blob: c0fdfe25da2193b62d979eede693961f1363ce19 [file] [log] [blame]
/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define ATRACE_TAG ATRACE_TAG_RESOURCES
#include "androidfw/LoadedArsc.h"
#include <algorithm>
#include <cstddef>
#include <limits>
#include "android-base/logging.h"
#include "android-base/stringprintf.h"
#include "utils/ByteOrder.h"
#include "utils/Trace.h"
#ifdef _WIN32
#ifdef ERROR
#undef ERROR
#endif
#endif
#include "androidfw/Chunk.h"
#include "androidfw/ResourceUtils.h"
#include "androidfw/Util.h"
using android::base::StringPrintf;
namespace android {
constexpr const static int kFrameworkPackageId = 0x01;
constexpr const static int kAppPackageId = 0x7f;
namespace {
// Builder that helps accumulate Type structs and then create a single
// contiguous block of memory to store both the TypeSpec struct and
// the Type structs.
struct TypeSpecBuilder {
explicit TypeSpecBuilder(incfs::verified_map_ptr<ResTable_typeSpec> header) : header_(header) {}
void AddType(incfs::verified_map_ptr<ResTable_type> type) {
TypeSpec::TypeEntry& entry = type_entries.emplace_back();
entry.config.copyFromDtoH(type->config);
entry.type = type;
}
TypeSpec Build() {
return {header_, std::move(type_entries)};
}
private:
DISALLOW_COPY_AND_ASSIGN(TypeSpecBuilder);
incfs::verified_map_ptr<ResTable_typeSpec> header_;
std::vector<TypeSpec::TypeEntry> type_entries;
};
} // namespace
// Precondition: The header passed in has already been verified, so reading any fields and trusting
// the ResChunk_header is safe.
static bool VerifyResTableType(incfs::map_ptr<ResTable_type> header) {
if (header->id == 0) {
LOG(ERROR) << "RES_TABLE_TYPE_TYPE has invalid ID 0.";
return false;
}
const size_t entry_count = dtohl(header->entryCount);
if (entry_count > std::numeric_limits<uint16_t>::max()) {
LOG(ERROR) << "RES_TABLE_TYPE_TYPE has too many entries (" << entry_count << ").";
return false;
}
// Make sure that there is enough room for the entry offsets.
const size_t offsets_offset = dtohs(header->header.headerSize);
const size_t entries_offset = dtohl(header->entriesStart);
const size_t offsets_length = header->flags & ResTable_type::FLAG_OFFSET16
? sizeof(uint16_t) * entry_count
: sizeof(uint32_t) * entry_count;
if (offsets_offset > entries_offset || entries_offset - offsets_offset < offsets_length) {
LOG(ERROR) << "RES_TABLE_TYPE_TYPE entry offsets overlap actual entry data.";
return false;
}
if (entries_offset > dtohl(header->header.size)) {
LOG(ERROR) << "RES_TABLE_TYPE_TYPE entry offsets extend beyond chunk.";
return false;
}
if (entries_offset & 0x03U) {
LOG(ERROR) << "RES_TABLE_TYPE_TYPE entries start at unaligned address.";
return false;
}
return true;
}
static base::expected<incfs::verified_map_ptr<ResTable_entry>, NullOrIOError>
VerifyResTableEntry(incfs::verified_map_ptr<ResTable_type> type, uint32_t entry_offset) {
// Check that the offset is aligned.
if (UNLIKELY(entry_offset & 0x03U)) {
LOG(ERROR) << "Entry at offset " << entry_offset << " is not 4-byte aligned.";
return base::unexpected(std::nullopt);
}
// Check that the offset doesn't overflow.
if (UNLIKELY(entry_offset > std::numeric_limits<uint32_t>::max() - dtohl(type->entriesStart))) {
// Overflow in offset.
