| /* |
| * Copyright (C) 2016 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "SkiaPipeline.h" |
| |
| #include <SkCanvas.h> |
| #include <SkColor.h> |
| #include <SkColorSpace.h> |
| #include <SkData.h> |
| #include <SkImage.h> |
| #include <SkImageEncoder.h> |
| #include <SkImageInfo.h> |
| #include <SkImagePriv.h> |
| #include <SkMatrix.h> |
| #include <SkMultiPictureDocument.h> |
| #include <SkOverdrawCanvas.h> |
| #include <SkOverdrawColorFilter.h> |
| #include <SkPicture.h> |
| #include <SkPictureRecorder.h> |
| #include <SkRect.h> |
| #include <SkRefCnt.h> |
| #include <SkSerialProcs.h> |
| #include <SkStream.h> |
| #include <SkString.h> |
| #include <SkTypeface.h> |
| #include <android-base/properties.h> |
| #include <gui/TraceUtils.h> |
| #include <unistd.h> |
| |
| #include <sstream> |
| |
| #include "LightingInfo.h" |
| #include "VectorDrawable.h" |
| #include "include/gpu/GpuTypes.h" // from Skia |
| #include "thread/CommonPool.h" |
| #include "tools/SkSharingProc.h" |
| #include "utils/Color.h" |
| #include "utils/String8.h" |
| |
| using namespace android::uirenderer::renderthread; |
| |
| namespace android { |
| namespace uirenderer { |
| namespace skiapipeline { |
| |
| SkiaPipeline::SkiaPipeline(RenderThread& thread) : mRenderThread(thread) { |
| setSurfaceColorProperties(mColorMode); |
| } |
| |
| SkiaPipeline::~SkiaPipeline() { |
| unpinImages(); |
| } |
| |
| void SkiaPipeline::onDestroyHardwareResources() { |
| unpinImages(); |
| mRenderThread.cacheManager().trimStaleResources(); |
| } |
| |
| bool SkiaPipeline::pinImages(std::vector<SkImage*>& mutableImages) { |
| if (!mRenderThread.getGrContext()) { |
| ALOGD("Trying to pin an image with an invalid GrContext"); |
| return false; |
| } |
| for (SkImage* image : mutableImages) { |
| if (SkImage_pinAsTexture(image, mRenderThread.getGrContext())) { |
| mPinnedImages.emplace_back(sk_ref_sp(image)); |
| } else { |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| void SkiaPipeline::unpinImages() { |
| for (auto& image : mPinnedImages) { |
| SkImage_unpinAsTexture(image.get(), mRenderThread.getGrContext()); |
| } |
| mPinnedImages.clear(); |
| } |
| |
| void SkiaPipeline::renderLayers(const LightGeometry& lightGeometry, |
| LayerUpdateQueue* layerUpdateQueue, bool opaque, |
| const LightInfo& lightInfo) { |
| LightingInfo::updateLighting(lightGeometry, lightInfo); |
| ATRACE_NAME("draw layers"); |
| renderLayersImpl(*layerUpdateQueue, opaque); |
| layerUpdateQueue->clear(); |
| } |
| |
| void SkiaPipeline::renderLayersImpl(const LayerUpdateQueue& layers, bool opaque) { |
| sk_sp<GrDirectContext> cachedContext; |
| |
| // Render all layers that need to be updated, in order. |
| for (size_t i = 0; i < layers.entries().size(); i++) { |
| RenderNode* layerNode = layers.entries()[i].renderNode.get(); |
| // only schedule repaint if node still on layer - possible it may have been |
| // removed during a dropped frame, but layers may still remain scheduled so |
| // as not to lose info on what portion is damaged |
| if (CC_UNLIKELY(layerNode->getLayerSurface() == nullptr)) { |
| continue; |
| } |
| SkASSERT(layerNode->getLayerSurface()); |
| SkiaDisplayList* displayList = layerNode->getDisplayList().asSkiaDl(); |
| if (!displayList || displayList->isEmpty()) { |
| ALOGE("%p drawLayers(%s) : missing drawable", layerNode, layerNode->getName()); |
| return; |
| } |
| |
| const Rect& layerDamage = layers.entries()[i].damage; |
| |
| SkCanvas* layerCanvas = layerNode->getLayerSurface()->getCanvas(); |
