with underscores.
*/
static string
make_constant_name(const string& str)
{
string result;
const int N = str.size();
bool underscore_next = false;
for (int i=0; i<N; i++) {
char c = str[i];
if (c >= 'A' && c <= 'Z') {
if (underscore_next) {
result += '_';
underscore_next = false;
}
} else if (c >= 'a' && c <= 'z') {
c = 'A' + c - 'a';
underscore_next = true;
} else if (c == '_') {
underscore_next = false;
}
result += c;
}
return result;
}
static const char*
cpp_type_name(java_type_t type)
{
switch (type) {
case JAVA_TYPE_BOOLEAN:
return "bool";
case JAVA_TYPE_INT:
case JAVA_TYPE_ENUM:
return "int32_t";
case JAVA_TYPE_LONG:
return "int64_t";
case JAVA_TYPE_FLOAT:
return "float";
case JAVA_TYPE_DOUBLE:
return "double";
case JAVA_TYPE_STRING:
return "char const*";
case JAVA_TYPE_BYTE_ARRAY:
return "const BytesField&";
default:
return "UNKNOWN";
}
}
static const char*
java_type_name(java_type_t type)
{
switch (type) {
case JAVA_TYPE_BOOLEAN:
return "boolean";
case JAVA_TYPE_INT:
case JAVA_TYPE_ENUM:
return "int";
case JAVA_TYPE_LONG:
return "long";
case JAVA_TYPE_FLOAT:
return "float";
case JAVA_TYPE_DOUBLE:
return "double";
case JAVA_TYPE_STRING:
return "java.lang.String";
case JAVA_TYPE_BYTE_ARRAY:
return "byte[]";
default:
return "UNKNOWN";
}
}
static bool atom_needed_for_module(const AtomDecl& atomDecl, const string& moduleName) {
if (moduleName == DEFAULT_MODULE_NAME) {
return true;
}
return atomDecl.hasModule && (moduleName == atomDecl.moduleName);
}
static bool signature_needed_for_module(const set<string>& modules, const string& moduleName) {
if (moduleName == DEFAULT_MODULE_NAME) {
return true;
}
return modules.find(moduleName) != modules.end();
}
static void write_atoms_info_cpp(FILE *out, const Atoms &atoms) {
std::set<string> kTruncatingAtomNames = {"mobile_radio_power_state_changed",
"audio_state_changed",
"call_state_changed",
"phone_signal_strength_changed",
"mobile_bytes_transfer_by_fg_bg",
"mobile_bytes_transfer"};
fprintf(out,
"const std::set<int> "
"AtomsInfo::kNotTruncatingTimestampAtomWhiteList = {\n");
for (set<AtomDecl>::const_iterator atom = atoms.decls.begin();
atom != atoms.decls.end(); atom++) {
if (kTruncatingAtomNames.find(atom->name) ==
kTruncatingAtomNames.end()) {
string constant = make_constant_name(atom->name);
fprintf(out, " %s,\n", constant.c_str());
}
}
fprintf(out, "};\n");
fprintf(out, "\n");
fprintf(out,
"const std::set<int> AtomsInfo::kAtomsWithAttributionChain = {\n");
for (set<AtomDecl>::const_iterator atom = atoms.decls.begin();
atom != atoms.decls.end(); atom++) {
for (vector<AtomField>::const_iterator field = atom->fields.begin();
field != atom->fields.end(); field++) {
if (field->javaType == JAVA_TYPE_ATTRIBUTION_CHAIN) {
string constant = make_constant_name(atom->name);
fprintf(out, " %s,\n", constant.c_str());
break;
}
}
}
fprintf(out, "};\n");
fprintf(out, "\n");
fprintf(out, "static std::map<int, int> getAtomUidField() {\n");
fprintf(out, " std::map<int, int> uidField;\n");
for (set<AtomDecl>::const_iterator atom = atoms.decls.begin();
atom != atoms.decls.end(); atom++) {
if (atom->uidField == 0) {
continue;
}
fprintf(out,
"\n // Adding uid field for atom "
"(%d)%s\n",
atom->code, atom->name.c_str());
fprintf(out, " uidField[static_cast<int>(%s)] = %d;\n",
make_constant_name(atom->name).c_str(), atom->uidField);
}
fprintf(out, " return uidField;\n");
fprintf(out, "};\n");
fprintf(out,
"const std::map<int, int> AtomsInfo::kAtomsWithUidField = "
"getAtomUidField();\n");
fprintf(out,
"static std::map<int, StateAtomFieldOptions> "
"getStateAtomFieldOptions() {\n");
fprintf(out, " std::map<int, StateAtomFieldOptions> options;\n");
fprintf(out, " StateAtomFieldOptions opt;\n");
for (set<AtomDecl>::const_iterator atom = atoms.decls.begin();
atom != atoms.decls.end(); atom++) {
if (atom->primaryFields.size() == 0 && atom->exclusiveField == 0) {
continue;
}
fprintf(out,
"\n // Adding primary and exclusive fields for atom "
"(%d)%s\n",
atom->code, atom->name.c_str());
fprintf(out, " opt.primaryFields.clear();\n");
for (const auto& field : atom->primaryFields) {
fprintf(out, " opt.primaryFields.push_back(%d);\n", field);
}
fprintf(out, " opt.exclusiveField = %d;\n", atom->exclusiveField);
fprintf(out, " options[static_cast<int>(%s)] = opt;\n",
make_constant_name(atom->name).c_str());
}
fprintf(out, " return options;\n");
fprintf(out, "}\n");
fprintf(out,
"const std::map<int, StateAtomFieldOptions> "
"AtomsInfo::kStateAtomsFieldOptions = "
"getStateAtomFieldOptions();\n");
fprintf(out,
"static std::map<int, std::vector<int>> "
"getBinaryFieldAtoms() {\n");
fprintf(out, " std::map<int, std::vector<int>> options;\n");
for (set<AtomDecl>::const_iterator atom = atoms.decls.begin();
atom != atoms.decls.end(); atom++) {
if (atom->binaryFields.size() == 0) {
continue;
}
fprintf(out,
"\n // Adding binary fields for atom "
"(%d)%s\n",
atom->code, atom->name.c_str());
for (const auto& field : atom->binaryFields) {
fprintf(out, " options[static_cast<int>(%s)].push_back(%d);\n",
make_constant_name(atom->name).c_str(), field);
}
}
fprintf(out, " return options;\n");
fprintf(out, "}\n");
fprintf(out,
"const std::map<int, std::vector<int>> "
"AtomsInfo::kBytesFieldAtoms = "
"getBinaryFieldAtoms();\n");
}
// Writes namespaces for the cpp and header files, returning the number of namespaces written.
void write_namespace(FILE* out, const string& cppNamespaces) {
vector<string> cppNamespaceVec = android::base::Split(cppNamespaces, ",");
for (string cppNamespace : cppNamespaceVec) {
fprintf(out, "namespace %s {\n", cppNamespace.c_str());
}
}
// Writes namespace closing brackets for cpp and header files.
void write_closing_namespace(FILE* out, const string& cppNamespaces) {
vector<string> cppNamespaceVec = android::base::Split(cppNamespaces, ",");
for (auto it = cppNamespaceVec.rbegin(); it != cppNamespaceVec.rend(); ++it) {
fprintf(out, "} // namespace %s\n", it->c_str());
}
}
static int write_stats_log_cpp(FILE *out, const Atoms &atoms, const AtomDecl &attributionDecl,
const string& moduleName, const string& cppNamespace,
const string& importHeader) {
// Print prelude
fprintf(out, "// This file is autogenerated\n");
fprintf(out, "\n");
fprintf(out, "#include <mutex>\n");
fprintf(out, "#include <chrono>\n");
fprintf(out, "#include <thread>\n");
fprintf(out, "#ifdef __ANDROID__\n");
fprintf(out, "#include <cutils/properties.h>\n");
fprintf(out, "#endif\n");
fprintf(out, "#include <stats_event_list.h>\n");
fprintf(out, "#include <log/log.h>\n");
fprintf(out, "#include <%s>\n", importHeader.c_str());
fprintf(out, "#include <utils/SystemClock.h>\n");
fprintf(out, "\n");
write_namespace(out, cppNamespace);
fprintf(out, "// the single event tag id for all stats logs\n");
fprintf(out, "const static int kStatsEventTag = 1937006964;\n");
fprintf(out, "#ifdef __ANDROID__\n");
fprintf(out, "const static bool kStatsdEnabled = property_get_bool(\"ro.statsd.enable\", true);\n");
fprintf(out, "#else\n");
fprintf(out, "const static bool kStatsdEnabled = false;\n");
fprintf(out, "#endif\n");
// AtomsInfo is only used by statsd internally and is not needed for other modules.