LOG(ERROR) << "Entry at offset " << entry_offset << " is too large.";
return base::unexpected(std::nullopt);
}
const size_t chunk_size = dtohl(type->header.size);
entry_offset += dtohl(type->entriesStart);
if (UNLIKELY(entry_offset > chunk_size - sizeof(ResTable_entry))) {
LOG(ERROR) << "Entry at offset " << entry_offset
<< " is too large. No room for ResTable_entry.";
return base::unexpected(std::nullopt);
}
auto entry = type.offset(entry_offset).convert<ResTable_entry>();
if (UNLIKELY(!entry)) {
return base::unexpected(IOError::PAGES_MISSING);
}
const size_t entry_size = entry->size();
if (UNLIKELY(entry_size < sizeof(entry.value()))) {
LOG(ERROR) << "ResTable_entry size " << entry_size << " at offset " << entry_offset
<< " is too small.";
return base::unexpected(std::nullopt);
}
if (UNLIKELY(entry_size > chunk_size || entry_offset > chunk_size - entry_size)) {
LOG(ERROR) << "ResTable_entry size " << entry_size << " at offset " << entry_offset
<< " is too large.";
return base::unexpected(std::nullopt);
}
// If entry is compact, value is already encoded, and a compact entry
// cannot be a map_entry, we are done verifying
if (entry->is_compact())
return entry.verified();
if (entry_size < sizeof(ResTable_map_entry)) {
// There needs to be room for one Res_value struct.
if (UNLIKELY(entry_offset + entry_size > chunk_size - sizeof(Res_value))) {
LOG(ERROR) << "No room for Res_value after ResTable_entry at offset " << entry_offset
<< " for type " << (int)type->id << ".";
return base::unexpected(std::nullopt);
}
auto value = entry.offset(entry_size).convert<Res_value>();
if (UNLIKELY(!value)) {
return base::unexpected(IOError::PAGES_MISSING);
}
const size_t value_size = dtohs(value->size);
if (UNLIKELY(value_size < sizeof(Res_value))) {
LOG(ERROR) << "Res_value at offset " << entry_offset << " is too small.";
return base::unexpected(std::nullopt);
}
if (UNLIKELY(value_size > chunk_size || entry_offset + entry_size > chunk_size - value_size)) {
LOG(ERROR) << "Res_value size " << value_size << " at offset " << entry_offset
<< " is too large.";
return base::unexpected(std::nullopt);
}
} else {
auto map = entry.convert<ResTable_map_entry>();
if (UNLIKELY(!map)) {
return base::unexpected(IOError::PAGES_MISSING);
}
const size_t map_entry_count = dtohl(map->count);
size_t map_entries_start = entry_offset + entry_size;
if (UNLIKELY(map_entries_start & 0x03U)) {
LOG(ERROR) << "Map entries at offset " << entry_offset << " start at unaligned offset.";
return base::unexpected(std::nullopt);
}
// Each entry is sizeof(ResTable_map) big.
if (UNLIKELY(map_entry_count > ((chunk_size - map_entries_start) / sizeof(ResTable_map)))) {
LOG(ERROR) << "Too many map entries in ResTable_map_entry at offset " << entry_offset << ".";
return base::unexpected(std::nullopt);
}
}
return entry.verified();
}
LoadedPackage::iterator::iterator(const LoadedPackage* lp, size_t ti, size_t ei)
: loadedPackage_(lp),
typeIndex_(ti),
entryIndex_(ei),
typeIndexEnd_(lp->resource_ids_.size() + 1) {
while (typeIndex_ < typeIndexEnd_ && loadedPackage_->resource_ids_[typeIndex_] == 0) {
typeIndex_++;
}
}
LoadedPackage::iterator& LoadedPackage::iterator::operator++() {
while (typeIndex_ < typeIndexEnd_) {
if (entryIndex_ + 1 < loadedPackage_->resource_ids_[typeIndex_]) {
entryIndex_++;
break;
}
entryIndex_ = 0;
typeIndex_++;
if (typeIndex_ < typeIndexEnd_ && loadedPackage_->resource_ids_[typeIndex_] != 0) {
break;
}
}
return *this;
}
uint32_t LoadedPackage::iterator::operator*() const {
if (typeIndex_ >= typeIndexEnd_) {
return 0;
}
return make_resid(loadedPackage_->package_id_, typeIndex_ + loadedPackage_->type_id_offset_,
entryIndex_);
}
base::expected<incfs::verified_map_ptr<ResTable_entry>, NullOrIOError> LoadedPackage::GetEntry(
incfs::verified_map_ptr<ResTable_type> type_chunk, uint16_t entry_index) {
base::expected<uint32_t, NullOrIOError> entry_offset = GetEntryOffset(type_chunk, entry_index);
if (UNLIKELY(!entry_offset.has_value())) {
return base::unexpected(entry_offset.error());
}
return GetEntryFromOffset(type_chunk, entry_offset.value());
}
base::expected<uint32_t, NullOrIOError> LoadedPackage::GetEntryOffset(
incfs::verified_map_ptr<ResTable_type> type_chunk, uint16_t entry_index) {
// The configuration matches and is better than the previous selection.
