| /* |
| * Copyright (C) 2010 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include <stdint.h> |
| #include <math.h> |
| #include <sys/types.h> |
| |
| #include <utils/Errors.h> |
| |
| #include <hardware/sensors.h> |
| |
| #include "RotationVectorSensor.h" |
| |
| namespace android { |
| // --------------------------------------------------------------------------- |
| |
| template <typename T> |
| static inline T clamp(T v) { |
| return v < 0 ? 0 : v; |
| } |
| |
| RotationVectorSensor::RotationVectorSensor(sensor_t const* list, size_t count) |
| : mSensorDevice(SensorDevice::getInstance()), |
| mALowPass(M_SQRT1_2, 1.5f), |
| mAX(mALowPass), mAY(mALowPass), mAZ(mALowPass), |
| mMLowPass(M_SQRT1_2, 1.5f), |
| mMX(mMLowPass), mMY(mMLowPass), mMZ(mMLowPass) |
| { |
| for (size_t i=0 ; i<count ; i++) { |
| if (list[i].type == SENSOR_TYPE_ACCELEROMETER) { |
| mAcc = Sensor(list + i); |
| } |
| if (list[i].type == SENSOR_TYPE_MAGNETIC_FIELD) { |
| mMag = Sensor(list + i); |
| } |
| } |
| memset(mMagData, 0, sizeof(mMagData)); |
| } |
| |
| bool RotationVectorSensor::process(sensors_event_t* outEvent, |
| const sensors_event_t& event) |
| { |
| const static double NS2S = 1.0 / 1000000000.0; |
| if (event.type == SENSOR_TYPE_MAGNETIC_FIELD) { |
| const double now = event.timestamp * NS2S; |
| if (mMagTime == 0) { |
| mMagData[0] = mMX.init(event.magnetic.x); |
| mMagData[1] = mMY.init(event.magnetic.y); |
| mMagData[2] = mMZ.init(event.magnetic.z); |
| } else { |
| double dT = now - mMagTime; |
| mMLowPass.setSamplingPeriod(dT); |
| mMagData[0] = mMX(event.magnetic.x); |
| mMagData[1] = mMY(event.magnetic.y); |
| mMagData[2] = mMZ(event.magnetic.z); |
| } |
| mMagTime = now; |
| } |
| if (event.type == SENSOR_TYPE_ACCELEROMETER) { |
| const double now = event.timestamp * NS2S; |
| float Ax, Ay, Az; |
| if (mAccTime == 0) { |
| Ax = mAX.init(event.acceleration.x); |
| Ay = mAY.init(event.acceleration.y); |
| Az = mAZ.init(event.acceleration.z); |
| } else { |
| double dT = now - mAccTime; |
| mALowPass.setSamplingPeriod(dT); |
| Ax = mAX(event.acceleration.x); |
| Ay = mAY(event.acceleration.y); |
| Az = mAZ(event.acceleration.z); |
| } |
| mAccTime = now; |
| const float Ex = mMagData[0]; |
| const float Ey = mMagData[1]; |
| const float Ez = mMagData[2]; |
| float Hx = Ey*Az - Ez*Ay; |
| float Hy = Ez*Ax - Ex*Az; |
| float Hz = Ex*Ay - Ey*Ax; |
| const float normH = sqrtf(Hx*Hx + Hy*Hy + Hz*Hz); |
| if (normH < 0.1f) { |
| // device is close to free fall (or in space?), or close to |
| // magnetic north pole. Typical values are > 100. |
| return false; |
| } |
| const float invH = 1.0f / normH; |
| const float invA = 1.0f / sqrtf(Ax*Ax + Ay*Ay + Az*Az); |
| Hx *= invH; |
| Hy *= invH; |
| Hz *= invH; |
| Ax *= invA; |
| Ay *= invA; |
| Az *= invA; |
| const float Mx = Ay*Hz - Az*Hy; |
| const float My = Az*Hx - Ax*Hz; |
| const float Mz = Ax*Hy - Ay*Hx; |
| |
| // matrix to rotation vector (normalized quaternion) |
| float qw = sqrtf( clamp( Hx + My + Az + 1) * 0.25f ); |
| float qx = sqrtf( clamp( Hx - My - Az + 1) * 0.25f ); |
| float qy = sqrtf( clamp(-Hx + My - Az + 1) * 0.25f ); |
| float qz = sqrtf( clamp(-Hx - My + Az + 1) * 0.25f ); |
| qx = copysignf(qx, Ay - Mz); |
| qy = copysignf(qy, Hz - Ax); |
| qz = copysignf(qz, Mx - Hy); |
| |
| // this quaternion is guaranteed to be normalized, by construction |
| // of the rotation matrix. |
| |
| *outEvent = event; |
| outEvent->data[0] = qx; |
| outEvent->data[1] = qy; |
| outEvent->data[2] = qz; |
| outEvent->data[3] = qw; |
| outEvent->sensor = '_rov'; |
| outEvent->type = SENSOR_TYPE_ROTATION_VECTOR; |
| return true; |
| } |
| return false; |
| } |
| |
| status_t RotationVectorSensor::activate(void* ident, bool enabled) { |
| mSensorDevice.activate(this, mAcc.getHandle(), enabled); |
| mSensorDevice.activate(this, mMag.getHandle(), enabled); |
| if (enabled) { |
| mMagTime = 0; |
| mAccTime = 0; |
| } |
| return NO_ERROR; |
| } |
| |
| status_t RotationVectorSensor::setDelay(void* ident, int handle, int64_t ns) |
| { |
| mSensorDevice.setDelay(this, mAcc.getHandle(), ns); |
| mSensorDevice.setDelay(this, mMag.getHandle(), ns); |
| return NO_ERROR; |
| } |
| |
| Sensor RotationVectorSensor::getSensor() const { |
| sensor_t hwSensor; |
| hwSensor.name = "Rotation Vector Sensor"; |
| hwSensor.vendor = "Google Inc."; |
| hwSensor.version = 1; |
| hwSensor.handle = '_rov'; |
| hwSensor.type = SENSOR_TYPE_ROTATION_VECTOR; |
| hwSensor.maxRange = 1; |
| hwSensor.resolution = 1.0f / (1<<24); |
| hwSensor.power = mAcc.getPowerUsage() + mMag.getPowerUsage(); |
| hwSensor.minDelay = mAcc.getMinDelay(); |
| Sensor sensor(&hwSensor); |
| return sensor; |
| } |
| |
| // --------------------------------------------------------------------------- |
| }; // namespace android |
| |