if (moduleName == DEFAULT_MODULE_NAME) {
write_atoms_info_cpp(out, atoms);
}
fprintf(out, "int64_t lastRetryTimestampNs = -1;\n");
fprintf(out, "const int64_t kMinRetryIntervalNs = NS_PER_SEC * 60 * 20; // 20 minutes\n");
fprintf(out, "static std::mutex mLogdRetryMutex;\n");
// Print write methods
fprintf(out, "\n");
for (auto signature_to_modules_it = atoms.signatures_to_modules.begin();
signature_to_modules_it != atoms.signatures_to_modules.end(); signature_to_modules_it++) {
if (!signature_needed_for_module(signature_to_modules_it->second, moduleName)) {
continue;
}
vector<java_type_t> signature = signature_to_modules_it->first;
int argIndex;
fprintf(out, "int\n");
fprintf(out, "try_stats_write(int32_t code");
argIndex = 1;
for (vector<java_type_t>::const_iterator arg = signature.begin();
arg != signature.end(); arg++) {
if (*arg == JAVA_TYPE_ATTRIBUTION_CHAIN) {
for (auto chainField : attributionDecl.fields) {
if (chainField.javaType == JAVA_TYPE_STRING) {
fprintf(out, ", const std::vector<%s>& %s",
cpp_type_name(chainField.javaType),
chainField.name.c_str());
} else {
fprintf(out, ", const %s* %s, size_t %s_length",
cpp_type_name(chainField.javaType),
chainField.name.c_str(), chainField.name.c_str());
}
}
} else {
fprintf(out, ", %s arg%d", cpp_type_name(*arg), argIndex);
}
argIndex++;
}
fprintf(out, ")\n");
fprintf(out, "{\n");
argIndex = 1;
fprintf(out, " if (kStatsdEnabled) {\n");
fprintf(out, " stats_event_list event(kStatsEventTag);\n");
fprintf(out, " event << android::elapsedRealtimeNano();\n\n");
fprintf(out, " event << code;\n\n");
for (vector<java_type_t>::const_iterator arg = signature.begin();
arg != signature.end(); arg++) {
if (*arg == JAVA_TYPE_ATTRIBUTION_CHAIN) {
for (const auto &chainField : attributionDecl.fields) {
if (chainField.javaType == JAVA_TYPE_STRING) {
fprintf(out, " if (%s_length != %s.size()) {\n",
attributionDecl.fields.front().name.c_str(), chainField.name.c_str());
fprintf(out, " return -EINVAL;\n");
fprintf(out, " }\n");
}
}
fprintf(out, "\n event.begin();\n");
fprintf(out, " for (size_t i = 0; i < %s_length; ++i) {\n",
attributionDecl.fields.front().name.c_str());
fprintf(out, " event.begin();\n");
for (const auto &chainField : attributionDecl.fields) {
if (chainField.javaType == JAVA_TYPE_STRING) {
fprintf(out, " if (%s[i] != NULL) {\n", chainField.name.c_str());
fprintf(out, " event << %s[i];\n", chainField.name.c_str());
fprintf(out, " } else {\n");
fprintf(out, " event << \"\";\n");
fprintf(out, " }\n");
} else {
fprintf(out, " event << %s[i];\n", chainField.name.c_str());
}
}
fprintf(out, " event.end();\n");
fprintf(out, " }\n");
fprintf(out, " event.end();\n\n");
} else if (*arg == JAVA_TYPE_BYTE_ARRAY) {
fprintf(out,
" event.AppendCharArray(arg%d.arg, "
"arg%d.arg_length);\n",
argIndex, argIndex);
} else {
if (*arg == JAVA_TYPE_STRING) {
fprintf(out, " if (arg%d == NULL) {\n", argIndex);
fprintf(out, " arg%d = \"\";\n", argIndex);
fprintf(out, " }\n");
}
fprintf(out, " event << arg%d;\n", argIndex);
}
argIndex++;
}
fprintf(out, " return event.write(LOG_ID_STATS);\n");
fprintf(out, " } else {\n");
fprintf(out, " return 1;\n");
fprintf(out, " }\n");
fprintf(out, "}\n");
fprintf(out, "\n");
}
for (auto signature_to_modules_it = atoms.signatures_to_modules.begin();
signature_to_modules_it != atoms.signatures_to_modules.end(); signature_to_modules_it++) {
if (!signature_needed_for_module(signature_to_modules_it->second, moduleName)) {
continue;
}
vector<java_type_t> signature = signature_to_modules_it->first;
int argIndex;
fprintf(out, "int \n");
fprintf(out, "stats_write(int32_t code");
argIndex = 1;
for (vector<java_type_t>::const_iterator arg = signature.begin();
arg != signature.end(); arg++) {
if (*arg == JAVA_TYPE_ATTRIBUTION_CHAIN) {
for (auto chainField : attributionDecl.fields) {
if (chainField.javaType == JAVA_TYPE_STRING) {
fprintf(out, ", const std::vector<%s>& %s",
cpp_type_name(chainField.javaType),
chainField.name.c_str());
} else {
fprintf(out, ", const %s* %s, size_t %s_length",
cpp_type_name(chainField.javaType),
chainField.name.c_str(), chainField.name.c_str());
}
}
} else {
fprintf(out, ", %s arg%d", cpp_type_name(*arg), argIndex);
}
argIndex++;
}
fprintf(out, ")\n");
fprintf(out, "{\n");
fprintf(out, " int ret = 0;\n");
fprintf(out, " for(int retry = 0; retry < 2; ++retry) {\n");
fprintf(out, " ret = try_stats_write(code");
argIndex = 1;
for (vector<java_type_t>::const_iterator arg = signature.begin();
arg != signature.end(); arg++) {
if (*arg == JAVA_TYPE_ATTRIBUTION_CHAIN) {
for (auto chainField : attributionDecl.fields) {
if (chainField.javaType == JAVA_TYPE_STRING) {
fprintf(out, ", %s",
chainField.name.c_str());
} else {
fprintf(out, ", %s, %s_length",
chainField.name.c_str(), chainField.name.c_str());
}
}
} else {
fprintf(out, ", arg%d", argIndex);
}
argIndex++;
}
fprintf(out, ");\n");
fprintf(out, " if (ret >= 0) { return retry; }\n");
fprintf(out, " {\n");
fprintf(out, " std::lock_guard<std::mutex> lock(mLogdRetryMutex);\n");
fprintf(out, " if ((android::elapsedRealtimeNano() - lastRetryTimestampNs) <= "
"kMinRetryIntervalNs) break;\n");
fprintf(out, " lastRetryTimestampNs = android::elapsedRealtimeNano();\n");
fprintf(out, " }\n");
fprintf(out, " std::this_thread::sleep_for(std::chrono::milliseconds(10));\n");
fprintf(out, " }\n");
fprintf(out, " return ret;\n");
fprintf(out, "}\n");
fprintf(out, "\n");
}
for (auto signature_it = atoms.non_chained_signatures_to_modules.begin();
signature_it != atoms.non_chained_signatures_to_modules.end(); signature_it++) {
if (!signature_needed_for_module(signature_it->second, moduleName)) {
continue;
}
vector<java_type_t> signature = signature_it->first;
int argIndex;
fprintf(out, "int\n");
fprintf(out, "try_stats_write_non_chained(int32_t code");
argIndex = 1;
for (vector<java_type_t>::const_iterator arg = signature.begin();
arg != signature.end(); arg++) {
fprintf(out, ", %s arg%d", cpp_type_name(*arg), argIndex);
argIndex++;
}
fprintf(out, ")\n");
fprintf(out, "{\n");
argIndex = 1;
fprintf(out, " if (kStatsdEnabled) {\n");
fprintf(out, " stats_event_list event(kStatsEventTag);\n");
fprintf(out, " event << android::elapsedRealtimeNano();\n\n");
fprintf(out, " event << code;\n\n");
for (vector<java_type_t>::const_iterator arg = signature.begin();
arg != signature.end(); arg++) {
if (argIndex == 1) {
fprintf(out, " event.begin();\n\n");
fprintf(out, " event.begin();\n");
}
if (*arg == JAVA_TYPE_STRING) {
fprintf(out, " if (arg%d == NULL) {\n", argIndex);
fprintf(out, " arg%d = \"\";\n", argIndex);
fprintf(out, " }\n");
}
if (*arg == JAVA_TYPE_BYTE_ARRAY) {
fprintf(out,
" event.AppendCharArray(arg%d.arg, "
