blob: ededffb0f4bb26b0b4d232f583824ec1ba4c4c94 [file] [log] [blame]
/*
* Copyright (C) 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "DeferredLayerUpdater.h"
#include "GlLayer.h"
#include "VkLayer.h"
#include <GpuMemoryTracker.h>
#include "renderstate/RenderState.h"
#include "renderthread/CanvasContext.h"
#include "renderthread/EglManager.h"
#include "utils/GLUtils.h"
#include <algorithm>
#include <ui/ColorSpace.h>
namespace android {
namespace uirenderer {
RenderState::RenderState(renderthread::RenderThread& thread)
: mRenderThread(thread)
, mViewportWidth(0)
, mViewportHeight(0)
, mFramebuffer(0) {
mThreadId = pthread_self();
}
RenderState::~RenderState() {
LOG_ALWAYS_FATAL_IF(mBlend || mMeshState || mScissor || mStencil,
"State object lifecycle not managed correctly");
}
void RenderState::onGLContextCreated() {
LOG_ALWAYS_FATAL_IF(mBlend || mMeshState || mScissor || mStencil,
"State object lifecycle not managed correctly");
GpuMemoryTracker::onGpuContextCreated();
mBlend = new Blend();
mMeshState = new MeshState();
mScissor = new Scissor();
mStencil = new Stencil();
// Deferred because creation needs GL context for texture limits
if (!mLayerPool) {
mLayerPool = new OffscreenBufferPool();
}
// This is delayed because the first access of Caches makes GL calls
if (!mCaches) {
mCaches = &Caches::createInstance(*this);
}
mCaches->init();
}
static void layerLostGlContext(Layer* layer) {
LOG_ALWAYS_FATAL_IF(layer->getApi() != Layer::Api::OpenGL,
"layerLostGlContext on non GL layer");
static_cast<GlLayer*>(layer)->onGlContextLost();
}
void RenderState::onGLContextDestroyed() {
mLayerPool->clear();
// TODO: reset all cached state in state objects
std::for_each(mActiveLayers.begin(), mActiveLayers.end(), layerLostGlContext);
mCaches->terminate();
delete mBlend;
mBlend = nullptr;
delete mMeshState;
mMeshState = nullptr;
delete mScissor;
mScissor = nullptr;
delete mStencil;
mStencil = nullptr;
destroyLayersInUpdater();
GpuMemoryTracker::onGpuContextDestroyed();
}
void RenderState::onVkContextCreated() {
LOG_ALWAYS_FATAL_IF(mBlend || mMeshState || mScissor || mStencil,
"State object lifecycle not managed correctly");
GpuMemoryTracker::onGpuContextCreated();
}
static void layerDestroyedVkContext(Layer* layer) {
LOG_ALWAYS_FATAL_IF(layer->getApi() != Layer::Api::Vulkan,
"layerLostVkContext on non Vulkan layer");
static_cast<VkLayer*>(layer)->onVkContextDestroyed();
}
void RenderState::onVkContextDestroyed() {
mLayerPool->clear();
std::for_each(mActiveLayers.begin(), mActiveLayers.end(), layerDestroyedVkContext);
GpuMemoryTracker::onGpuContextDestroyed();
}
GrContext* RenderState::getGrContext() const {
return mRenderThread.getGrContext();
}
void RenderState::flush(Caches::FlushMode mode) {
switch (mode) {
case Caches::FlushMode::Full:
// fall through
case Caches::FlushMode::Moderate:
// fall through
case Caches::FlushMode::Layers:
if (mLayerPool) mLayerPool->clear();
break;
}
if (mCaches) mCaches->flush(mode);
}
void RenderState::onBitmapDestroyed(uint32_t pixelRefId) {
if (mCaches && mCaches->textureCache.destroyTexture(pixelRefId)) {
glFlush();
GL_CHECKPOINT(MODERATE);
}
}
void RenderState::setViewport(GLsizei width, GLsizei height) {
mViewportWidth = width;
mViewportHeight = height;
glViewport(0, 0, mViewportWidth, mViewportHeight);
}
void RenderState::getViewport(GLsizei* outWidth, GLsizei* outHeight) {
*outWidth = mViewportWidth;
*outHeight = mViewportHeight;
}
void RenderState::bindFramebuffer(GLuint fbo) {
if (mFramebuffer != fbo) {
mFramebuffer = fbo;
glBindFramebuffer(GL_FRAMEBUFFER, mFramebuffer);
}
}
GLuint RenderState::createFramebuffer() {
GLuint ret;
glGenFramebuffers(1, &ret);
return ret;
}
void RenderState::deleteFramebuffer(GLuint fbo) {
if (mFramebuffer == fbo) {
// GL defines that deleting the currently bound FBO rebinds FBO 0.
