blob: cd4de90f12f6cf4c24ffadd037a020520ed030eb [file] [log] [blame]
//
// Copyright 2006 The Android Open Source Project
//
// Build resource files from raw assets.
//
#define PNG_INTERNAL
#include "Images.h"
#include <androidfw/PathUtils.h>
#include <androidfw/ResourceTypes.h>
#include <utils/ByteOrder.h>
#include <png.h>
#include <zlib.h>
// Change this to true for noisy debug output.
static const bool kIsDebug = false;
static void
png_write_aapt_file(png_structp png_ptr, png_bytep data, png_size_t length)
{
AaptFile* aaptfile = (AaptFile*) png_get_io_ptr(png_ptr);
status_t err = aaptfile->writeData(data, length);
if (err != NO_ERROR) {
png_error(png_ptr, "Write Error");
}
}
static void
png_flush_aapt_file(png_structp /* png_ptr */)
{
}
// This holds an image as 8bpp RGBA.
struct image_info
{
image_info() : rows(NULL), is9Patch(false),
xDivs(NULL), yDivs(NULL), colors(NULL), allocRows(NULL) { }
~image_info() {
if (rows && rows != allocRows) {
free(rows);
}
if (allocRows) {
for (int i=0; i<(int)allocHeight; i++) {
free(allocRows[i]);
}
free(allocRows);
}
free(xDivs);
free(yDivs);
free(colors);
}
void* serialize9patch() {
void* serialized = Res_png_9patch::serialize(info9Patch, xDivs, yDivs, colors);
reinterpret_cast<Res_png_9patch*>(serialized)->deviceToFile();
return serialized;
}
png_uint_32 width;
png_uint_32 height;
png_bytepp rows;
// 9-patch info.
bool is9Patch;
Res_png_9patch info9Patch;
int32_t* xDivs;
int32_t* yDivs;
uint32_t* colors;
// Layout padding, if relevant
bool haveLayoutBounds;
int32_t layoutBoundsLeft;
int32_t layoutBoundsTop;
int32_t layoutBoundsRight;
int32_t layoutBoundsBottom;
// Round rect outline description
int32_t outlineInsetsLeft;
int32_t outlineInsetsTop;
int32_t outlineInsetsRight;
int32_t outlineInsetsBottom;
float outlineRadius;
uint8_t outlineAlpha;
png_uint_32 allocHeight;
png_bytepp allocRows;
};
static void log_warning(png_structp png_ptr, png_const_charp warning_message)
{
const char* imageName = (const char*) png_get_error_ptr(png_ptr);
fprintf(stderr, "%s: libpng warning: %s\n", imageName, warning_message);
}
static void read_png(const char* imageName,
png_structp read_ptr, png_infop read_info,
image_info* outImageInfo)
{
int color_type;
int bit_depth, interlace_type, compression_type;
int i;
png_set_error_fn(read_ptr, const_cast<char*>(imageName),
NULL /* use default errorfn */, log_warning);
png_read_info(read_ptr, read_info);
png_get_IHDR(read_ptr, read_info, &outImageInfo->width,
&outImageInfo->height, &bit_depth, &color_type,
&interlace_type, &compression_type, NULL);
//printf("Image %s:\n", imageName);
//printf("color_type=%d, bit_depth=%d, interlace_type=%d, compression_type=%d\n",
// color_type, bit_depth, interlace_type, compression_type);
if (color_type == PNG_COLOR_TYPE_PALETTE)
png_set_palette_to_rgb(read_ptr);
if (color_type == PNG_COLOR_TYPE_GRAY && bit_depth < 8)
png_set_expand_gray_1_2_4_to_8(read_ptr);
if (png_get_valid(read_ptr, read_info, PNG_INFO_tRNS)) {
//printf("Has PNG_INFO_tRNS!\n");
png_set_tRNS_to_alpha(read_ptr);
}
if (bit_depth == 16)
png_set_strip_16(read_ptr);
if ((color_type&PNG_COLOR_MASK_ALPHA) == 0)
png_set_add_alpha(read_ptr, 0xFF, PNG_FILLER_AFTER);
if (color_type == PNG_COLOR_TYPE_GRAY || color_type == PNG_COLOR_TYPE_GRAY_ALPHA)
png_set_gray_to_rgb(read_ptr);
png_set_interlace_handling(read_ptr);
png_read_update_info(read_ptr, read_info);
outImageInfo->rows = (png_bytepp)malloc(
outImageInfo->height * sizeof(png_bytep));
outImageInfo->allocHeight = outImageInfo->height;
outImageInfo->allocRows = outImageInfo->rows;
png_set_rows(read_ptr, read_info, outImageInfo->rows);
for (i = 0; i < (int)outImageInfo->height; i++)
{
outImageInfo->rows[i] = (png_bytep)