| |
| int saveCount = layerCanvas->save(); |
| SkASSERT(saveCount == 1); |
| |
| layerCanvas->androidFramework_setDeviceClipRestriction(layerDamage.toSkIRect()); |
| |
| // TODO: put localized light center calculation and storage to a drawable related code. |
| // It does not seem right to store something localized in a global state |
| // fix here and in recordLayers |
| const Vector3 savedLightCenter(LightingInfo::getLightCenterRaw()); |
| Vector3 transformedLightCenter(savedLightCenter); |
| // map current light center into RenderNode's coordinate space |
| layerNode->getSkiaLayer()->inverseTransformInWindow.mapPoint3d(transformedLightCenter); |
| LightingInfo::setLightCenterRaw(transformedLightCenter); |
| |
| const RenderProperties& properties = layerNode->properties(); |
| const SkRect bounds = SkRect::MakeWH(properties.getWidth(), properties.getHeight()); |
| if (properties.getClipToBounds() && layerCanvas->quickReject(bounds)) { |
| return; |
| } |
| |
| ATRACE_FORMAT("drawLayer [%s] %.1f x %.1f", layerNode->getName(), bounds.width(), |
| bounds.height()); |
| |
| layerNode->getSkiaLayer()->hasRenderedSinceRepaint = false; |
| layerCanvas->clear(SK_ColorTRANSPARENT); |
| |
| RenderNodeDrawable root(layerNode, layerCanvas, false); |
| root.forceDraw(layerCanvas); |
| layerCanvas->restoreToCount(saveCount); |
| |
| LightingInfo::setLightCenterRaw(savedLightCenter); |
| |
| // cache the current context so that we can defer flushing it until |
| // either all the layers have been rendered or the context changes |
| GrDirectContext* currentContext = |
| GrAsDirectContext(layerNode->getLayerSurface()->getCanvas()->recordingContext()); |
| if (cachedContext.get() != currentContext) { |
| if (cachedContext.get()) { |
| ATRACE_NAME("flush layers (context changed)"); |
| cachedContext->flushAndSubmit(); |
| } |
| cachedContext.reset(SkSafeRef(currentContext)); |
| } |
| } |
| |
| if (cachedContext.get()) { |
| ATRACE_NAME("flush layers"); |
| cachedContext->flushAndSubmit(); |
| } |
| } |
| |
| bool SkiaPipeline::createOrUpdateLayer(RenderNode* node, const DamageAccumulator& damageAccumulator, |
| ErrorHandler* errorHandler) { |
| // compute the size of the surface (i.e. texture) to be allocated for this layer |
| const int surfaceWidth = ceilf(node->getWidth() / float(LAYER_SIZE)) * LAYER_SIZE; |
| const int surfaceHeight = ceilf(node->getHeight() / float(LAYER_SIZE)) * LAYER_SIZE; |
| |
| SkSurface* layer = node->getLayerSurface(); |
| if (!layer || layer->width() != surfaceWidth || layer->height() != surfaceHeight) { |
| SkImageInfo info; |
| info = SkImageInfo::Make(surfaceWidth, surfaceHeight, getSurfaceColorType(), |
| kPremul_SkAlphaType, getSurfaceColorSpace()); |
| SkSurfaceProps props(0, kUnknown_SkPixelGeometry); |
| SkASSERT(mRenderThread.getGrContext() != nullptr); |
| node->setLayerSurface(SkSurface::MakeRenderTarget(mRenderThread.getGrContext(), |
| skgpu::Budgeted::kYes, info, 0, |
| this->getSurfaceOrigin(), &props)); |
| if (node->getLayerSurface()) { |
| // update the transform in window of the layer to reset its origin wrt light source |
| // position |
| Matrix4 windowTransform; |
| damageAccumulator.computeCurrentTransform(&windowTransform); |
| node->getSkiaLayer()->inverseTransformInWindow.loadInverse(windowTransform); |
| } else { |
| String8 cachesOutput; |
| mRenderThread.cacheManager().dumpMemoryUsage(cachesOutput, |
| &mRenderThread.renderState()); |
| ALOGE("%s", cachesOutput.string()); |