"arg%d.arg_length);",
argIndex, argIndex);
} else {
fprintf(out, " event << arg%d;\n", argIndex);
}
if (argIndex == 2) {
fprintf(out, " event.end();\n\n");
fprintf(out, " event.end();\n\n");
}
argIndex++;
}
fprintf(out, " return event.write(LOG_ID_STATS);\n");
fprintf(out, " } else {\n");
fprintf(out, " return 1;\n");
fprintf(out, " }\n");
fprintf(out, "}\n");
fprintf(out, "\n");
}
for (auto signature_it = atoms.non_chained_signatures_to_modules.begin();
signature_it != atoms.non_chained_signatures_to_modules.end(); signature_it++) {
if (!signature_needed_for_module(signature_it->second, moduleName)) {
continue;
}
vector<java_type_t> signature = signature_it->first;
int argIndex;
fprintf(out, "int\n");
fprintf(out, "stats_write_non_chained(int32_t code");
argIndex = 1;
for (vector<java_type_t>::const_iterator arg = signature.begin();
arg != signature.end(); arg++) {
fprintf(out, ", %s arg%d", cpp_type_name(*arg), argIndex);
argIndex++;
}
fprintf(out, ")\n");
fprintf(out, "{\n");
fprintf(out, " int ret = 0;\n");
fprintf(out, " for(int retry = 0; retry < 2; ++retry) {\n");
fprintf(out, " ret = try_stats_write_non_chained(code");
argIndex = 1;
for (vector<java_type_t>::const_iterator arg = signature.begin();
arg != signature.end(); arg++) {
fprintf(out, ", arg%d", argIndex);
argIndex++;
}
fprintf(out, ");\n");
fprintf(out, " if (ret >= 0) { return retry; }\n");
fprintf(out, " {\n");
fprintf(out, " std::lock_guard<std::mutex> lock(mLogdRetryMutex);\n");
fprintf(out, " if ((android::elapsedRealtimeNano() - lastRetryTimestampNs) <= "
"kMinRetryIntervalNs) break;\n");
fprintf(out, " lastRetryTimestampNs = android::elapsedRealtimeNano();\n");
fprintf(out, " }\n");
fprintf(out, " std::this_thread::sleep_for(std::chrono::milliseconds(10));\n");
fprintf(out, " }\n");
fprintf(out, " return ret;\n");
fprintf(out, "}\n");
fprintf(out, "\n");
}
// Print footer
fprintf(out, "\n");
write_closing_namespace(out, cppNamespace);
return 0;
}
void build_non_chained_decl_map(const Atoms& atoms,
std::map<int, set<AtomDecl>::const_iterator>* decl_map){
for (set<AtomDecl>::const_iterator atom = atoms.non_chained_decls.begin();
atom != atoms.non_chained_decls.end(); atom++) {
decl_map->insert(std::make_pair(atom->code, atom));
}
}
static void write_cpp_usage(
FILE* out, const string& method_name, const string& atom_code_name,
const AtomDecl& atom, const AtomDecl &attributionDecl) {
fprintf(out, " * Usage: %s(StatsLog.%s", method_name.c_str(),
atom_code_name.c_str());
for (vector<AtomField>::const_iterator field = atom.fields.begin();
field != atom.fields.end(); field++) {
if (field->javaType == JAVA_TYPE_ATTRIBUTION_CHAIN) {
for (auto chainField : attributionDecl.fields) {
if (chainField.javaType == JAVA_TYPE_STRING) {
fprintf(out, ", const std::vector<%s>& %s",
cpp_type_name(chainField.javaType),
chainField.name.c_str());
} else {
fprintf(out, ", const %s* %s, size_t %s_length",
cpp_type_name(chainField.javaType),
chainField.name.c_str(), chainField.name.c_str());
}
}
} else {
fprintf(out, ", %s %s", cpp_type_name(field->javaType), field->name.c_str());
}
}
fprintf(out, ");\n");
}
static void write_cpp_method_header(
FILE* out,
const string& method_name,
const map<vector<java_type_t>, set<string>>& signatures_to_modules,
const AtomDecl &attributionDecl, const string& moduleName) {
for (auto signature_to_modules_it = signatures_to_modules.begin();
signature_to_modules_it != signatures_to_modules.end(); signature_to_modules_it++) {
// Skip if this signature is not needed for the module.
if (!signature_needed_for_module(signature_to_modules_it->second, moduleName)) {
continue;
}
vector<java_type_t> signature = signature_to_modules_it->first;
fprintf(out, "int %s(int32_t code", method_name.c_str());
int argIndex = 1;
for (vector<java_type_t>::const_iterator arg = signature.begin();
arg != signature.end(); arg++) {
if (*arg == JAVA_TYPE_ATTRIBUTION_CHAIN) {
for (auto chainField : attributionDecl.fields) {
if (chainField.javaType == JAVA_TYPE_STRING) {
fprintf(out, ", const std::vector<%s>& %s",
cpp_type_name(chainField.javaType), chainField.name.c_str());
} else {
fprintf(out, ", const %s* %s, size_t %s_length",
cpp_type_name(chainField.javaType),
chainField.name.c_str(), chainField.name.c_str());
}
}
} else {
fprintf(out, ", %s arg%d", cpp_type_name(*arg), argIndex);
}
argIndex++;
}
fprintf(out, ");\n");
}
}
static int
write_stats_log_header(FILE* out, const Atoms& atoms, const AtomDecl &attributionDecl,
const string& moduleName, const string& cppNamespace)
{
// Print prelude
fprintf(out, "// This file is autogenerated\n");
fprintf(out, "\n");
fprintf(out, "#pragma once\n");
fprintf(out, "\n");
fprintf(out, "#include <stdint.h>\n");
fprintf(out, "#include <vector>\n");
fprintf(out, "#include <map>\n");
fprintf(out, "#include <set>\n");
fprintf(out, "\n");
write_namespace(out, cppNamespace);
fprintf(out, "\n");
fprintf(out, "/*\n");
fprintf(out, " * API For logging statistics events.\n");
fprintf(out, " */\n");
fprintf(out, "\n");
fprintf(out, "/**\n");
fprintf(out, " * Constants for atom codes.\n");
fprintf(out, " */\n");
fprintf(out, "enum {\n");
std::map<int, set<AtomDecl>::const_iterator> atom_code_to_non_chained_decl_map;
build_non_chained_decl_map(atoms, &atom_code_to_non_chained_decl_map);
size_t i = 0;
// Print constants
for (set<AtomDecl>::const_iterator atom = atoms.decls.begin();
atom != atoms.decls.end(); atom++) {
// Skip if the atom is not needed for the module.
if (!atom_needed_for_module(*atom, moduleName)) {
continue;
}
string constant = make_constant_name(atom->name);
fprintf(out, "\n");
fprintf(out, " /**\n");
fprintf(out, " * %s %s\n", atom->message.c_str(), atom->name.c_str());
write_cpp_usage(out, "stats_write", constant, *atom, attributionDecl);
auto non_chained_decl = atom_code_to_non_chained_decl_map.find(atom->code);
if (non_chained_decl != atom_code_to_non_chained_decl_map.end()) {
write_cpp_usage(out, "stats_write_non_chained", constant, *non_chained_decl->second,
attributionDecl);
}
fprintf(out, " */\n");
char const* const comma = (i == atoms.decls.size() - 1) ? "" : ",";
fprintf(out, " %s = %d%s\n", constant.c_str(), atom->code, comma);
if (atom->code < PULL_ATOM_START_ID && atom->code > maxPushedAtomId) {
maxPushedAtomId = atom->code;
}
i++;
}
fprintf(out, "\n");
fprintf(out, "};\n");
fprintf(out, "\n");
fprintf(out, "struct BytesField {\n");
fprintf(out,
" BytesField(char const* array, size_t len) : arg(array), "
"arg_length(len) {}\n");
fprintf(out, " char const* arg;\n");
fprintf(out, " size_t arg_length;\n");
fprintf(out, "};\n");
fprintf(out, "\n");
// This metadata is only used by statsd, which uses the default libstatslog.