malloc(png_get_rowbytes(read_ptr, read_info));
}
png_read_image(read_ptr, outImageInfo->rows);
png_read_end(read_ptr, read_info);
if (kIsDebug) {
printf("Image %s: w=%d, h=%d, d=%d, colors=%d, inter=%d, comp=%d\n",
imageName,
(int)outImageInfo->width, (int)outImageInfo->height,
bit_depth, color_type,
interlace_type, compression_type);
}
png_get_IHDR(read_ptr, read_info, &outImageInfo->width,
&outImageInfo->height, &bit_depth, &color_type,
&interlace_type, &compression_type, NULL);
}
#define COLOR_TRANSPARENT 0
#define COLOR_WHITE 0xFFFFFFFF
#define COLOR_TICK 0xFF000000
#define COLOR_LAYOUT_BOUNDS_TICK 0xFF0000FF
enum {
TICK_TYPE_NONE,
TICK_TYPE_TICK,
TICK_TYPE_LAYOUT_BOUNDS,
TICK_TYPE_BOTH
};
static int tick_type(png_bytep p, bool transparent, const char** outError)
{
png_uint_32 color = p[0] | (p[1] << 8) | (p[2] << 16) | (p[3] << 24);
if (transparent) {
if (p[3] == 0) {
return TICK_TYPE_NONE;
}
if (color == COLOR_LAYOUT_BOUNDS_TICK) {
return TICK_TYPE_LAYOUT_BOUNDS;
}
if (color == COLOR_TICK) {
return TICK_TYPE_TICK;
}
// Error cases
if (p[3] != 0xff) {
*outError = "Frame pixels must be either solid or transparent (not intermediate alphas)";
return TICK_TYPE_NONE;
}
if (p[0] != 0 || p[1] != 0 || p[2] != 0) {
*outError = "Ticks in transparent frame must be black or red";
}
return TICK_TYPE_TICK;
}
if (p[3] != 0xFF) {
*outError = "White frame must be a solid color (no alpha)";
}
if (color == COLOR_WHITE) {
return TICK_TYPE_NONE;
}
if (color == COLOR_TICK) {
return TICK_TYPE_TICK;
}
if (color == COLOR_LAYOUT_BOUNDS_TICK) {
return TICK_TYPE_LAYOUT_BOUNDS;
}
if (p[0] != 0 || p[1] != 0 || p[2] != 0) {
*outError = "Ticks in white frame must be black or red";
return TICK_TYPE_NONE;
}
return TICK_TYPE_TICK;
}
enum {
TICK_START,
TICK_INSIDE_1,
TICK_OUTSIDE_1
};
static status_t get_horizontal_ticks(
png_bytep row, int width, bool transparent, bool required,
int32_t* outLeft, int32_t* outRight, const char** outError,
uint8_t* outDivs, bool multipleAllowed)
{
int i;
*outLeft = *outRight = -1;
int state = TICK_START;
bool found = false;
for (i=1; i<width-1; i++) {
if (TICK_TYPE_TICK == tick_type(row+i*4, transparent, outError)) {
if (state == TICK_START ||
(state == TICK_OUTSIDE_1 && multipleAllowed)) {
*outLeft = i-1;
*outRight = width-2;
found = true;
if (outDivs != NULL) {
*outDivs += 2;
}
state = TICK_INSIDE_1;
} else if (state == TICK_OUTSIDE_1) {
*outError = "Can't have more than one marked region along edge";
*outLeft = i;
return UNKNOWN_ERROR;
}
} else if (*outError == NULL) {
if (state == TICK_INSIDE_1) {
// We're done with this div. Move on to the next.
*outRight = i-1;
outRight += 2;
outLeft += 2;
state = TICK_OUTSIDE_1;
}
} else {
*outLeft = i;
return UNKNOWN_ERROR;
}
}
if (required && !found) {
*outError = "No marked region found along edge";
*outLeft = -1;
return UNKNOWN_ERROR;
}
return NO_ERROR;
}
static status_t get_vertical_ticks(
png_bytepp rows, int offset, int height, bool transparent, bool required,
int32_t* outTop, int32_t* outBottom, const char** outError,
uint8_t* outDivs, bool multipleAllowed)
{
int i;
*outTop = *outBottom = -1;
int state = TICK_START;
bool found = false;
for (i=1; i<height-1; i++) {
if (TICK_TYPE_TICK == tick_type(rows[i]+offset, transparent, outError)) {
if (state == TICK_START ||
(state == TICK_OUTSIDE_1 && multipleAllowed)) {
*outTop = i-1;
*outBottom = height-2;
found = true;
if (outDivs != NULL) {
*outDivs += 2;
}
state = TICK_INSIDE_1;
} else if (state == TICK_OUTSIDE_1) {
*outError = "Can't have more than one marked region along edge";
*outTop = i;
return UNKNOWN_ERROR;
}
} else if (*outError == NULL) {
if (state == TICK_INSIDE_1) {
// We're done with this div. Move on to the next.