// Find the entry value if it exists for this configuration.
const size_t entry_count = dtohl(type_chunk->entryCount);
const auto offsets = type_chunk.offset(dtohs(type_chunk->header.headerSize));
// Check if there is the desired entry in this type.
if (type_chunk->flags & ResTable_type::FLAG_SPARSE) {
// This is encoded as a sparse map, so perform a binary search.
bool error = false;
auto sparse_indices = offsets.convert<ResTable_sparseTypeEntry>().iterator();
auto sparse_indices_end = sparse_indices + entry_count;
auto result = std::lower_bound(sparse_indices, sparse_indices_end, entry_index,
[&error](const incfs::map_ptr<ResTable_sparseTypeEntry>& entry,
uint16_t entry_idx) {
if (UNLIKELY(!entry)) {
return error = true;
}
return dtohs(entry->idx) < entry_idx;
});
if (result == sparse_indices_end) {
// No entry found.
return base::unexpected(std::nullopt);
}
const incfs::verified_map_ptr<ResTable_sparseTypeEntry> entry = (*result).verified();
if (dtohs(entry->idx) != entry_index) {
if (error) {
return base::unexpected(IOError::PAGES_MISSING);
}
return base::unexpected(std::nullopt);
}
// Extract the offset from the entry. Each offset must be a multiple of 4 so we store it as
// the real offset divided by 4.
return uint32_t{dtohs(entry->offset)} * 4u;
}
// This type is encoded as a dense array.
if (entry_index >= entry_count) {
// This entry cannot be here.
return base::unexpected(std::nullopt);
}
uint32_t result;
if (type_chunk->flags & ResTable_type::FLAG_OFFSET16) {
const auto entry_offset_ptr = offsets.convert<uint16_t>() + entry_index;
if (UNLIKELY(!entry_offset_ptr)) {
return base::unexpected(IOError::PAGES_MISSING);
}
result = offset_from16(entry_offset_ptr.value());
} else {
const auto entry_offset_ptr = offsets.convert<uint32_t>() + entry_index;
if (UNLIKELY(!entry_offset_ptr)) {
return base::unexpected(IOError::PAGES_MISSING);
}
result = dtohl(entry_offset_ptr.value());
}
if (result == ResTable_type::NO_ENTRY) {
return base::unexpected(std::nullopt);
}
return result;
}
base::expected<incfs::verified_map_ptr<ResTable_entry>, NullOrIOError>
LoadedPackage::GetEntryFromOffset(incfs::verified_map_ptr<ResTable_type> type_chunk,
uint32_t offset) {
auto valid = VerifyResTableEntry(type_chunk, offset);
if (UNLIKELY(!valid.has_value())) {
return base::unexpected(valid.error());
}
return valid;
}
base::expected<std::monostate, IOError> LoadedPackage::CollectConfigurations(
bool exclude_mipmap, std::set<ResTable_config>* out_configs) const {\
for (const auto& type_spec : type_specs_) {
if (exclude_mipmap) {
const int type_idx = type_spec.first - 1;
const auto type_name16 = type_string_pool_.stringAt(type_idx);
if (UNLIKELY(IsIOError(type_name16))) {
return base::unexpected(GetIOError(type_name16.error()));
}
if (type_name16.has_value()) {
if (strncmp16(type_name16->data(), u"mipmap", type_name16->size()) == 0) {
// This is a mipmap type, skip collection.
continue;
}
}
const auto type_name = type_string_pool_.string8At(type_idx);
if (UNLIKELY(IsIOError(type_name))) {
return base::unexpected(GetIOError(type_name.error()));
}
if (type_name.has_value()) {
if (strncmp(type_name->data(), "mipmap", type_name->size()) == 0) {
// This is a mipmap type, skip collection.