| if (errorHandler) { |
| std::ostringstream err; |
| err << "Unable to create layer for " << node->getName(); |
| const int maxTextureSize = DeviceInfo::get()->maxTextureSize(); |
| err << ", size " << info.width() << "x" << info.height() << " max size " |
| << maxTextureSize << " color type " << (int)info.colorType() << " has context " |
| << (int)(mRenderThread.getGrContext() != nullptr); |
| errorHandler->onError(err.str()); |
| } |
| } |
| return true; |
| } |
| return false; |
| } |
| |
| void SkiaPipeline::prepareToDraw(const RenderThread& thread, Bitmap* bitmap) { |
| GrDirectContext* context = thread.getGrContext(); |
| if (context && !bitmap->isHardware()) { |
| ATRACE_FORMAT("Bitmap#prepareToDraw %dx%d", bitmap->width(), bitmap->height()); |
| auto image = bitmap->makeImage(); |
| if (image.get()) { |
| SkImage_pinAsTexture(image.get(), context); |
| SkImage_unpinAsTexture(image.get(), context); |
| // A submit is necessary as there may not be a frame coming soon, so without a call |
| // to submit these texture uploads can just sit in the queue building up until |
| // we run out of RAM |
| context->flushAndSubmit(); |
| } |
| } |
| } |
| |
| static void savePictureAsync(const sk_sp<SkData>& data, const std::string& filename) { |
| CommonPool::post([data, filename] { |
| if (0 == access(filename.c_str(), F_OK)) { |
| return; |
| } |
| |
| SkFILEWStream stream(filename.c_str()); |
| if (stream.isValid()) { |
| stream.write(data->data(), data->size()); |
| stream.flush(); |
| ALOGD("SKP Captured Drawing Output (%zu bytes) for frame. %s", stream.bytesWritten(), |
| filename.c_str()); |
| } |
| }); |
| } |
| |
| // Note multiple SkiaPipeline instances may be loaded if more than one app is visible. |
| // Each instance may observe the filename changing and try to record to a file of the same name. |
| // Only the first one will succeed. There is no scope available here where we could coordinate |
| // to cause this function to return true for only one of the instances. |
| bool SkiaPipeline::shouldStartNewFileCapture() { |
| // Don't start a new file based capture if one is currently ongoing. |
| if (mCaptureMode != CaptureMode::None) { return false; } |
| |
| // A new capture is started when the filename property changes. |
| // Read the filename property. |
| std::string prop = base::GetProperty(PROPERTY_CAPTURE_SKP_FILENAME, "0"); |
| // if the filename property changed to a valid value |
| if (prop[0] != '0' && mCapturedFile != prop) { |
| // remember this new filename |
| mCapturedFile = prop; |
| // and get a property indicating how many frames to capture. |
| mCaptureSequence = base::GetIntProperty(PROPERTY_CAPTURE_SKP_FRAMES, 1); |
| if (mCaptureSequence <= 0) { |
| return false; |
| } else if (mCaptureSequence == 1) { |
| mCaptureMode = CaptureMode::SingleFrameSKP; |
| } else { |
| mCaptureMode = CaptureMode::MultiFrameSKP; |
| } |
| return true; |
| } |
| return false; |
| } |
| |
| // performs the first-frame work of a multi frame SKP capture. Returns true if successful. |
| bool SkiaPipeline::setupMultiFrameCapture() { |
| ALOGD("Set up multi-frame capture, frames = %d", mCaptureSequence); |
| // We own this stream and need to hold it until close() finishes. |
| auto stream = std::make_unique<SkFILEWStream>(mCapturedFile.c_str()); |
| if (stream->isValid()) { |
| mOpenMultiPicStream = std::move(stream); |
| mSerialContext.reset(new SkSharingSerialContext()); |
| SkSerialProcs procs; |