*outBottom = i-1;
outTop += 2;
outBottom += 2;
state = TICK_OUTSIDE_1;
}
} else {
*outTop = i;
return UNKNOWN_ERROR;
}
}
if (required && !found) {
*outError = "No marked region found along edge";
*outTop = -1;
return UNKNOWN_ERROR;
}
return NO_ERROR;
}
static status_t get_horizontal_layout_bounds_ticks(
png_bytep row, int width, bool transparent, bool /* required */,
int32_t* outLeft, int32_t* outRight, const char** outError)
{
int i;
*outLeft = *outRight = 0;
// Look for left tick
if (TICK_TYPE_LAYOUT_BOUNDS == tick_type(row + 4, transparent, outError)) {
// Starting with a layout padding tick
i = 1;
while (i < width - 1) {
(*outLeft)++;
i++;
int tick = tick_type(row + i * 4, transparent, outError);
if (tick != TICK_TYPE_LAYOUT_BOUNDS) {
break;
}
}
}
// Look for right tick
if (TICK_TYPE_LAYOUT_BOUNDS == tick_type(row + (width - 2) * 4, transparent, outError)) {
// Ending with a layout padding tick
i = width - 2;
while (i > 1) {
(*outRight)++;
i--;
int tick = tick_type(row+i*4, transparent, outError);
if (tick != TICK_TYPE_LAYOUT_BOUNDS) {
break;
}
}
}
return NO_ERROR;
}
static status_t get_vertical_layout_bounds_ticks(
png_bytepp rows, int offset, int height, bool transparent, bool /* required */,
int32_t* outTop, int32_t* outBottom, const char** outError)
{
int i;
*outTop = *outBottom = 0;
// Look for top tick
if (TICK_TYPE_LAYOUT_BOUNDS == tick_type(rows[1] + offset, transparent, outError)) {
// Starting with a layout padding tick
i = 1;
while (i < height - 1) {
(*outTop)++;
i++;
int tick = tick_type(rows[i] + offset, transparent, outError);
if (tick != TICK_TYPE_LAYOUT_BOUNDS) {
break;
}
}
}
// Look for bottom tick
if (TICK_TYPE_LAYOUT_BOUNDS == tick_type(rows[height - 2] + offset, transparent, outError)) {
// Ending with a layout padding tick
i = height - 2;
while (i > 1) {
(*outBottom)++;
i--;
int tick = tick_type(rows[i] + offset, transparent, outError);
if (tick != TICK_TYPE_LAYOUT_BOUNDS) {
break;
}
}
}
return NO_ERROR;
}
static void find_max_opacity(png_byte** rows,
int startX, int startY, int endX, int endY, int dX, int dY,
int* out_inset)
{
uint8_t max_opacity = 0;
int inset = 0;
*out_inset = 0;
for (int x = startX, y = startY; x != endX && y != endY; x += dX, y += dY, inset++) {
png_byte* color = rows[y] + x * 4;
uint8_t opacity = color[3];
if (opacity > max_opacity) {
max_opacity = opacity;
*out_inset = inset;
}
if (opacity == 0xff) return;
}
}
static uint8_t max_alpha_over_row(png_byte* row, int startX, int endX)
{
uint8_t max_alpha = 0;
for (int x = startX; x < endX; x++) {
uint8_t alpha = (row + x * 4)[3];
if (alpha > max_alpha) max_alpha = alpha;
}
return max_alpha;
}
static uint8_t max_alpha_over_col(png_byte** rows, int offsetX, int startY, int endY)
{
uint8_t max_alpha = 0;
for (int y = startY; y < endY; y++) {
uint8_t alpha = (rows[y] + offsetX * 4)[3];
if (alpha > max_alpha) max_alpha = alpha;
}
return max_alpha;
}
static void get_outline(image_info* image)
{
int midX = image->width / 2;
int midY = image->height / 2;
int endX = image->width - 2;
int endY = image->height - 2;
// find left and right extent of nine patch content on center row
if (image->width > 4) {
find_max_opacity(image->rows, 1, midY, midX, -1, 1, 0, &image->outlineInsetsLeft);
find_max_opacity(image->rows, endX, midY, midX, -1, -1, 0, &image->outlineInsetsRight);
} else {
image->outlineInsetsLeft = 0;
image->outlineInsetsRight = 0;
}
// find top and bottom extent of nine patch content on center column
if (image->height > 4) {