continue;
}
}
}
for (const auto& type_entry : type_spec.second.type_entries) {
out_configs->insert(type_entry.config);
}
}
return {};
}
void LoadedPackage::CollectLocales(bool canonicalize, std::set<std::string>* out_locales) const {
char temp_locale[RESTABLE_MAX_LOCALE_LEN];
for (const auto& type_spec : type_specs_) {
for (const auto& type_entry : type_spec.second.type_entries) {
if (type_entry.config.locale != 0) {
type_entry.config.getBcp47Locale(temp_locale, canonicalize);
std::string locale(temp_locale);
out_locales->insert(std::move(locale));
}
}
}
}
base::expected<uint32_t, NullOrIOError> LoadedPackage::FindEntryByName(
const std::u16string& type_name, const std::u16string& entry_name) const {
const base::expected<size_t, NullOrIOError> type_idx = type_string_pool_.indexOfString(
type_name.data(), type_name.size());
if (!type_idx.has_value()) {
return base::unexpected(type_idx.error());
}
const base::expected<size_t, NullOrIOError> key_idx = key_string_pool_.indexOfString(
entry_name.data(), entry_name.size());
if (!key_idx.has_value()) {
return base::unexpected(key_idx.error());
}
const TypeSpec* type_spec = GetTypeSpecByTypeIndex(*type_idx);
if (type_spec == nullptr) {
return base::unexpected(std::nullopt);
}
for (const auto& type_entry : type_spec->type_entries) {
const incfs::verified_map_ptr<ResTable_type>& type = type_entry.type;
const size_t entry_count = dtohl(type->entryCount);
const auto entry_offsets = type.offset(dtohs(type->header.headerSize));
for (size_t entry_idx = 0; entry_idx < entry_count; entry_idx++) {
uint32_t offset;
uint16_t res_idx;
if (type->flags & ResTable_type::FLAG_SPARSE) {
auto sparse_entry = entry_offsets.convert<ResTable_sparseTypeEntry>() + entry_idx;
if (!sparse_entry) {
return base::unexpected(IOError::PAGES_MISSING);
}
offset = dtohs(sparse_entry->offset) * 4u;
res_idx = dtohs(sparse_entry->idx);
} else if (type->flags & ResTable_type::FLAG_OFFSET16) {
auto entry = entry_offsets.convert<uint16_t>() + entry_idx;
if (!entry) {
return base::unexpected(IOError::PAGES_MISSING);
}
offset = offset_from16(entry.value());
res_idx = entry_idx;
} else {
auto entry = entry_offsets.convert<uint32_t>() + entry_idx;
if (!entry) {
return base::unexpected(IOError::PAGES_MISSING);
}
offset = dtohl(entry.value());
res_idx = entry_idx;
}
if (offset != ResTable_type::NO_ENTRY) {
auto entry = type.offset(dtohl(type->entriesStart) + offset).convert<ResTable_entry>();
if (!entry) {
return base::unexpected(IOError::PAGES_MISSING);
}
if (entry->key() == static_cast<uint32_t>(*key_idx)) {
// The package ID will be overridden by the caller (due to runtime assignment of package
// IDs for shared libraries).
return make_resid(0x00, *type_idx + type_id_offset_ + 1, res_idx);
}
}
}
}
return base::unexpected(std::nullopt);
}
const LoadedPackage* LoadedArsc::GetPackageById(uint8_t package_id) const {
for (const auto& loaded_package : packages_) {
if (loaded_package->GetPackageId() == package_id) {
return loaded_package.get();
}
}
return nullptr;
}
std::unique_ptr<const LoadedPackage> LoadedPackage::Load(const Chunk& chunk,
package_property_t property_flags) {
ATRACE_NAME("LoadedPackage::Load");
std::unique_ptr<LoadedPackage> loaded_package(new LoadedPackage());
// typeIdOffset was added at some point, but we still must recognize apps built before this
// was added.
constexpr size_t kMinPackageSize =
sizeof(ResTable_package) - sizeof(ResTable_package::typeIdOffset);
const incfs::map_ptr<ResTable_package> header = chunk.header<ResTable_package, kMinPackageSize>();
if (!header) {
LOG(ERROR) << "RES_TABLE_PACKAGE_TYPE too small.";
return {};
}
if ((property_flags & PROPERTY_SYSTEM) != 0) {
loaded_package->property_flags_ |= PROPERTY_SYSTEM;
}
if ((property_flags & PROPERTY_LOADER) != 0) {
loaded_package->property_flags_ |= PROPERTY_LOADER;
}
if ((property_flags & PROPERTY_OVERLAY) != 0) {
// Overlay resources must have an exclusive resource id space for referencing internal
// resources.