if (moduleName == DEFAULT_MODULE_NAME) {
fprintf(out, "struct StateAtomFieldOptions {\n");
fprintf(out, " std::vector<int> primaryFields;\n");
fprintf(out, " int exclusiveField;\n");
fprintf(out, "};\n");
fprintf(out, "\n");
fprintf(out, "struct AtomsInfo {\n");
fprintf(out,
" const static std::set<int> "
"kNotTruncatingTimestampAtomWhiteList;\n");
fprintf(out, " const static std::map<int, int> kAtomsWithUidField;\n");
fprintf(out,
" const static std::set<int> kAtomsWithAttributionChain;\n");
fprintf(out,
" const static std::map<int, StateAtomFieldOptions> "
"kStateAtomsFieldOptions;\n");
fprintf(out,
" const static std::map<int, std::vector<int>> "
"kBytesFieldAtoms;");
fprintf(out, "};\n");
fprintf(out, "const static int kMaxPushedAtomId = %d;\n\n",
maxPushedAtomId);
}
// Print write methods
fprintf(out, "//\n");
fprintf(out, "// Write methods\n");
fprintf(out, "//\n");
write_cpp_method_header(out, "stats_write", atoms.signatures_to_modules, attributionDecl,
moduleName);
fprintf(out, "//\n");
fprintf(out, "// Write flattened methods\n");
fprintf(out, "//\n");
write_cpp_method_header(out, "stats_write_non_chained", atoms.non_chained_signatures_to_modules,
attributionDecl, moduleName);
fprintf(out, "\n");
write_closing_namespace(out, cppNamespace);
return 0;
}
static void write_java_usage(FILE* out, const string& method_name, const string& atom_code_name,
const AtomDecl& atom) {
fprintf(out, " * Usage: StatsLog.%s(StatsLog.%s",
method_name.c_str(), atom_code_name.c_str());
for (vector<AtomField>::const_iterator field = atom.fields.begin();
field != atom.fields.end(); field++) {
if (field->javaType == JAVA_TYPE_ATTRIBUTION_CHAIN) {
fprintf(out, ", android.os.WorkSource workSource");
} else if (field->javaType == JAVA_TYPE_BYTE_ARRAY) {
fprintf(out, ", byte[] %s", field->name.c_str());
} else {
fprintf(out, ", %s %s", java_type_name(field->javaType), field->name.c_str());
}
}
fprintf(out, ");<br>\n");
}
static void write_java_method(
FILE* out,
const string& method_name,
const map<vector<java_type_t>, set<string>>& signatures_to_modules,
const AtomDecl &attributionDecl) {
for (auto signature_to_modules_it = signatures_to_modules.begin();
signature_to_modules_it != signatures_to_modules.end(); signature_to_modules_it++) {
vector<java_type_t> signature = signature_to_modules_it->first;
fprintf(out, " /** @hide */\n");
fprintf(out, " public static native int %s(int code", method_name.c_str());
int argIndex = 1;
for (vector<java_type_t>::const_iterator arg = signature.begin();
arg != signature.end(); arg++) {
if (*arg == JAVA_TYPE_ATTRIBUTION_CHAIN) {
for (auto chainField : attributionDecl.fields) {
fprintf(out, ", %s[] %s",
java_type_name(chainField.javaType), chainField.name.c_str());
}
} else {
fprintf(out, ", %s arg%d", java_type_name(*arg), argIndex);
}
argIndex++;
}
fprintf(out, ");\n");
}
}
static void write_java_helpers_for_module(
FILE * out,
const AtomDecl &attributionDecl,
const int requiredHelpers) {
fprintf(out, " private static void copyInt(byte[] buff, int pos, int val) {\n");
fprintf(out, " buff[pos] = (byte) (val);\n");
fprintf(out, " buff[pos + 1] = (byte) (val >> 8);\n");
fprintf(out, " buff[pos + 2] = (byte) (val >> 16);\n");
fprintf(out, " buff[pos + 3] = (byte) (val >> 24);\n");
fprintf(out, " return;\n");
fprintf(out, " }\n");
fprintf(out, "\n");
fprintf(out, " private static void copyLong(byte[] buff, int pos, long val) {\n");
fprintf(out, " buff[pos] = (byte) (val);\n");
fprintf(out, " buff[pos + 1] = (byte) (val >> 8);\n");
fprintf(out, " buff[pos + 2] = (byte) (val >> 16);\n");
fprintf(out, " buff[pos + 3] = (byte) (val >> 24);\n");
fprintf(out, " buff[pos + 4] = (byte) (val >> 32);\n");
fprintf(out, " buff[pos + 5] = (byte) (val >> 40);\n");
fprintf(out, " buff[pos + 6] = (byte) (val >> 48);\n");
fprintf(out, " buff[pos + 7] = (byte) (val >> 56);\n");
fprintf(out, " return;\n");
fprintf(out, " }\n");
fprintf(out, "\n");
if (requiredHelpers & JAVA_MODULE_REQUIRES_FLOAT) {
fprintf(out, " private static void copyFloat(byte[] buff, int pos, float val) {\n");
fprintf(out, " copyInt(buff, pos, Float.floatToIntBits(val));\n");
fprintf(out, " return;\n");
fprintf(out, " }\n");
fprintf(out, "\n");
}
if (requiredHelpers & JAVA_MODULE_REQUIRES_ATTRIBUTION) {
fprintf(out, " private static void writeAttributionChain(byte[] buff, int pos");
for (auto chainField : attributionDecl.fields) {
fprintf(out, ", %s[] %s",
java_type_name(chainField.javaType), chainField.name.c_str());
}
fprintf(out, ") {\n");
const char* uidName = attributionDecl.fields.front().name.c_str();
const char* tagName = attributionDecl.fields.back().name.c_str();
// Write the first list begin.
fprintf(out, " buff[pos] = LIST_TYPE;\n");
fprintf(out, " buff[pos + 1] = (byte) (%s.length);\n", tagName);
fprintf(out, " pos += LIST_TYPE_OVERHEAD;\n");
// Iterate through the attribution chain and write the nodes.
fprintf(out, " for (int i = 0; i < %s.length; i++) {\n", tagName);
// Write the list begin.
fprintf(out, " buff[pos] = LIST_TYPE;\n");
fprintf(out, " buff[pos + 1] = %lu;\n", attributionDecl.fields.size());
fprintf(out, " pos += LIST_TYPE_OVERHEAD;\n");
// Write the uid.
fprintf(out, " buff[pos] = INT_TYPE;\n");
fprintf(out, " copyInt(buff, pos + 1, %s[i]);\n", uidName);
fprintf(out, " pos += INT_TYPE_SIZE;\n");
// Write the tag.
fprintf(out, " String %sStr = (%s[i] == null) ? \"\" : %s[i];\n",
tagName, tagName, tagName);
fprintf(out, " byte[] %sByte = %sStr.getBytes(UTF_8);\n", tagName, tagName);
fprintf(out, " buff[pos] = STRING_TYPE;\n");
fprintf(out, " copyInt(buff, pos + 1, %sByte.length);\n", tagName);
fprintf(out, " System.arraycopy("
"%sByte, 0, buff, pos + STRING_TYPE_OVERHEAD, %sByte.length);\n",
tagName, tagName);
fprintf(out, " pos += STRING_TYPE_OVERHEAD + %sByte.length;\n", tagName);
fprintf(out, " }\n");
fprintf(out, " }\n");
fprintf(out, "\n");
}
}
static int write_java_non_chained_method_for_module(
FILE* out,
const map<vector<java_type_t>, set<string>>& signatures_to_modules,
const string& moduleName
) {
for (auto signature_to_modules_it = signatures_to_modules.begin();
signature_to_modules_it != signatures_to_modules.end(); signature_to_modules_it++) {
// Skip if this signature is not needed for the module.
if (!signature_needed_for_module(signature_to_modules_it->second, moduleName)) {
continue;
}
// Print method signature.
vector<java_type_t> signature = signature_to_modules_it->first;
fprintf(out, " public static void write_non_chained(int code");
int argIndex = 1;
for (vector<java_type_t>::const_iterator arg = signature.begin();
arg != signature.end(); arg++) {
if (*arg == JAVA_TYPE_ATTRIBUTION_CHAIN) {
// Non chained signatures should not have attribution chains.
return 1;
} else if (*arg == JAVA_TYPE_KEY_VALUE_PAIR) {
// Module logging does not yet support key value pair.
return 1;
} else {
fprintf(out, ", %s arg%d", java_type_name(*arg), argIndex);
}
argIndex++;
}
fprintf(out, ") {\n");
fprintf(out, " write(code");
argIndex = 1;
for (vector<java_type_t>::const_iterator arg = signature.begin();
arg != signature.end(); arg++) {
// First two args are uid and tag of attribution chain.
if (argIndex == 1) {
fprintf(out, ", new int[] {arg%d}", argIndex);
} else if (argIndex == 2) {
fprintf(out, ", new java.lang.String[] {arg%d}", argIndex);
} else {
fprintf(out, ", arg%d", argIndex);
}
argIndex++;
}
fprintf(out, ");\n");
fprintf(out, " }\n");
fprintf(out, "\n");
}
return 0;
}
static int write_java_method_for_module(
FILE* out,
const map<vector<java_type_t>, set<string>>& signatures_to_modules,
const AtomDecl &attributionDecl,
const string& moduleName,
int* requiredHelpers
) {
for (auto signature_to_modules_it = signatures_to_modules.begin();
signature_to_modules_it != signatures_to_modules.end(); signature_to_modules_it++) {
// Skip if this signature is not needed for the module.
if (!signature_needed_for_module(signature_to_modules_it->second, moduleName)) {
continue;
}
// Print method signature.
vector<java_type_t> signature = signature_to_modules_it->first;
fprintf(out, " public static void write(int code");
int argIndex = 1;
for (vector<java_type_t>::const_iterator arg = signature.begin();
arg != signature.end(); arg++) {
if (*arg == JAVA_TYPE_ATTRIBUTION_CHAIN) {
for (auto chainField : attributionDecl.fields) {
fprintf(out, ", %s[] %s",
java_type_name(chainField.javaType), chainField.name.c_str());
}
} else if (*arg == JAVA_TYPE_KEY_VALUE_PAIR) {
// Module logging does not yet support key value pair.
return 1;
} else {
fprintf(out, ", %s arg%d", java_type_name(*arg), argIndex);
}
argIndex++;
}
fprintf(out, ") {\n");
// Calculate the size of the buffer.
fprintf(out, " // Initial overhead of the list, timestamp, and atom tag.\n");
fprintf(out, " int needed = LIST_TYPE_OVERHEAD + LONG_TYPE_SIZE + INT_TYPE_SIZE;\n");
argIndex = 1;
for (vector<java_type_t>::const_iterator arg = signature.begin();
arg != signature.end(); arg++) {
switch (*arg) {
case JAVA_TYPE_BOOLEAN:
case JAVA_TYPE_INT:
case JAVA_TYPE_FLOAT:
case JAVA_TYPE_ENUM:
fprintf(out, " needed += INT_TYPE_SIZE;\n");
break;
case JAVA_TYPE_LONG:
// Longs take 9 bytes, 1 for the type and 8 for the value.
fprintf(out, " needed += LONG_TYPE_SIZE;\n");
break;
case JAVA_TYPE_STRING:
// Strings take 5 metadata bytes + length of byte encoded string.
fprintf(out, " if (arg%d == null) {\n", argIndex);
fprintf(out, " arg%d = \"\";\n", argIndex);
fprintf(out, " }\n");
fprintf(out, " byte[] arg%dBytes= arg%d.getBytes(UTF_8);\n",
argIndex, argIndex);
fprintf(out, " needed += STRING_TYPE_OVERHEAD + arg%dBytes.length;\n",
argIndex);
break;
case JAVA_TYPE_BYTE_ARRAY:
// Byte arrays take 5 metadata bytes + length of byte array.