| procs.fImageProc = SkSharingSerialContext::serializeImage; |
| procs.fImageCtx = mSerialContext.get(); |
| procs.fTypefaceProc = [](SkTypeface* tf, void* ctx){ |
| return tf->serialize(SkTypeface::SerializeBehavior::kDoIncludeData); |
| }; |
| // SkDocuments don't take owership of the streams they write. |
| // we need to keep it until after mMultiPic.close() |
| // procs is passed as a pointer, but just as a method of having an optional default. |
| // procs doesn't need to outlive this Make call. |
| mMultiPic = SkMakeMultiPictureDocument(mOpenMultiPicStream.get(), &procs, |
| [sharingCtx = mSerialContext.get()](const SkPicture* pic) { |
| SkSharingSerialContext::collectNonTextureImagesFromPicture(pic, sharingCtx); |
| }); |
| return true; |
| } else { |
| ALOGE("Could not open \"%s\" for writing.", mCapturedFile.c_str()); |
| mCaptureSequence = 0; |
| mCaptureMode = CaptureMode::None; |
| return false; |
| } |
| } |
| |
| // recurse through the rendernode's children, add any nodes which are layers to the queue. |
| static void collectLayers(RenderNode* node, LayerUpdateQueue* layers) { |
| SkiaDisplayList* dl = node->getDisplayList().asSkiaDl(); |
| if (dl) { |
| const auto& prop = node->properties(); |
| if (node->hasLayer()) { |
| layers->enqueueLayerWithDamage(node, Rect(prop.getWidth(), prop.getHeight())); |
| } |
| // The way to recurse through rendernodes is to call this with a lambda. |
| dl->updateChildren([&](RenderNode* child) { collectLayers(child, layers); }); |
| } |
| } |
| |
| // record the provided layers to the provided canvas as self-contained skpictures. |
| static void recordLayers(const LayerUpdateQueue& layers, |
| SkCanvas* mskpCanvas) { |
| const Vector3 savedLightCenter(LightingInfo::getLightCenterRaw()); |
| // Record the commands to re-draw each dirty layer into an SkPicture |
| for (size_t i = 0; i < layers.entries().size(); i++) { |
| RenderNode* layerNode = layers.entries()[i].renderNode.get(); |
| const Rect& layerDamage = layers.entries()[i].damage; |
| const RenderProperties& properties = layerNode->properties(); |
| |
| // Temporarily map current light center into RenderNode's coordinate space |
| Vector3 transformedLightCenter(savedLightCenter); |
| layerNode->getSkiaLayer()->inverseTransformInWindow.mapPoint3d(transformedLightCenter); |
| LightingInfo::setLightCenterRaw(transformedLightCenter); |
| |
| SkPictureRecorder layerRec; |
| auto* recCanvas = layerRec.beginRecording(properties.getWidth(), |
| properties.getHeight()); |
| // This is not recorded but still causes clipping. |
| recCanvas->androidFramework_setDeviceClipRestriction(layerDamage.toSkIRect()); |
| RenderNodeDrawable root(layerNode, recCanvas, false); |
| root.forceDraw(recCanvas); |
| // Now write this picture into the SKP canvas with an annotation indicating what it is |
| mskpCanvas->drawAnnotation(layerDamage.toSkRect(), String8::format( |
| "OffscreenLayerDraw|%" PRId64, layerNode->uniqueId()).c_str(), nullptr); |
| mskpCanvas->drawPicture(layerRec.finishRecordingAsPicture()); |
| } |
| LightingInfo::setLightCenterRaw(savedLightCenter); |
| } |
| |
| SkCanvas* SkiaPipeline::tryCapture(SkSurface* surface, RenderNode* root, |
| const LayerUpdateQueue& dirtyLayers) { |
| if (CC_LIKELY(!Properties::skpCaptureEnabled)) { |
| return surface->getCanvas(); // Bail out early when capture is not turned on. |
| } |
| // Note that shouldStartNewFileCapture tells us if this is the *first* frame of a capture. |
| bool firstFrameOfAnim = false; |