loaded_package->property_flags_ |= PROPERTY_OVERLAY | PROPERTY_DYNAMIC;
}
loaded_package->package_id_ = dtohl(header->id);
if (loaded_package->package_id_ == 0 ||
(loaded_package->package_id_ == kAppPackageId && (property_flags & PROPERTY_DYNAMIC) != 0)) {
loaded_package->property_flags_ |= PROPERTY_DYNAMIC;
}
if (header->header.headerSize >= sizeof(ResTable_package)) {
uint32_t type_id_offset = dtohl(header->typeIdOffset);
if (type_id_offset > std::numeric_limits<uint8_t>::max()) {
LOG(ERROR) << "RES_TABLE_PACKAGE_TYPE type ID offset too large.";
return {};
}
loaded_package->type_id_offset_ = static_cast<int>(type_id_offset);
}
util::ReadUtf16StringFromDevice(header->name, arraysize(header->name),
&loaded_package->package_name_);
// A map of TypeSpec builders, each associated with an type index.
// We use these to accumulate the set of Types available for a TypeSpec, and later build a single,
// contiguous block of memory that holds all the Types together with the TypeSpec.
std::unordered_map<int, std::unique_ptr<TypeSpecBuilder>> type_builder_map;
ChunkIterator iter(chunk.data_ptr(), chunk.data_size());
while (iter.HasNext()) {
const Chunk child_chunk = iter.Next();
switch (child_chunk.type()) {
case RES_STRING_POOL_TYPE: {
const auto pool_address = child_chunk.header<ResChunk_header>();
if (!pool_address) {
LOG(ERROR) << "RES_STRING_POOL_TYPE is incomplete due to incremental installation.";
return {};
}
if (pool_address == header.offset(dtohl(header->typeStrings)).convert<ResChunk_header>()) {
// This string pool is the type string pool.
status_t err = loaded_package->type_string_pool_.setTo(
child_chunk.header<ResStringPool_header>(), child_chunk.size());
if (err != NO_ERROR) {
LOG(ERROR) << "RES_STRING_POOL_TYPE for types corrupt.";
return {};
}
} else if (pool_address == header.offset(dtohl(header->keyStrings))
.convert<ResChunk_header>()) {
// This string pool is the key string pool.
status_t err = loaded_package->key_string_pool_.setTo(
child_chunk.header<ResStringPool_header>(), child_chunk.size());
if (err != NO_ERROR) {
LOG(ERROR) << "RES_STRING_POOL_TYPE for keys corrupt.";
return {};
}
} else {
LOG(WARNING) << "Too many RES_STRING_POOL_TYPEs found in RES_TABLE_PACKAGE_TYPE.";
}
} break;
case RES_TABLE_TYPE_SPEC_TYPE: {
const auto type_spec = child_chunk.header<ResTable_typeSpec>();
if (!type_spec) {
LOG(ERROR) << "RES_TABLE_TYPE_SPEC_TYPE too small.";
return {};
}
if (type_spec->id == 0) {
LOG(ERROR) << "RES_TABLE_TYPE_SPEC_TYPE has invalid ID 0.";
return {};
}
if (loaded_package->type_id_offset_ + static_cast<int>(type_spec->id) >
std::numeric_limits<uint8_t>::max()) {
LOG(ERROR) << "RES_TABLE_TYPE_SPEC_TYPE has out of range ID.";
return {};
}
// The data portion of this chunk contains entry_count 32bit entries,
// each one representing a set of flags.