fprintf(out, " if (arg%d == null) {\n", argIndex);
fprintf(out, " arg%d = new byte[0];\n", argIndex);
fprintf(out, " }\n");
fprintf(out, " needed += STRING_TYPE_OVERHEAD + arg%d.length;\n", argIndex);
break;
case JAVA_TYPE_ATTRIBUTION_CHAIN:
{
const char* uidName = attributionDecl.fields.front().name.c_str();
const char* tagName = attributionDecl.fields.back().name.c_str();
// Null checks on the params.
fprintf(out, " if (%s == null) {\n", uidName);
fprintf(out, " %s = new %s[0];\n", uidName,
java_type_name(attributionDecl.fields.front().javaType));
fprintf(out, " }\n");
fprintf(out, " if (%s == null) {\n", tagName);
fprintf(out, " %s = new %s[0];\n", tagName,
java_type_name(attributionDecl.fields.back().javaType));
fprintf(out, " }\n");
// First check that the lengths of the uid and tag arrays are the same.
fprintf(out, " if (%s.length != %s.length) {\n", uidName, tagName);
fprintf(out, " return;\n");
fprintf(out, " }\n");
fprintf(out, " int attrSize = LIST_TYPE_OVERHEAD;\n");
fprintf(out, " for (int i = 0; i < %s.length; i++) {\n", tagName);
fprintf(out, " String str%d = (%s[i] == null) ? \"\" : %s[i];\n",
argIndex, tagName, tagName);
fprintf(out, " int str%dlen = str%d.getBytes(UTF_8).length;\n",
argIndex, argIndex);
fprintf(out,
" attrSize += "
"LIST_TYPE_OVERHEAD + INT_TYPE_SIZE + STRING_TYPE_OVERHEAD + str%dlen;\n",
argIndex);
fprintf(out, " }\n");
fprintf(out, " needed += attrSize;\n");
break;
}
default:
// Unsupported types: OBJECT, DOUBLE, KEY_VALUE_PAIR.
return 1;
}
argIndex++;
}
// Now we have the size that is needed. Check for overflow and return if needed.
fprintf(out, " if (needed > MAX_EVENT_PAYLOAD) {\n");
fprintf(out, " return;\n");
fprintf(out, " }\n");
// Create new buffer, and associated data types.
fprintf(out, " byte[] buff = new byte[needed];\n");
fprintf(out, " int pos = 0;\n");
// Initialize the buffer with list data type.
fprintf(out, " buff[pos] = LIST_TYPE;\n");
fprintf(out, " buff[pos + 1] = %lu;\n", signature.size() + 2);
fprintf(out, " pos += LIST_TYPE_OVERHEAD;\n");
// Write timestamp.
fprintf(out, " long elapsedRealtime = SystemClock.elapsedRealtimeNanos();\n");
fprintf(out, " buff[pos] = LONG_TYPE;\n");
fprintf(out, " copyLong(buff, pos + 1, elapsedRealtime);\n");
fprintf(out, " pos += LONG_TYPE_SIZE;\n");
// Write atom code.
fprintf(out, " buff[pos] = INT_TYPE;\n");
fprintf(out, " copyInt(buff, pos + 1, code);\n");
fprintf(out, " pos += INT_TYPE_SIZE;\n");
// Write the args.
argIndex = 1;
for (vector<java_type_t>::const_iterator arg = signature.begin();
arg != signature.end(); arg++) {
switch (*arg) {
case JAVA_TYPE_BOOLEAN:
fprintf(out, " buff[pos] = INT_TYPE;\n");
fprintf(out, " copyInt(buff, pos + 1, arg%d? 1 : 0);\n", argIndex);
fprintf(out, " pos += INT_TYPE_SIZE;\n");
break;
case JAVA_TYPE_INT:
case JAVA_TYPE_ENUM:
fprintf(out, " buff[pos] = INT_TYPE;\n");
fprintf(out, " copyInt(buff, pos + 1, arg%d);\n", argIndex);
fprintf(out, " pos += INT_TYPE_SIZE;\n");
break;
case JAVA_TYPE_FLOAT:
*requiredHelpers |= JAVA_MODULE_REQUIRES_FLOAT;
fprintf(out, " buff[pos] = FLOAT_TYPE;\n");
fprintf(out, " copyFloat(buff, pos + 1, arg%d);\n", argIndex);
fprintf(out, " pos += FLOAT_TYPE_SIZE;\n");
break;
case JAVA_TYPE_LONG:
fprintf(out, " buff[pos] = LONG_TYPE;\n");
fprintf(out, " copyLong(buff, pos + 1, arg%d);\n", argIndex);
fprintf(out, " pos += LONG_TYPE_SIZE;\n");
break;
case JAVA_TYPE_STRING:
fprintf(out, " buff[pos] = STRING_TYPE;\n");
fprintf(out, " copyInt(buff, pos + 1, arg%dBytes.length);\n", argIndex);
fprintf(out, " System.arraycopy("
"arg%dBytes, 0, buff, pos + STRING_TYPE_OVERHEAD, arg%dBytes.length);\n",
argIndex, argIndex);
fprintf(out, " pos += STRING_TYPE_OVERHEAD + arg%dBytes.length;\n",
argIndex);
break;
case JAVA_TYPE_BYTE_ARRAY:
fprintf(out, " buff[pos] = STRING_TYPE;\n");
fprintf(out, " copyInt(buff, pos + 1, arg%d.length);\n", argIndex);
fprintf(out, " System.arraycopy("
"arg%d, 0, buff, pos + STRING_TYPE_OVERHEAD, arg%d.length);\n",
argIndex, argIndex);
fprintf(out, " pos += STRING_TYPE_OVERHEAD + arg%d.length;\n", argIndex);
break;
case JAVA_TYPE_ATTRIBUTION_CHAIN:
{
*requiredHelpers |= JAVA_MODULE_REQUIRES_ATTRIBUTION;
const char* uidName = attributionDecl.fields.front().name.c_str();
const char* tagName = attributionDecl.fields.back().name.c_str();
fprintf(out, " writeAttributionChain(buff, pos, %s, %s);\n",
uidName, tagName);
fprintf(out, " pos += attrSize;\n");
break;
}
default:
// Unsupported types: OBJECT, DOUBLE, KEY_VALUE_PAIR.
return 1;
}
argIndex++;
}
fprintf(out, " StatsLog.writeRaw(buff, pos);\n");
fprintf(out, " }\n");
fprintf(out, "\n");
}
return 0;
}
static void write_java_work_source_method(FILE* out,
const map<vector<java_type_t>, set<string>>& signatures_to_modules,
const string& moduleName) {
fprintf(out, "\n // WorkSource methods.\n");
for (auto signature_to_modules_it = signatures_to_modules.begin();
signature_to_modules_it != signatures_to_modules.end(); signature_to_modules_it++) {
// Skip if this signature is not needed for the module.
if (!signature_needed_for_module(signature_to_modules_it->second, moduleName)) {
continue;
}
vector<java_type_t> signature = signature_to_modules_it->first;
// Determine if there is Attribution in this signature.
int attributionArg = -1;
int argIndexMax = 0;
for (vector<java_type_t>::const_iterator arg = signature.begin();
arg != signature.end(); arg++) {
argIndexMax++;
if (*arg == JAVA_TYPE_ATTRIBUTION_CHAIN) {
if (attributionArg > -1) {
fprintf(stderr, "An atom contains multiple AttributionNode fields.\n");
fprintf(stderr, "This is not supported. Aborting WorkSource method writing.\n");
fprintf(out, "\n// Invalid for WorkSource: more than one attribution chain.\n");
return;
}
attributionArg = argIndexMax;
}
}
if (attributionArg < 0) {
continue;
}
// Method header (signature)
if (moduleName == DEFAULT_MODULE_NAME) {
fprintf(out, " /** @hide */\n");
}
fprintf(out, " public static void write(int code");
int argIndex = 1;
for (vector<java_type_t>::const_iterator arg = signature.begin();
arg != signature.end(); arg++) {
if (*arg == JAVA_TYPE_ATTRIBUTION_CHAIN) {
fprintf(out, ", WorkSource ws");
} else {
fprintf(out, ", %s arg%d", java_type_name(*arg), argIndex);
}
argIndex++;
}
fprintf(out, ") {\n");
// write_non_chained() component. TODO: Remove when flat uids are no longer needed.
fprintf(out, " for (int i = 0; i < ws.size(); ++i) {\n");
fprintf(out, " write_non_chained(code");
for (int argIndex = 1; argIndex <= argIndexMax; argIndex++) {
if (argIndex == attributionArg) {
fprintf(out, ", ws.get(i), ws.getName(i)");
} else {
fprintf(out, ", arg%d", argIndex);
}
}
fprintf(out, ");\n");
fprintf(out, " }\n"); // close for-loop
// write() component.