// Reflect this in our cached value.
mFramebuffer = 0;
}
glDeleteFramebuffers(1, &fbo);
}
void RenderState::invokeFunctor(Functor* functor, DrawGlInfo::Mode mode, DrawGlInfo* info) {
if (mode == DrawGlInfo::kModeProcessNoContext) {
// If there's no context we don't need to interrupt as there's
// no gl state to save/restore
(*functor)(mode, info);
} else {
interruptForFunctorInvoke();
(*functor)(mode, info);
resumeFromFunctorInvoke();
}
}
void RenderState::interruptForFunctorInvoke() {
mCaches->setProgram(nullptr);
mCaches->textureState().resetActiveTexture();
meshState().unbindMeshBuffer();
meshState().unbindIndicesBuffer();
meshState().resetVertexPointers();
meshState().disableTexCoordsVertexArray();
debugOverdraw(false, false);
// TODO: We need a way to know whether the functor is sRGB aware (b/32072673)
if (mCaches->extensions().hasLinearBlending() &&
mCaches->extensions().hasSRGBWriteControl()) {
glDisable(GL_FRAMEBUFFER_SRGB_EXT);
}
}
void RenderState::resumeFromFunctorInvoke() {
if (mCaches->extensions().hasLinearBlending() &&
mCaches->extensions().hasSRGBWriteControl()) {
glEnable(GL_FRAMEBUFFER_SRGB_EXT);
}
glViewport(0, 0, mViewportWidth, mViewportHeight);
glBindFramebuffer(GL_FRAMEBUFFER, mFramebuffer);
debugOverdraw(false, false);
glClearColor(0.0f, 0.0f, 0.0f, 0.0f);
scissor().invalidate();
blend().invalidate();
mCaches->textureState().activateTexture(0);
mCaches->textureState().resetBoundTextures();
}
void RenderState::debugOverdraw(bool enable, bool clear) {
if (Properties::debugOverdraw && mFramebuffer == 0) {
if (clear) {
scissor().setEnabled(false);
stencil().clear();
}
if (enable) {
stencil().enableDebugWrite();
} else {
stencil().disable();
}
}
}
static void destroyLayerInUpdater(DeferredLayerUpdater* layerUpdater) {
layerUpdater->destroyLayer();
}
void RenderState::destroyLayersInUpdater() {
std::for_each(mActiveLayerUpdaters.begin(), mActiveLayerUpdaters.end(), destroyLayerInUpdater);
}
class DecStrongTask : public renderthread::RenderTask {
public:
explicit DecStrongTask(VirtualLightRefBase* object) : mObject(object) {}
virtual void run() override {
mObject->decStrong(nullptr);
mObject = nullptr;
delete this;
}
private:
VirtualLightRefBase* mObject;
};
void RenderState::postDecStrong(VirtualLightRefBase* object) {
if (pthread_equal(mThreadId, pthread_self())) {
object->decStrong(nullptr);
} else {
mRenderThread.queue(new DecStrongTask(object));
}
}
///////////////////////////////////////////////////////////////////////////////
// Render
///////////////////////////////////////////////////////////////////////////////
void RenderState::render(const Glop& glop, const Matrix4& orthoMatrix) {
const Glop::Mesh& mesh = glop.mesh;
const Glop::Mesh::Vertices& vertices = mesh.vertices;
const Glop::Mesh::Indices& indices = mesh.indices;
const Glop::Fill& fill = glop.fill;
GL_CHECKPOINT(MODERATE);
// ---------------------------------------------
// ---------- Program + uniform setup ----------
// ---------------------------------------------
mCaches->setProgram(fill.program);
if (fill.colorEnabled) {
fill.program->setColor(fill.color);
}
fill.program->set(orthoMatrix,
glop.transform.modelView,
glop.transform.meshTransform(),
glop.transform.transformFlags & TransformFlags::OffsetByFudgeFactor);
// Color filter uniforms
if (fill.filterMode == ProgramDescription::ColorFilterMode::Blend) {
const FloatColor& color = fill.filter.color;
glUniform4f(mCaches->program().getUniform("colorBlend"),