// Here we only validate that the chunk is well formed.
const size_t entry_count = dtohl(type_spec->entryCount);
// There can only be 2^16 entries in a type, because that is the ID
// space for entries (EEEE) in the resource ID 0xPPTTEEEE.
if (entry_count > std::numeric_limits<uint16_t>::max()) {
LOG(ERROR) << "RES_TABLE_TYPE_SPEC_TYPE has too many entries (" << entry_count << ").";
return {};
}
if (entry_count * sizeof(uint32_t) > chunk.data_size()) {
LOG(ERROR) << "RES_TABLE_TYPE_SPEC_TYPE too small to hold entries.";
return {};
}
std::unique_ptr<TypeSpecBuilder>& builder_ptr = type_builder_map[type_spec->id];
if (builder_ptr == nullptr) {
builder_ptr = util::make_unique<TypeSpecBuilder>(type_spec.verified());
loaded_package->resource_ids_.set(type_spec->id, entry_count);
} else {
LOG(WARNING) << StringPrintf("RES_TABLE_TYPE_SPEC_TYPE already defined for ID %02x",
type_spec->id);
}
} break;
case RES_TABLE_TYPE_TYPE: {
const auto type = child_chunk.header<ResTable_type, kResTableTypeMinSize>();
if (!type) {
LOG(ERROR) << "RES_TABLE_TYPE_TYPE too small.";
return {};
}
if (!VerifyResTableType(type)) {
return {};
}
// Type chunks must be preceded by their TypeSpec chunks.
std::unique_ptr<TypeSpecBuilder>& builder_ptr = type_builder_map[type->id];
if (builder_ptr != nullptr) {
builder_ptr->AddType(type.verified());
} else {
LOG(ERROR) << StringPrintf(
"RES_TABLE_TYPE_TYPE with ID %02x found without preceding RES_TABLE_TYPE_SPEC_TYPE.",
type->id);
return {};
}
} break;
case RES_TABLE_LIBRARY_TYPE: {
const auto lib = child_chunk.header<ResTable_lib_header>();
if (!lib) {
LOG(ERROR) << "RES_TABLE_LIBRARY_TYPE too small.";
return {};
}
if (child_chunk.data_size() / sizeof(ResTable_lib_entry) < dtohl(lib->count)) {
LOG(ERROR) << "RES_TABLE_LIBRARY_TYPE too small to hold entries.";
return {};
}
loaded_package->dynamic_package_map_.reserve(dtohl(lib->count));
const auto entry_begin = child_chunk.data_ptr().convert<ResTable_lib_entry>();
const auto entry_end = entry_begin + dtohl(lib->count);
for (auto entry_iter = entry_begin; entry_iter != entry_end; ++entry_iter) {
if (!entry_iter) {
return {};
}
std::string package_name;
util::ReadUtf16StringFromDevice(entry_iter->packageName,
arraysize(entry_iter->packageName), &package_name);
if (dtohl(entry_iter->packageId) >= std::numeric_limits<uint8_t>::max()) {
LOG(ERROR) << StringPrintf(
"Package ID %02x in RES_TABLE_LIBRARY_TYPE too large for package '%s'.",
dtohl(entry_iter->packageId), package_name.c_str());
return {};
}
loaded_package->dynamic_package_map_.emplace_back(std::move(package_name),
dtohl(entry_iter->packageId));
}
} break;
case RES_TABLE_OVERLAYABLE_TYPE: {
const auto overlayable = child_chunk.header<ResTable_overlayable_header>();
if (!overlayable) {
LOG(ERROR) << "RES_TABLE_OVERLAYABLE_TYPE too small.";
return {};
}
std::string name;
util::ReadUtf16StringFromDevice(overlayable->name, std::size(overlayable->name), &name);
std::string actor;
util::ReadUtf16StringFromDevice(overlayable->actor, std::size(overlayable->actor), &actor);
auto [name_to_actor_it, inserted] =
loaded_package->overlayable_map_.emplace(std::move(name), std::move(actor));
if (!inserted) {
LOG(ERROR) << "Multiple <overlayable> blocks with the same name '"
<< name_to_actor_it->first << "'.";
return {};
}
// Iterate over the overlayable policy chunks contained within the overlayable chunk data
ChunkIterator overlayable_iter(child_chunk.data_ptr(), child_chunk.data_size());
while (overlayable_iter.HasNext()) {
const Chunk overlayable_child_chunk = overlayable_iter.Next();
switch (overlayable_child_chunk.type()) {
case RES_TABLE_OVERLAYABLE_POLICY_TYPE: {