fprintf(out, " ArrayList<WorkSource.WorkChain> workChains = ws.getWorkChains();\n");
fprintf(out, " if (workChains != null) {\n");
fprintf(out, " for (WorkSource.WorkChain wc : workChains) {\n");
fprintf(out, " write(code");
for (int argIndex = 1; argIndex <= argIndexMax; argIndex++) {
if (argIndex == attributionArg) {
fprintf(out, ", wc.getUids(), wc.getTags()");
} else {
fprintf(out, ", arg%d", argIndex);
}
}
fprintf(out, ");\n");
fprintf(out, " }\n"); // close for-loop
fprintf(out, " }\n"); // close if
fprintf(out, " }\n"); // close method
}
}
static void write_java_atom_codes(FILE* out, const Atoms& atoms, const string& moduleName) {
fprintf(out, " // Constants for atom codes.\n");
std::map<int, set<AtomDecl>::const_iterator> atom_code_to_non_chained_decl_map;
build_non_chained_decl_map(atoms, &atom_code_to_non_chained_decl_map);
// Print constants for the atom codes.
for (set<AtomDecl>::const_iterator atom = atoms.decls.begin();
atom != atoms.decls.end(); atom++) {
// Skip if the atom is not needed for the module.
if (!atom_needed_for_module(*atom, moduleName)) {
continue;
}
string constant = make_constant_name(atom->name);
fprintf(out, "\n");
fprintf(out, " /**\n");
fprintf(out, " * %s %s<br>\n", atom->message.c_str(), atom->name.c_str());
write_java_usage(out, "write", constant, *atom);
auto non_chained_decl = atom_code_to_non_chained_decl_map.find(atom->code);
if (non_chained_decl != atom_code_to_non_chained_decl_map.end()) {
write_java_usage(out, "write_non_chained", constant, *non_chained_decl->second);
}
if (moduleName == DEFAULT_MODULE_NAME) {
fprintf(out, " * @hide\n");
}
fprintf(out, " */\n");
fprintf(out, " public static final int %s = %d;\n", constant.c_str(), atom->code);
}
fprintf(out, "\n");
}
static void write_java_enum_values(FILE* out, const Atoms& atoms, const string& moduleName) {
fprintf(out, " // Constants for enum values.\n\n");
for (set<AtomDecl>::const_iterator atom = atoms.decls.begin();
atom != atoms.decls.end(); atom++) {
// Skip if the atom is not needed for the module.
if (!atom_needed_for_module(*atom, moduleName)) {
continue;
}
for (vector<AtomField>::const_iterator field = atom->fields.begin();
field != atom->fields.end(); field++) {
if (field->javaType == JAVA_TYPE_ENUM) {
fprintf(out, " // Values for %s.%s\n", atom->message.c_str(),
field->name.c_str());
for (map<int, string>::const_iterator value = field->enumValues.begin();
value != field->enumValues.end(); value++) {
if (moduleName == DEFAULT_MODULE_NAME) {
fprintf(out, " /** @hide */\n");
}
fprintf(out, " public static final int %s__%s__%s = %d;\n",
make_constant_name(atom->message).c_str(),
make_constant_name(field->name).c_str(),
make_constant_name(value->second).c_str(),
value->first);
}
fprintf(out, "\n");
}
}
}
}
static int
write_stats_log_java(FILE* out, const Atoms& atoms, const AtomDecl &attributionDecl)
{
// Print prelude
fprintf(out, "// This file is autogenerated\n");
fprintf(out, "\n");
fprintf(out, "package android.util;\n");
fprintf(out, "\n");
fprintf(out, "import android.os.WorkSource;\n");
fprintf(out, "import android.util.SparseArray;\n");
fprintf(out, "import java.util.ArrayList;\n");
fprintf(out, "\n");
fprintf(out, "\n");
fprintf(out, "/**\n");
fprintf(out, " * API For logging statistics events.\n");
fprintf(out, " * @hide\n");
fprintf(out, " */\n");
fprintf(out, "public class StatsLogInternal {\n");
write_java_atom_codes(out, atoms, DEFAULT_MODULE_NAME);
write_java_enum_values(out, atoms, DEFAULT_MODULE_NAME);
// Print write methods
fprintf(out, " // Write methods\n");
write_java_method(out, "write", atoms.signatures_to_modules, attributionDecl);
write_java_method(out, "write_non_chained", atoms.non_chained_signatures_to_modules,
attributionDecl);
write_java_work_source_method(out, atoms.signatures_to_modules, DEFAULT_MODULE_NAME);
fprintf(out, "}\n");
return 0;
}
// TODO: Merge this with write_stats_log_java so that we can get rid of StatsLogInternal JNI.
static int
write_stats_log_java_for_module(FILE* out, const Atoms& atoms, const AtomDecl &attributionDecl,
const string& moduleName, const string& javaClass, const string& javaPackage)
{
// Print prelude
fprintf(out, "// This file is autogenerated\n");
fprintf(out, "\n");
fprintf(out, "package %s;\n", javaPackage.c_str());
fprintf(out, "\n");
fprintf(out, "import static java.nio.charset.StandardCharsets.UTF_8;\n");
fprintf(out, "\n");
fprintf(out, "import android.util.StatsLog;\n");
fprintf(out, "import android.os.SystemClock;\n");
fprintf(out, "\n");
fprintf(out, "import java.util.ArrayList;\n");
fprintf(out, "\n");
fprintf(out, "\n");
fprintf(out, "/**\n");
fprintf(out, " * Utility class for logging statistics events.\n");
fprintf(out, " */\n");
fprintf(out, "public class %s {\n", javaClass.c_str());
// TODO: ideally these match with the native values (and automatically change if they change).
fprintf(out, " private static final int LOGGER_ENTRY_MAX_PAYLOAD = 4068;\n");
fprintf(out,
" private static final int MAX_EVENT_PAYLOAD = LOGGER_ENTRY_MAX_PAYLOAD - 4;\n");
// Value types. Must match with EventLog.java and log.h.
fprintf(out, " private static final byte INT_TYPE = 0;\n");
fprintf(out, " private static final byte LONG_TYPE = 1;\n");
fprintf(out, " private static final byte STRING_TYPE = 2;\n");
fprintf(out, " private static final byte LIST_TYPE = 3;\n");
fprintf(out, " private static final byte FLOAT_TYPE = 4;\n");
// Size of each value type.
// Booleans, ints, floats, and enums take 5 bytes, 1 for the type and 4 for the value.
fprintf(out, " private static final int INT_TYPE_SIZE = 5;\n");
fprintf(out, " private static final int FLOAT_TYPE_SIZE = 5;\n");
// Longs take 9 bytes, 1 for the type and 8 for the value.
fprintf(out, " private static final int LONG_TYPE_SIZE = 9;\n");
// Strings take 5 metadata bytes: 1 byte is for the type, 4 are for the length.
fprintf(out, " private static final int STRING_TYPE_OVERHEAD = 5;\n");
fprintf(out, " private static final int LIST_TYPE_OVERHEAD = 2;\n");
write_java_atom_codes(out, atoms, moduleName);
write_java_enum_values(out, atoms, moduleName);
int errors = 0;
int requiredHelpers = 0;
// Print write methods
fprintf(out, " // Write methods\n");
errors += write_java_method_for_module(out, atoms.signatures_to_modules, attributionDecl,
moduleName, &requiredHelpers);
errors += write_java_non_chained_method_for_module(out, atoms.non_chained_signatures_to_modules,
moduleName);
fprintf(out, " // Helper methods for copying primitives\n");
write_java_helpers_for_module(out, attributionDecl, requiredHelpers);
fprintf(out, "}\n");
return errors;
}
static const char*
jni_type_name(java_type_t type)
{
switch (type) {
case JAVA_TYPE_BOOLEAN:
return "jboolean";
case JAVA_TYPE_INT:
case JAVA_TYPE_ENUM:
return "jint";
case JAVA_TYPE_LONG:
return "jlong";
case JAVA_TYPE_FLOAT:
return "jfloat";
case JAVA_TYPE_DOUBLE:
return "jdouble";
case JAVA_TYPE_STRING:
return "jstring";
case JAVA_TYPE_BYTE_ARRAY:
return "jbyteArray";
default:
return "UNKNOWN";
}
}
static const char*
jni_array_type_name(java_type_t type)
{
switch (type) {
case JAVA_TYPE_INT:
return "jintArray";
case JAVA_TYPE_STRING:
return "jobjectArray";
default:
return "UNKNOWN";
}
}
static string
jni_function_name(const string& method_name, const vector<java_type_t>& signature)
{
string result("StatsLog_" + method_name);
for (vector<java_type_t>::const_iterator arg = signature.begin();
arg != signature.end(); arg++) {
switch (*arg) {
case JAVA_TYPE_BOOLEAN:
result += "_boolean";
break;
case JAVA_TYPE_INT:
case JAVA_TYPE_ENUM:
result += "_int";
break;
case JAVA_TYPE_LONG:
result += "_long";
break;
case JAVA_TYPE_FLOAT:
result += "_float";
break;
case JAVA_TYPE_DOUBLE:
result += "_double";
break;
case JAVA_TYPE_STRING:
result += "_String";
break;
case JAVA_TYPE_ATTRIBUTION_CHAIN:
result += "_AttributionChain";
break;
case JAVA_TYPE_BYTE_ARRAY:
result += "_bytes";
break;
default:
result += "_UNKNOWN";
break;
}
}
return result;
}
static const char*
java_type_signature(java_type_t type)
{
switch (type) {
case JAVA_TYPE_BOOLEAN:
return "Z";
case JAVA_TYPE_INT:
case JAVA_TYPE_ENUM:
return "I";
case JAVA_TYPE_LONG:
return "J";
case JAVA_TYPE_FLOAT:
return "F";
case JAVA_TYPE_DOUBLE:
return "D";
case JAVA_TYPE_STRING:
return "Ljava/lang/String;";
case JAVA_TYPE_BYTE_ARRAY:
return "[B";
default:
return "UNKNOWN";
}
}
static string
jni_function_signature(const vector<java_type_t>& signature, const AtomDecl &attributionDecl)
{
string result("(I");
for (vector<java_type_t>::const_iterator arg = signature.begin();
arg != signature.end(); arg++) {
if (*arg == JAVA_TYPE_ATTRIBUTION_CHAIN) {
for (auto chainField : attributionDecl.fields) {
result += "[";
result += java_type_signature(chainField.javaType);
}
} else {
result += java_type_signature(*arg);
}
}
result += ")I";
return result;
}
static int
write_stats_log_jni(FILE* out, const string& java_method_name, const string& cpp_method_name,
const map<vector<java_type_t>, set<string>>& signatures_to_modules,
const AtomDecl &attributionDecl) {
// Print write methods
for (auto signature_to_modules_it = signatures_to_modules.begin();
signature_to_modules_it != signatures_to_modules.end(); signature_to_modules_it++) {
vector<java_type_t> signature = signature_to_modules_it->first;
int argIndex;
fprintf(out, "static int\n");
fprintf(out, "%s(JNIEnv* env, jobject clazz UNUSED, jint code",
jni_function_name(java_method_name, signature).c_str());
argIndex = 1;
for (vector<java_type_t>::const_iterator arg = signature.begin();
arg != signature.end(); arg++) {
if (*arg == JAVA_TYPE_ATTRIBUTION_CHAIN) {
for (auto chainField : attributionDecl.fields) {
fprintf(out, ", %s %s", jni_array_type_name(chainField.javaType),
chainField.name.c_str());
}
} else {
fprintf(out, ", %s arg%d", jni_type_name(*arg), argIndex);
}
argIndex++;
}
fprintf(out, ")\n");
fprintf(out, "{\n");
// Prepare strings
argIndex = 1;
bool hadStringOrChain = false;
for (vector<java_type_t>::const_iterator arg = signature.begin();
arg != signature.end(); arg++) {
if (*arg == JAVA_TYPE_STRING) {
hadStringOrChain = true;
fprintf(out, " const char* str%d;\n", argIndex);
fprintf(out, " if (arg%d != NULL) {\n", argIndex);
fprintf(out, " str%d = env->GetStringUTFChars(arg%d, NULL);\n",
argIndex, argIndex);
fprintf(out, " } else {\n");
fprintf(out, " str%d = NULL;\n", argIndex);
fprintf(out, " }\n");
} else if (*arg == JAVA_TYPE_BYTE_ARRAY) {
hadStringOrChain = true;
fprintf(out, " jbyte* jbyte_array%d;\n", argIndex);
fprintf(out, " const char* str%d;\n", argIndex);
fprintf(out, " int str%d_length = 0;\n", argIndex);
fprintf(out,
" if (arg%d != NULL && env->GetArrayLength(arg%d) > "
"0) {\n",
argIndex, argIndex);
fprintf(out,
" jbyte_array%d = "
"env->GetByteArrayElements(arg%d, NULL);\n",
argIndex, argIndex);
fprintf(out,
" str%d_length = env->GetArrayLength(arg%d);\n",
argIndex, argIndex);
fprintf(out,
" str%d = "
"reinterpret_cast<char*>(env->GetByteArrayElements(arg%"
"d, NULL));\n",
argIndex, argIndex);
fprintf(out, " } else {\n");
fprintf(out, " jbyte_array%d = NULL;\n", argIndex);
fprintf(out, " str%d = NULL;\n", argIndex);
fprintf(out, " }\n");
fprintf(out,
" android::util::BytesField bytesField%d(str%d, "
"str%d_length);",
argIndex, argIndex, argIndex);
} else if (*arg == JAVA_TYPE_ATTRIBUTION_CHAIN) {
hadStringOrChain = true;
for (auto chainField : attributionDecl.fields) {
fprintf(out, " size_t %s_length = env->GetArrayLength(%s);\n",
chainField.name.c_str(), chainField.name.c_str());
if (chainField.name != attributionDecl.fields.front().name) {
fprintf(out, " if (%s_length != %s_length) {\n",
chainField.name.c_str(),
attributionDecl.fields.front().name.c_str());
fprintf(out, " return -EINVAL;\n");
fprintf(out, " }\n");
}
if (chainField.javaType == JAVA_TYPE_INT) {
fprintf(out, " jint* %s_array = env->GetIntArrayElements(%s, NULL);\n",
chainField.name.c_str(), chainField.name.c_str());
} else if (chainField.javaType == JAVA_TYPE_STRING) {
fprintf(out, " std::vector<%s> %s_vec;\n",
cpp_type_name(chainField.javaType), chainField.name.c_str());
fprintf(out, " std::vector<ScopedUtfChars*> scoped_%s_vec;\n",
chainField.name.c_str());
fprintf(out, " for (size_t i = 0; i < %s_length; ++i) {\n",
chainField.name.c_str());
fprintf(out, " jstring jstr = "
"(jstring)env->GetObjectArrayElement(%s, i);\n",
chainField.name.c_str());
fprintf(out, " if (jstr == NULL) {\n");
fprintf(out, " %s_vec.push_back(NULL);\n",
chainField.name.c_str());
fprintf(out, " } else {\n");
fprintf(out, " ScopedUtfChars* scoped_%s = "
"new ScopedUtfChars(env, jstr);\n",
chainField.name.c_str());
fprintf(out, " %s_vec.push_back(scoped_%s->c_str());\n",
chainField.name.c_str(), chainField.name.c_str());
fprintf(out, " scoped_%s_vec.push_back(scoped_%s);\n",
chainField.name.c_str(), chainField.name.c_str());
fprintf(out, " }\n");
fprintf(out, " }\n");
}
fprintf(out, "\n");
}
}
argIndex++;
}
// Emit this to quiet the unused parameter warning if there were no strings or attribution
// chains.
if (!hadStringOrChain) {
fprintf(out, " (void)env;\n");
}
// stats_write call
argIndex = 1;
fprintf(out, "\n int ret = android::util::%s(code",
cpp_method_name.c_str());
for (vector<java_type_t>::const_iterator arg = signature.begin();
arg != signature.end(); arg++) {
if (*arg == JAVA_TYPE_ATTRIBUTION_CHAIN) {
for (auto chainField : attributionDecl.fields) {
if (chainField.javaType == JAVA_TYPE_INT) {
fprintf(out, ", (const %s*)%s_array, %s_length",
cpp_type_name(chainField.javaType),
chainField.name.c_str(), chainField.name.c_str());
} else if (chainField.javaType == JAVA_TYPE_STRING) {
fprintf(out, ", %s_vec", chainField.name.c_str());
}
}
} else if (*arg == JAVA_TYPE_BYTE_ARRAY) {
fprintf(out, ", bytesField%d", argIndex);
} else {
const char* argName =
(*arg == JAVA_TYPE_STRING) ? "str" : "arg";
fprintf(out, ", (%s)%s%d", cpp_type_name(*arg), argName, argIndex);
}
argIndex++;
}
fprintf(out, ");\n");
fprintf(out, "\n");
// Clean up strings
argIndex = 1;
for (vector<java_type_t>::const_iterator arg = signature.begin();
arg != signature.end(); arg++) {
if (*arg == JAVA_TYPE_STRING) {
fprintf(out, " if (str%d != NULL) {\n", argIndex);
fprintf(out, " env->ReleaseStringUTFChars(arg%d, str%d);\n",
argIndex, argIndex);
fprintf(out, " }\n");
} else if (*arg == JAVA_TYPE_BYTE_ARRAY) {
fprintf(out, " if (str%d != NULL) { \n", argIndex);
fprintf(out,
" env->ReleaseByteArrayElements(arg%d, "
"jbyte_array%d, 0);\n",
argIndex, argIndex);
fprintf(out, " }\n");
} else if (*arg == JAVA_TYPE_ATTRIBUTION_CHAIN) {
for (auto chainField : attributionDecl.fields) {
if (chainField.javaType == JAVA_TYPE_INT) {
fprintf(out, " env->ReleaseIntArrayElements(%s, %s_array, 0);\n",
chainField.name.c_str(), chainField.name.c_str());
} else if (chainField.javaType == JAVA_TYPE_STRING) {
fprintf(out, " for (size_t i = 0; i < scoped_%s_vec.size(); ++i) {\n",
chainField.name.c_str());
fprintf(out, " delete scoped_%s_vec[i];\n", chainField.name.c_str());
fprintf(out, " }\n");
}
}
}
argIndex++;
}
fprintf(out, " return ret;\n");
fprintf(out, "}\n");
fprintf(out, "\n");
}
return 0;
}
void write_jni_registration(FILE* out, const string& java_method_name,
const map<vector<java_type_t>, set<string>>& signatures_to_modules,
const AtomDecl &attributionDecl) {
for (auto signature_to_modules_it = signatures_to_modules.begin();
signature_to_modules_it != signatures_to_modules.end(); signature_to_modules_it++) {
vector<java_type_t> signature = signature_to_modules_it->first;
fprintf(out, " { \"%s\", \"%s\", (void*)%s },\n",
java_method_name.c_str(),
jni_function_signature(signature, attributionDecl).c_str(),