| if (shouldStartNewFileCapture() && mCaptureMode == CaptureMode::MultiFrameSKP) { |
| // set a reminder to record every layer near the end of this method, after we have set up |
| // the nway canvas. |
| firstFrameOfAnim = true; |
| if (!setupMultiFrameCapture()) { |
| return surface->getCanvas(); |
| } |
| } |
| |
| // Create a canvas pointer, fill it depending on what kind of capture is requested (if any) |
| SkCanvas* pictureCanvas = nullptr; |
| switch (mCaptureMode) { |
| case CaptureMode::CallbackAPI: |
| case CaptureMode::SingleFrameSKP: |
| mRecorder.reset(new SkPictureRecorder()); |
| pictureCanvas = mRecorder->beginRecording(surface->width(), surface->height()); |
| break; |
| case CaptureMode::MultiFrameSKP: |
| // If a multi frame recording is active, initialize recording for a single frame of a |
| // multi frame file. |
| pictureCanvas = mMultiPic->beginPage(surface->width(), surface->height()); |
| break; |
| case CaptureMode::None: |
| // Returning here in the non-capture case means we can count on pictureCanvas being |
| // non-null below. |
| return surface->getCanvas(); |
| } |
| |
| // Setting up an nway canvas is common to any kind of capture. |
| mNwayCanvas = std::make_unique<SkNWayCanvas>(surface->width(), surface->height()); |
| mNwayCanvas->addCanvas(surface->getCanvas()); |
| mNwayCanvas->addCanvas(pictureCanvas); |
| |
| if (firstFrameOfAnim) { |
| // On the first frame of any mskp capture we want to record any layers that are needed in |
| // frame but may have been rendered offscreen before recording began. |
| // We do not maintain a list of all layers, since it isn't needed outside this rare, |
| // recording use case. Traverse the tree to find them and put them in this LayerUpdateQueue. |
| LayerUpdateQueue luq; |
| collectLayers(root, &luq); |
| recordLayers(luq, mNwayCanvas.get()); |
| } else { |
| // on non-first frames, we record any normal layer draws (dirty regions) |
| recordLayers(dirtyLayers, mNwayCanvas.get()); |
| } |
| |
| return mNwayCanvas.get(); |
| } |
| |
| void SkiaPipeline::endCapture(SkSurface* surface) { |
| if (CC_LIKELY(mCaptureMode == CaptureMode::None)) { return; } |
| mNwayCanvas.reset(); |
| ATRACE_CALL(); |
| if (mCaptureSequence > 0 && mCaptureMode == CaptureMode::MultiFrameSKP) { |
| mMultiPic->endPage(); |
| mCaptureSequence--; |
| if (mCaptureSequence == 0) { |
| mCaptureMode = CaptureMode::None; |
| // Pass mMultiPic and mOpenMultiPicStream to a background thread, which will handle |
| // the heavyweight serialization work and destroy them. mOpenMultiPicStream is released |
| // to a bare pointer because keeping it in a smart pointer makes the lambda |
| // non-copyable. The lambda is only called once, so this is safe. |
| SkFILEWStream* stream = mOpenMultiPicStream.release(); |
| CommonPool::post([doc = std::move(mMultiPic), stream]{ |
| ALOGD("Finalizing multi frame SKP"); |
| doc->close(); |
| delete stream; |
| ALOGD("Multi frame SKP complete."); |
| }); |
| } |
| } else { |
| sk_sp<SkPicture> picture = mRecorder->finishRecordingAsPicture(); |
| if (picture->approximateOpCount() > 0) { |
| if (mPictureCapturedCallback) { |
| std::invoke(mPictureCapturedCallback, std::move(picture)); |
| } else { |
| // single frame skp to file |
| SkSerialProcs procs; |
| procs.fTypefaceProc = [](SkTypeface* tf, void* ctx){ |
| return tf->serialize(SkTypeface::SerializeBehavior::kDoIncludeData); |
| }; |
| auto data = picture->serialize(&procs); |
| savePictureAsync(data, mCapturedFile); |