color.r, color.g, color.b, color.a);
} else if (fill.filterMode == ProgramDescription::ColorFilterMode::Matrix) {
glUniformMatrix4fv(mCaches->program().getUniform("colorMatrix"), 1, GL_FALSE,
fill.filter.matrix.matrix);
glUniform4fv(mCaches->program().getUniform("colorMatrixVector"), 1,
fill.filter.matrix.vector);
}
// Round rect clipping uniforms
if (glop.roundRectClipState) {
// TODO: avoid query, and cache values (or RRCS ptr) in program
const RoundRectClipState* state = glop.roundRectClipState;
const Rect& innerRect = state->innerRect;
// add half pixel to round out integer rect space to cover pixel centers
float roundedOutRadius = state->radius + 0.5f;
// Divide by the radius to simplify the calculations in the fragment shader
// roundRectPos is also passed from vertex shader relative to top/left & radius
glUniform4f(fill.program->getUniform("roundRectInnerRectLTWH"),
innerRect.left / roundedOutRadius, innerRect.top / roundedOutRadius,
(innerRect.right - innerRect.left) / roundedOutRadius,
(innerRect.bottom - innerRect.top) / roundedOutRadius);
glUniformMatrix4fv(fill.program->getUniform("roundRectInvTransform"),
1, GL_FALSE, &state->matrix.data[0]);
glUniform1f(fill.program->getUniform("roundRectRadius"),
roundedOutRadius);
}
GL_CHECKPOINT(MODERATE);
// --------------------------------
// ---------- Mesh setup ----------
// --------------------------------
// vertices
meshState().bindMeshBuffer(vertices.bufferObject);
meshState().bindPositionVertexPointer(vertices.position, vertices.stride);
// indices
meshState().bindIndicesBuffer(indices.bufferObject);
// texture
if (fill.texture.texture != nullptr) {
const Glop::Fill::TextureData& texture = fill.texture;
// texture always takes slot 0, shader samplers increment from there
mCaches->textureState().activateTexture(0);
mCaches->textureState().bindTexture(texture.texture->target(), texture.texture->id());
if (texture.clamp != GL_INVALID_ENUM) {
texture.texture->setWrap(texture.clamp, false, false);
}
if (texture.filter != GL_INVALID_ENUM) {
texture.texture->setFilter(texture.filter, false, false);
}
if (texture.textureTransform) {
glUniformMatrix4fv(fill.program->getUniform("mainTextureTransform"), 1,
GL_FALSE, &texture.textureTransform->data[0]);
}
}
// vertex attributes (tex coord, color, alpha)
if (vertices.attribFlags & VertexAttribFlags::TextureCoord) {
meshState().enableTexCoordsVertexArray();
meshState().bindTexCoordsVertexPointer(vertices.texCoord, vertices.stride);
} else {
meshState().disableTexCoordsVertexArray();
}
int colorLocation = -1;
if (vertices.attribFlags & VertexAttribFlags::Color) {
colorLocation = fill.program->getAttrib("colors");
glEnableVertexAttribArray(colorLocation);
glVertexAttribPointer(colorLocation, 4, GL_FLOAT, GL_FALSE, vertices.stride, vertices.color);
}
int alphaLocation = -1;
if (vertices.attribFlags & VertexAttribFlags::Alpha) {
// NOTE: alpha vertex position is computed assuming no VBO
const void* alphaCoords = ((const GLbyte*) vertices.position) + kVertexAlphaOffset;
alphaLocation = fill.program->getAttrib("vtxAlpha");
glEnableVertexAttribArray(alphaLocation);
glVertexAttribPointer(alphaLocation, 1, GL_FLOAT, GL_FALSE, vertices.stride, alphaCoords);
}
// Shader uniforms
SkiaShader::apply(*mCaches, fill.skiaShaderData, mViewportWidth, mViewportHeight);
GL_CHECKPOINT(MODERATE);
Texture* texture = (fill.skiaShaderData.skiaShaderType & kBitmap_SkiaShaderType) ?