const auto policy_header =
overlayable_child_chunk.header<ResTable_overlayable_policy_header>();
if (!policy_header) {
LOG(ERROR) << "RES_TABLE_OVERLAYABLE_POLICY_TYPE too small.";
return {};
}
if ((overlayable_child_chunk.data_size() / sizeof(ResTable_ref))
< dtohl(policy_header->entry_count)) {
LOG(ERROR) << "RES_TABLE_OVERLAYABLE_POLICY_TYPE too small to hold entries.";
return {};
}
// Retrieve all the resource ids belonging to this policy chunk
const auto ids_begin = overlayable_child_chunk.data_ptr().convert<ResTable_ref>();
const auto ids_end = ids_begin + dtohl(policy_header->entry_count);
std::unordered_set<uint32_t> ids;
ids.reserve(ids_end - ids_begin);
for (auto id_iter = ids_begin; id_iter != ids_end; ++id_iter) {
if (!id_iter) {
LOG(ERROR) << "NULL ResTable_ref record??";
return {};
}
ids.insert(dtohl(id_iter->ident));
}
// Add the pairing of overlayable properties and resource ids to the package
OverlayableInfo overlayable_info {
.name = name_to_actor_it->first,
.actor = name_to_actor_it->second,
.policy_flags = policy_header->policy_flags
};
loaded_package->overlayable_infos_.emplace_back(std::move(overlayable_info), std::move(ids));
loaded_package->defines_overlayable_ = true;
break;
}
default:
LOG(WARNING) << StringPrintf("Unknown chunk type '%02x'.", chunk.type());
break;
}
}
if (overlayable_iter.HadError()) {
LOG(ERROR) << StringPrintf("Error parsing RES_TABLE_OVERLAYABLE_TYPE: %s",
overlayable_iter.GetLastError().c_str());
if (overlayable_iter.HadFatalError()) {
return {};
}
}
} break;
case RES_TABLE_STAGED_ALIAS_TYPE: {
if (loaded_package->package_id_ != kFrameworkPackageId) {
LOG(WARNING) << "Alias chunk ignored for non-framework package '"
<< loaded_package->package_name_ << "'";
break;
}
const auto lib_alias = child_chunk.header<ResTable_staged_alias_header>();
if (!lib_alias) {
LOG(ERROR) << "RES_TABLE_STAGED_ALIAS_TYPE is too small.";
return {};
}
if ((child_chunk.data_size() / sizeof(ResTable_staged_alias_entry))
< dtohl(lib_alias->count)) {
LOG(ERROR) << "RES_TABLE_STAGED_ALIAS_TYPE is too small to hold entries.";
return {};
}
const auto entry_begin = child_chunk.data_ptr().convert<ResTable_staged_alias_entry>();
const auto entry_end = entry_begin + dtohl(lib_alias->count);
std::unordered_set<uint32_t> finalized_ids;
finalized_ids.reserve(entry_end - entry_begin);
loaded_package->alias_id_map_.reserve(entry_end - entry_begin);
for (auto entry_iter = entry_begin; entry_iter != entry_end; ++entry_iter) {
if (!entry_iter) {
LOG(ERROR) << "NULL ResTable_staged_alias_entry record??";
return {};
}
auto finalized_id = dtohl(entry_iter->finalizedResId);
if (!finalized_ids.insert(finalized_id).second) {
LOG(ERROR) << StringPrintf("Repeated finalized resource id '%08x' in staged aliases.",
finalized_id);
return {};
}
auto staged_id = dtohl(entry_iter->stagedResId);
loaded_package->alias_id_map_.emplace_back(staged_id, finalized_id);
}
std::sort(loaded_package->alias_id_map_.begin(), loaded_package->alias_id_map_.end(),
[](auto&& l, auto&& r) { return l.first < r.first; });
const auto duplicate_it =
std::adjacent_find(loaded_package->alias_id_map_.begin(),
loaded_package->alias_id_map_.end(),
[](auto&& l, auto&& r) { return l.first == r.first; });
if (duplicate_it != loaded_package->alias_id_map_.end()) {
LOG(ERROR) << StringPrintf("Repeated staged resource id '%08x' in staged aliases.",
duplicate_it->first);
return {};
}
} break;
default:
LOG(WARNING) << StringPrintf("Unknown chunk type '%02x'.", chunk.type());
break;
}
}
if (iter.HadError()) {
LOG(ERROR) << iter.GetLastError();
if (iter.HadFatalError()) {
return {};
}
}
// Flatten and construct the TypeSpecs.