| mCaptureSequence = 0; |
| mCaptureMode = CaptureMode::None; |
| } |
| } |
| mRecorder.reset(); |
| } |
| } |
| |
| void SkiaPipeline::renderFrame(const LayerUpdateQueue& layers, const SkRect& clip, |
| const std::vector<sp<RenderNode>>& nodes, bool opaque, |
| const Rect& contentDrawBounds, sk_sp<SkSurface> surface, |
| const SkMatrix& preTransform) { |
| bool previousSkpEnabled = Properties::skpCaptureEnabled; |
| if (mPictureCapturedCallback) { |
| Properties::skpCaptureEnabled = true; |
| } |
| |
| // Initialize the canvas for the current frame, that might be a recording canvas if SKP |
| // capture is enabled. |
| SkCanvas* canvas = tryCapture(surface.get(), nodes[0].get(), layers); |
| |
| // draw all layers up front |
| renderLayersImpl(layers, opaque); |
| |
| renderFrameImpl(clip, nodes, opaque, contentDrawBounds, canvas, preTransform); |
| |
| endCapture(surface.get()); |
| |
| if (CC_UNLIKELY(Properties::debugOverdraw)) { |
| renderOverdraw(clip, nodes, contentDrawBounds, surface, preTransform); |
| } |
| |
| Properties::skpCaptureEnabled = previousSkpEnabled; |
| } |
| |
| namespace { |
| static Rect nodeBounds(RenderNode& node) { |
| auto& props = node.properties(); |
| return Rect(props.getLeft(), props.getTop(), props.getRight(), props.getBottom()); |
| } |
| } // namespace |
| |
| void SkiaPipeline::renderFrameImpl(const SkRect& clip, |
| const std::vector<sp<RenderNode>>& nodes, bool opaque, |
| const Rect& contentDrawBounds, SkCanvas* canvas, |
| const SkMatrix& preTransform) { |
| SkAutoCanvasRestore saver(canvas, true); |
| auto clipRestriction = preTransform.mapRect(clip).roundOut(); |
| if (CC_UNLIKELY(isCapturingSkp())) { |
| canvas->drawAnnotation(SkRect::Make(clipRestriction), "AndroidDeviceClipRestriction", |
| nullptr); |
| } else { |
| // clip drawing to dirty region only when not recording SKP files (which should contain all |
| // draw ops on every frame) |
| canvas->androidFramework_setDeviceClipRestriction(clipRestriction); |
| } |
| canvas->concat(preTransform); |
| |
| if (!opaque) { |
| canvas->clear(SK_ColorTRANSPARENT); |
| } |
| |
| if (1 == nodes.size()) { |
| if (!nodes[0]->nothingToDraw()) { |
| RenderNodeDrawable root(nodes[0].get(), canvas); |
| root.draw(canvas); |
| } |
| } else if (0 == nodes.size()) { |
| // nothing to draw |
| } else { |
| // It there are multiple render nodes, they are laid out as follows: |
| // #0 - backdrop (content + caption) |
| // #1 - content (local bounds are at (0,0), will be translated and clipped to backdrop) |
| // #2 - additional overlay nodes |
| // Usually the backdrop cannot be seen since it will be entirely covered by the content. |
| // While |
| // resizing however it might become partially visible. The following render loop will crop |
| // the |
| // backdrop against the content and draw the remaining part of it. It will then draw the |
| // content |
| // cropped to the backdrop (since that indicates a shrinking of the window). |
| // |
| // Additional nodes will be drawn on top with no particular clipping semantics. |
| |
| // Usually the contents bounds should be mContentDrawBounds - however - we will |
| // move it towards the fixed edge to give it a more stable appearance (for the moment). |
| // If there is no content bounds we ignore the layering as stated above and start with 2. |
| |
| // Backdrop bounds in render target space |
| const Rect backdrop = nodeBounds(*nodes[0]); |
| |
| // Bounds that content will fill in render target space (note content node bounds may be |