fill.skiaShaderData.bitmapData.bitmapTexture : nullptr;
const AutoTexture autoCleanup(texture);
// If we have a shader and a base texture, the base texture is assumed to be an alpha mask
// which means the color space conversion applies to the shader's bitmap
Texture* colorSpaceTexture = texture != nullptr ? texture : fill.texture.texture;
if (colorSpaceTexture != nullptr) {
if (colorSpaceTexture->hasColorSpaceConversion()) {
const ColorSpaceConnector* connector = colorSpaceTexture->getColorSpaceConnector();
glUniformMatrix3fv(fill.program->getUniform("colorSpaceMatrix"), 1,
GL_FALSE, connector->getTransform().asArray());
}
TransferFunctionType transferFunction = colorSpaceTexture->getTransferFunctionType();
if (transferFunction != TransferFunctionType::None) {
const ColorSpaceConnector* connector = colorSpaceTexture->getColorSpaceConnector();
const ColorSpace& source = connector->getSource();
switch (transferFunction) {
case TransferFunctionType::None:
break;
case TransferFunctionType::Full:
glUniform1fv(fill.program->getUniform("transferFunction"), 7,
reinterpret_cast<const float*>(&source.getTransferParameters().g));
break;
case TransferFunctionType::Limited:
glUniform1fv(fill.program->getUniform("transferFunction"), 5,
reinterpret_cast<const float*>(&source.getTransferParameters().g));
break;
case TransferFunctionType::Gamma:
glUniform1f(fill.program->getUniform("transferFunctionGamma"),
source.getTransferParameters().g);
break;
}
}
}
// ------------------------------------
// ---------- GL state setup ----------
// ------------------------------------
blend().setFactors(glop.blend.src, glop.blend.dst);
GL_CHECKPOINT(MODERATE);
// ------------------------------------
// ---------- Actual drawing ----------
// ------------------------------------
if (indices.bufferObject == meshState().getQuadListIBO()) {
// Since the indexed quad list is of limited length, we loop over
// the glDrawXXX method while updating the vertex pointer
GLsizei elementsCount = mesh.elementCount;
const GLbyte* vertexData = static_cast<const GLbyte*>(vertices.position);
while (elementsCount > 0) {
GLsizei drawCount = std::min(elementsCount, (GLsizei) kMaxNumberOfQuads * 6);
GLsizei vertexCount = (drawCount / 6) * 4;
meshState().bindPositionVertexPointer(vertexData, vertices.stride);
if (vertices.attribFlags & VertexAttribFlags::TextureCoord) {
meshState().bindTexCoordsVertexPointer(
vertexData + kMeshTextureOffset, vertices.stride);
}
if (mCaches->extensions().getMajorGlVersion() >= 3) {
glDrawRangeElements(mesh.primitiveMode, 0, vertexCount-1, drawCount, GL_UNSIGNED_SHORT, nullptr);
} else {
glDrawElements(mesh.primitiveMode, drawCount, GL_UNSIGNED_SHORT, nullptr);
}
elementsCount -= drawCount;
vertexData += vertexCount * vertices.stride;
}
} else if (indices.bufferObject || indices.indices) {
if (mCaches->extensions().getMajorGlVersion() >= 3) {
// use glDrawRangeElements to reduce CPU overhead (otherwise the driver has to determine the min/max index values)
glDrawRangeElements(mesh.primitiveMode, 0, mesh.vertexCount-1, mesh.elementCount, GL_UNSIGNED_SHORT, indices.indices);
} else {
glDrawElements(mesh.primitiveMode, mesh.elementCount, GL_UNSIGNED_SHORT, indices.indices);
}
} else {
glDrawArrays(mesh.primitiveMode, 0, mesh.elementCount);
}
GL_CHECKPOINT(MODERATE);
// -----------------------------------
// ---------- Mesh teardown ----------
// -----------------------------------
if (vertices.attribFlags & VertexAttribFlags::Alpha) {
glDisableVertexAttribArray(alphaLocation);
}
if (vertices.attribFlags & VertexAttribFlags::Color) {
glDisableVertexAttribArray(colorLocation);
}
GL_CHECKPOINT(MODERATE);
}
void RenderState::dump() {
blend().dump();
meshState().dump();
scissor().dump();
stencil().dump();
}
} /* namespace uirenderer */
} /* namespace android */