jni_function_name(java_method_name, signature).c_str());
}
}
static int
write_stats_log_jni(FILE* out, const Atoms& atoms, const AtomDecl &attributionDecl)
{
// Print prelude
fprintf(out, "// This file is autogenerated\n");
fprintf(out, "\n");
fprintf(out, "#include <statslog.h>\n");
fprintf(out, "\n");
fprintf(out, "#include <nativehelper/JNIHelp.h>\n");
fprintf(out, "#include <nativehelper/ScopedUtfChars.h>\n");
fprintf(out, "#include <utils/Vector.h>\n");
fprintf(out, "#include \"core_jni_helpers.h\"\n");
fprintf(out, "#include \"jni.h\"\n");
fprintf(out, "\n");
fprintf(out, "#define UNUSED __attribute__((__unused__))\n");
fprintf(out, "\n");
fprintf(out, "namespace android {\n");
fprintf(out, "\n");
write_stats_log_jni(out, "write", "stats_write", atoms.signatures_to_modules, attributionDecl);
write_stats_log_jni(out, "write_non_chained", "stats_write_non_chained",
atoms.non_chained_signatures_to_modules, attributionDecl);
// Print registration function table
fprintf(out, "/*\n");
fprintf(out, " * JNI registration.\n");
fprintf(out, " */\n");
fprintf(out, "static const JNINativeMethod gRegisterMethods[] = {\n");
write_jni_registration(out, "write", atoms.signatures_to_modules, attributionDecl);
write_jni_registration(out, "write_non_chained", atoms.non_chained_signatures_to_modules,
attributionDecl);
fprintf(out, "};\n");
fprintf(out, "\n");
// Print registration function
fprintf(out, "int register_android_util_StatsLogInternal(JNIEnv* env) {\n");
fprintf(out, " return RegisterMethodsOrDie(\n");
fprintf(out, " env,\n");
fprintf(out, " \"android/util/StatsLogInternal\",\n");
fprintf(out, " gRegisterMethods, NELEM(gRegisterMethods));\n");
fprintf(out, "}\n");
fprintf(out, "\n");
fprintf(out, "} // namespace android\n");
return 0;
}
static void
print_usage()
{
fprintf(stderr, "usage: stats-log-api-gen OPTIONS\n");
fprintf(stderr, "\n");
fprintf(stderr, "OPTIONS\n");
fprintf(stderr, " --cpp FILENAME the header file to output\n");
fprintf(stderr, " --header FILENAME the cpp file to output\n");
fprintf(stderr, " --help this message\n");
fprintf(stderr, " --java FILENAME the java file to output\n");
fprintf(stderr, " --jni FILENAME the jni file to output\n");
fprintf(stderr, " --module NAME optional, module name to generate outputs for\n");
fprintf(stderr, " --namespace COMMA,SEP,NAMESPACE required for cpp/header with module\n");
fprintf(stderr, " comma separated namespace of the files\n");
fprintf(stderr, " --importHeader NAME required for cpp/jni to say which header to import\n");
fprintf(stderr, " --javaPackage PACKAGE the package for the java file.\n");
fprintf(stderr, " required for java with module\n");
fprintf(stderr, " --javaClass CLASS the class name of the java class.\n");
fprintf(stderr, " Optional for Java with module.\n");
fprintf(stderr, " Default is \"StatsLogInternal\"\n");}
/**
* Do the argument parsing and execute the tasks.
*/
static int
run(int argc, char const*const* argv)
{
string cppFilename;
string headerFilename;
string javaFilename;
string jniFilename;
string moduleName = DEFAULT_MODULE_NAME;
string cppNamespace = DEFAULT_CPP_NAMESPACE;
string cppHeaderImport = DEFAULT_CPP_HEADER_IMPORT;
string javaPackage = DEFAULT_JAVA_PACKAGE;
string javaClass = DEFAULT_JAVA_CLASS;
int index = 1;
while (index < argc) {
if (0 == strcmp("--help", argv[index])) {
print_usage();
return 0;
} else if (0 == strcmp("--cpp", argv[index])) {
index++;
if (index >= argc) {
print_usage();
return 1;
}
cppFilename = argv[index];
} else if (0 == strcmp("--header", argv[index])) {
index++;
if (index >= argc) {
print_usage();
return 1;
}
headerFilename = argv[index];
} else if (0 == strcmp("--java", argv[index])) {
index++;
if (index >= argc) {
print_usage();
return 1;
}
javaFilename = argv[index];
} else if (0 == strcmp("--jni", argv[index])) {
index++;
if (index >= argc) {
print_usage();
return 1;
}
jniFilename = argv[index];
} else if (0 == strcmp("--module", argv[index])) {
index++;
if (index >= argc) {
print_usage();
return 1;
}
moduleName = argv[index];
} else if (0 == strcmp("--namespace", argv[index])) {
index++;
if (index >= argc) {
print_usage();
return 1;
}
cppNamespace = argv[index];
} else if (0 == strcmp("--importHeader", argv[index])) {
index++;
if (index >= argc) {
print_usage();
return 1;
}
cppHeaderImport = argv[index];
} else if (0 == strcmp("--javaPackage", argv[index])) {
index++;
if (index >= argc) {
print_usage();
return 1;
}
javaPackage = argv[index];
} else if (0 == strcmp("--javaClass", argv[index])) {
index++;
if (index >= argc) {
print_usage();
return 1;
}
javaClass = argv[index];
}
index++;
}
if (cppFilename.size() == 0
&& headerFilename.size() == 0
&& javaFilename.size() == 0
&& jniFilename.size() == 0) {
print_usage();
return 1;
}
// Collate the parameters
Atoms atoms;
int errorCount = collate_atoms(Atom::descriptor(), &atoms);
if (errorCount != 0) {
return 1;
}
AtomDecl attributionDecl;
vector<java_type_t> attributionSignature;
collate_atom(android::os::statsd::AttributionNode::descriptor(),
&attributionDecl, &attributionSignature);
// Write the .cpp file
if (cppFilename.size() != 0) {
FILE* out = fopen(cppFilename.c_str(), "w");
if (out == NULL) {
fprintf(stderr, "Unable to open file for write: %s\n", cppFilename.c_str());
return 1;
}
// If this is for a specific module, the namespace must also be provided.
if (moduleName != DEFAULT_MODULE_NAME && cppNamespace == DEFAULT_CPP_NAMESPACE) {
fprintf(stderr, "Must supply --namespace if supplying a specific module\n");
return 1;
}
// If this is for a specific module, the header file to import must also be provided.
if (moduleName != DEFAULT_MODULE_NAME && cppHeaderImport == DEFAULT_CPP_HEADER_IMPORT) {
fprintf(stderr, "Must supply --headerImport if supplying a specific module\n");
return 1;
}
errorCount = android::stats_log_api_gen::write_stats_log_cpp(
out, atoms, attributionDecl, moduleName, cppNamespace, cppHeaderImport);
fclose(out);
}
// Write the .h file
if (headerFilename.size() != 0) {
FILE* out = fopen(headerFilename.c_str(), "w");
if (out == NULL) {
fprintf(stderr, "Unable to open file for write: %s\n", headerFilename.c_str());
return 1;
}
// If this is for a specific module, the namespace must also be provided.
if (moduleName != DEFAULT_MODULE_NAME && cppNamespace == DEFAULT_CPP_NAMESPACE) {
fprintf(stderr, "Must supply --namespace if supplying a specific module\n");
}
errorCount = android::stats_log_api_gen::write_stats_log_header(
out, atoms, attributionDecl, moduleName, cppNamespace);
fclose(out);
}
// Write the .java file
if (javaFilename.size() != 0) {
FILE* out = fopen(javaFilename.c_str(), "w");
if (out == NULL) {
fprintf(stderr, "Unable to open file for write: %s\n", javaFilename.c_str());
return 1;
}
// If this is for a specific module, the java package must also be provided.
if (moduleName != DEFAULT_MODULE_NAME && javaPackage== DEFAULT_JAVA_PACKAGE) {
fprintf(stderr, "Must supply --javaPackage if supplying a specific module\n");
return 1;
}
if (moduleName == DEFAULT_MODULE_NAME) {
errorCount = android::stats_log_api_gen::write_stats_log_java(
out, atoms, attributionDecl);
} else {
errorCount = android::stats_log_api_gen::write_stats_log_java_for_module(
out, atoms, attributionDecl, moduleName, javaClass, javaPackage);
}
fclose(out);
}
// Write the jni file
if (jniFilename.size() != 0) {
FILE* out = fopen(jniFilename.c_str(), "w");
if (out == NULL) {
fprintf(stderr, "Unable to open file for write: %s\n", jniFilename.c_str());
return 1;
}
errorCount = android::stats_log_api_gen::write_stats_log_jni(
out, atoms, attributionDecl);
fclose(out);
}
return errorCount;
}
}
}
/**
* Main.
*/
int
main(int argc, char const*const* argv)
{
GOOGLE_PROTOBUF_VERIFY_VERSION;
return android::stats_log_api_gen::run(argc, argv);
}