| // bigger) |
| Rect content(contentDrawBounds.getWidth(), contentDrawBounds.getHeight()); |
| content.translate(backdrop.left, backdrop.top); |
| if (!content.contains(backdrop) && !nodes[0]->nothingToDraw()) { |
| // Content doesn't entirely overlap backdrop, so fill around content (right/bottom) |
| |
| // Note: in the future, if content doesn't snap to backdrop's left/top, this may need to |
| // also fill left/top. Currently, both 2up and freeform position content at the top/left |
| // of |
| // the backdrop, so this isn't necessary. |
| RenderNodeDrawable backdropNode(nodes[0].get(), canvas); |
| if (content.right < backdrop.right) { |
| // draw backdrop to right side of content |
| SkAutoCanvasRestore acr(canvas, true); |
| canvas->clipRect(SkRect::MakeLTRB(content.right, backdrop.top, backdrop.right, |
| backdrop.bottom)); |
| backdropNode.draw(canvas); |
| } |
| if (content.bottom < backdrop.bottom) { |
| // draw backdrop to bottom of content |
| // Note: bottom fill uses content left/right, to avoid overdrawing left/right fill |
| SkAutoCanvasRestore acr(canvas, true); |
| canvas->clipRect(SkRect::MakeLTRB(content.left, content.bottom, content.right, |
| backdrop.bottom)); |
| backdropNode.draw(canvas); |
| } |
| } |
| |
| RenderNodeDrawable contentNode(nodes[1].get(), canvas); |
| if (!backdrop.isEmpty()) { |
| // content node translation to catch up with backdrop |
| float dx = backdrop.left - contentDrawBounds.left; |
| float dy = backdrop.top - contentDrawBounds.top; |
| |
| SkAutoCanvasRestore acr(canvas, true); |
| canvas->translate(dx, dy); |
| const SkRect contentLocalClip = |
| SkRect::MakeXYWH(contentDrawBounds.left, contentDrawBounds.top, |
| backdrop.getWidth(), backdrop.getHeight()); |
| canvas->clipRect(contentLocalClip); |
| contentNode.draw(canvas); |
| } else { |
| SkAutoCanvasRestore acr(canvas, true); |
| contentNode.draw(canvas); |
| } |
| |
| // remaining overlay nodes, simply defer |
| for (size_t index = 2; index < nodes.size(); index++) { |
| if (!nodes[index]->nothingToDraw()) { |
| SkAutoCanvasRestore acr(canvas, true); |
| RenderNodeDrawable overlayNode(nodes[index].get(), canvas); |
| overlayNode.draw(canvas); |
| } |
| } |
| } |
| } |
| |
| void SkiaPipeline::dumpResourceCacheUsage() const { |
| int resources; |
| size_t bytes; |
| mRenderThread.getGrContext()->getResourceCacheUsage(&resources, &bytes); |
| size_t maxBytes = mRenderThread.getGrContext()->getResourceCacheLimit(); |
| |
| SkString log("Resource Cache Usage:\n"); |
| log.appendf("%8d items\n", resources); |
| log.appendf("%8zu bytes (%.2f MB) out of %.2f MB maximum\n", bytes, |
| bytes * (1.0f / (1024.0f * 1024.0f)), maxBytes * (1.0f / (1024.0f * 1024.0f))); |
| |
| ALOGD("%s", log.c_str()); |
| } |
| |
| void SkiaPipeline::setHardwareBuffer(AHardwareBuffer* buffer) { |
| if (mHardwareBuffer) { |
| AHardwareBuffer_release(mHardwareBuffer); |
| mHardwareBuffer = nullptr; |
| } |
| |
| if (buffer) { |
| AHardwareBuffer_acquire(buffer); |
| mHardwareBuffer = buffer; |
| } |
| } |
| |
| sk_sp<SkSurface> SkiaPipeline::getBufferSkSurface( |
| const renderthread::HardwareBufferRenderParams& bufferParams) { |
| auto bufferColorSpace = bufferParams.getColorSpace(); |
| if (mBufferSurface == nullptr || mBufferColorSpace == nullptr || |
| !SkColorSpace::Equals(mBufferColorSpace.get(), bufferColorSpace.get())) { |
| mBufferSurface = SkSurface::MakeFromAHardwareBuffer( |