for (auto& entry : type_builder_map) {
TypeSpec type_spec = entry.second->Build();
uint8_t type_id = static_cast<uint8_t>(entry.first);
loaded_package->type_specs_[type_id] = std::move(type_spec);
}
return std::move(loaded_package);
}
bool LoadedArsc::LoadTable(const Chunk& chunk, const LoadedIdmap* loaded_idmap,
package_property_t property_flags) {
incfs::map_ptr<ResTable_header> header = chunk.header<ResTable_header>();
if (!header) {
LOG(ERROR) << "RES_TABLE_TYPE too small.";
return false;
}
if (loaded_idmap != nullptr) {
global_string_pool_ = util::make_unique<OverlayStringPool>(loaded_idmap);
}
const size_t package_count = dtohl(header->packageCount);
size_t packages_seen = 0;
packages_.reserve(package_count);
ChunkIterator iter(chunk.data_ptr(), chunk.data_size());
while (iter.HasNext()) {
const Chunk child_chunk = iter.Next();
switch (child_chunk.type()) {
case RES_STRING_POOL_TYPE:
// Only use the first string pool. Ignore others.
if (global_string_pool_->getError() == NO_INIT) {
status_t err = global_string_pool_->setTo(child_chunk.header<ResStringPool_header>(),
child_chunk.size());
if (err != NO_ERROR) {
LOG(ERROR) << "RES_STRING_POOL_TYPE corrupt.";
return false;
}
} else {
LOG(WARNING) << "Multiple RES_STRING_POOL_TYPEs found in RES_TABLE_TYPE.";
}
break;
case RES_TABLE_PACKAGE_TYPE: {
if (packages_seen + 1 > package_count) {
LOG(ERROR) << "More package chunks were found than the " << package_count
<< " declared in the header.";
return false;
}
packages_seen++;
std::unique_ptr<const LoadedPackage> loaded_package =
LoadedPackage::Load(child_chunk, property_flags);
if (!loaded_package) {
return false;
}
packages_.push_back(std::move(loaded_package));
} break;
default:
LOG(WARNING) << StringPrintf("Unknown chunk type '%02x'.", chunk.type());
break;
}
}
if (iter.HadError()) {
LOG(ERROR) << iter.GetLastError();
if (iter.HadFatalError()) {
return false;
}
}
return true;
}
bool LoadedArsc::LoadStringPool(const LoadedIdmap* loaded_idmap) {
if (loaded_idmap != nullptr) {
global_string_pool_ = util::make_unique<OverlayStringPool>(loaded_idmap);
}
return true;
}
std::unique_ptr<LoadedArsc> LoadedArsc::Load(incfs::map_ptr<void> data,
const size_t length,
const LoadedIdmap* loaded_idmap,
const package_property_t property_flags) {
ATRACE_NAME("LoadedArsc::Load");
// Not using make_unique because the constructor is private.
std::unique_ptr<LoadedArsc> loaded_arsc(new LoadedArsc());
ChunkIterator iter(data, length);
while (iter.HasNext()) {
const Chunk chunk = iter.Next();
switch (chunk.type()) {
case RES_TABLE_TYPE:
if (!loaded_arsc->LoadTable(chunk, loaded_idmap, property_flags)) {
return {};
}
break;
default:
LOG(WARNING) << StringPrintf("Unknown chunk type '%02x'.", chunk.type());
break;
}
}
if (iter.HadError()) {
LOG(ERROR) << iter.GetLastError();
if (iter.HadFatalError()) {
return {};
}
}
return loaded_arsc;
}
std::unique_ptr<LoadedArsc> LoadedArsc::Load(const LoadedIdmap* loaded_idmap) {
ATRACE_NAME("LoadedArsc::Load");
// Not using make_unique because the constructor is private.
std::unique_ptr<LoadedArsc> loaded_arsc(new LoadedArsc());
loaded_arsc->LoadStringPool(loaded_idmap);
return loaded_arsc;
}
std::unique_ptr<LoadedArsc> LoadedArsc::CreateEmpty() {
return std::unique_ptr<LoadedArsc>(new LoadedArsc());
}
} // namespace android