| mRenderThread.getGrContext(), mHardwareBuffer, kTopLeft_GrSurfaceOrigin, |
| bufferColorSpace, nullptr, true); |
| mBufferColorSpace = bufferColorSpace; |
| } |
| return mBufferSurface; |
| } |
| |
| void SkiaPipeline::setSurfaceColorProperties(ColorMode colorMode) { |
| mColorMode = colorMode; |
| switch (colorMode) { |
| case ColorMode::Default: |
| mSurfaceColorType = SkColorType::kN32_SkColorType; |
| mSurfaceColorSpace = SkColorSpace::MakeSRGB(); |
| break; |
| case ColorMode::WideColorGamut: |
| mSurfaceColorType = DeviceInfo::get()->getWideColorType(); |
| mSurfaceColorSpace = DeviceInfo::get()->getWideColorSpace(); |
| break; |
| case ColorMode::Hdr: |
| mSurfaceColorType = SkColorType::kN32_SkColorType; |
| mSurfaceColorSpace = SkColorSpace::MakeRGB( |
| GetExtendedTransferFunction(mTargetSdrHdrRatio), SkNamedGamut::kDisplayP3); |
| break; |
| case ColorMode::Hdr10: |
| mSurfaceColorType = SkColorType::kRGBA_1010102_SkColorType; |
| mSurfaceColorSpace = SkColorSpace::MakeRGB( |
| GetExtendedTransferFunction(mTargetSdrHdrRatio), SkNamedGamut::kDisplayP3); |
| break; |
| case ColorMode::A8: |
| mSurfaceColorType = SkColorType::kAlpha_8_SkColorType; |
| mSurfaceColorSpace = nullptr; |
| break; |
| } |
| } |
| |
| void SkiaPipeline::setTargetSdrHdrRatio(float ratio) { |
| if (mColorMode == ColorMode::Hdr || mColorMode == ColorMode::Hdr10) { |
| mTargetSdrHdrRatio = ratio; |
| mSurfaceColorSpace = SkColorSpace::MakeRGB(GetExtendedTransferFunction(mTargetSdrHdrRatio), |
| SkNamedGamut::kDisplayP3); |
| } else { |
| mTargetSdrHdrRatio = 1.f; |
| } |
| } |
| |
| // Overdraw debugging |
| |
| // These colors should be kept in sync with Caches::getOverdrawColor() with a few differences. |
| // This implementation requires transparent entries for "no overdraw" and "single draws". |
| static const SkColor kOverdrawColors[2][6] = { |
| { |
| 0x00000000, |
| 0x00000000, |
| 0x2f0000ff, |
| 0x2f00ff00, |
| 0x3fff0000, |
| 0x7fff0000, |
| }, |
| { |
| 0x00000000, |
| 0x00000000, |
| 0x2f0000ff, |
| 0x4fffff00, |
| 0x5fff89d7, |
| 0x7fff0000, |
| }, |
| }; |
| |
| void SkiaPipeline::renderOverdraw(const SkRect& clip, |
| const std::vector<sp<RenderNode>>& nodes, |
| const Rect& contentDrawBounds, sk_sp<SkSurface> surface, |
| const SkMatrix& preTransform) { |
| // Set up the overdraw canvas. |
| SkImageInfo offscreenInfo = SkImageInfo::MakeA8(surface->width(), surface->height()); |
| sk_sp<SkSurface> offscreen = surface->makeSurface(offscreenInfo); |
| LOG_ALWAYS_FATAL_IF(!offscreen, "Failed to create offscreen SkSurface for overdraw viz."); |
| SkOverdrawCanvas overdrawCanvas(offscreen->getCanvas()); |
| |
| // Fake a redraw to replay the draw commands. This will increment the alpha channel |
| // each time a pixel would have been drawn. |
| // Pass true for opaque so we skip the clear - the overdrawCanvas is already zero |
| // initialized. |
| renderFrameImpl(clip, nodes, true, contentDrawBounds, &overdrawCanvas, preTransform); |
| sk_sp<SkImage> counts = offscreen->makeImageSnapshot(); |
| |
| // Draw overdraw colors to the canvas. The color filter will convert counts to colors. |
| SkPaint paint; |
| const SkColor* colors = kOverdrawColors[static_cast<int>(Properties::overdrawColorSet)]; |
| paint.setColorFilter(SkOverdrawColorFilter::MakeWithSkColors(colors)); |
| surface->getCanvas()->drawImage(counts.get(), 0.0f, 0.0f, SkSamplingOptions(), &paint); |
| } |
| |
| } /* namespace skiapipeline */ |
| } /* namespace uirenderer */ |
| } /* namespace android */ |