find_max_opacity(image->rows, midX, 1, -1, midY, 0, 1, &image->outlineInsetsTop);
find_max_opacity(image->rows, midX, endY, -1, midY, 0, -1, &image->outlineInsetsBottom);
} else {
image->outlineInsetsTop = 0;
image->outlineInsetsBottom = 0;
}
int innerStartX = 1 + image->outlineInsetsLeft;
int innerStartY = 1 + image->outlineInsetsTop;
int innerEndX = endX - image->outlineInsetsRight;
int innerEndY = endY - image->outlineInsetsBottom;
int innerMidX = (innerEndX + innerStartX) / 2;
int innerMidY = (innerEndY + innerStartY) / 2;
// assuming the image is a round rect, compute the radius by marching
// diagonally from the top left corner towards the center
image->outlineAlpha = std::max(
max_alpha_over_row(image->rows[innerMidY], innerStartX, innerEndX),
max_alpha_over_col(image->rows, innerMidX, innerStartY, innerStartY));
int diagonalInset = 0;
find_max_opacity(image->rows, innerStartX, innerStartY, innerMidX, innerMidY, 1, 1,
&diagonalInset);
/* Determine source radius based upon inset:
* sqrt(r^2 + r^2) = sqrt(i^2 + i^2) + r
* sqrt(2) * r = sqrt(2) * i + r
* (sqrt(2) - 1) * r = sqrt(2) * i
* r = sqrt(2) / (sqrt(2) - 1) * i
*/
image->outlineRadius = 3.4142f * diagonalInset;
if (kIsDebug) {
printf("outline insets %d %d %d %d, rad %f, alpha %x\n",
image->outlineInsetsLeft,
image->outlineInsetsTop,
image->outlineInsetsRight,
image->outlineInsetsBottom,
image->outlineRadius,
image->outlineAlpha);
}
}
static uint32_t get_color(
png_bytepp rows, int left, int top, int right, int bottom)
{
png_bytep color = rows[top] + left*4;
if (left > right || top > bottom) {
return Res_png_9patch::TRANSPARENT_COLOR;
}
while (top <= bottom) {
for (int i = left; i <= right; i++) {
png_bytep p = rows[top]+i*4;
if (color[3] == 0) {
if (p[3] != 0) {
return Res_png_9patch::NO_COLOR;
}
} else if (p[0] != color[0] || p[1] != color[1]
|| p[2] != color[2] || p[3] != color[3]) {
return Res_png_9patch::NO_COLOR;
}
}
top++;
}
if (color[3] == 0) {
return Res_png_9patch::TRANSPARENT_COLOR;
}
return (color[3]<<24) | (color[0]<<16) | (color[1]<<8) | color[2];
}
static status_t do_9patch(const char* imageName, image_info* image)
{
image->is9Patch = true;
int W = image->width;
int H = image->height;
int i, j;
int maxSizeXDivs = W * sizeof(int32_t);
int maxSizeYDivs = H * sizeof(int32_t);
int32_t* xDivs = image->xDivs = (int32_t*) malloc(maxSizeXDivs);
int32_t* yDivs = image->yDivs = (int32_t*) malloc(maxSizeYDivs);
uint8_t numXDivs = 0;
uint8_t numYDivs = 0;
int8_t numColors;
int numRows;
int numCols;
int top;
int left;
int right;
int bottom;
memset(xDivs, -1, maxSizeXDivs);
memset(yDivs, -1, maxSizeYDivs);
image->info9Patch.paddingLeft = image->info9Patch.paddingRight =
image->info9Patch.paddingTop = image->info9Patch.paddingBottom = -1;
image->layoutBoundsLeft = image->layoutBoundsRight =
image->layoutBoundsTop = image->layoutBoundsBottom = 0;
png_bytep p = image->rows[0];
bool transparent = p[3] == 0;
bool hasColor = false;
const char* errorMsg = NULL;
int errorPixel = -1;
const char* errorEdge = NULL;
int colorIndex = 0;
// Validate size...
if (W < 3 || H < 3) {
errorMsg = "Image must be at least 3x3 (1x1 without frame) pixels";
goto getout;
}
// Validate frame...
if (!transparent &&
(p[0] != 0xFF || p[1] != 0xFF || p[2] != 0xFF || p[3] != 0xFF)) {
errorMsg = "Must have one-pixel frame that is either transparent or white";
goto getout;
}
// Find left and right of sizing areas...
if (get_horizontal_ticks(p, W, transparent, true, &xDivs[0],
&xDivs[1], &errorMsg, &numXDivs, true) != NO_ERROR) {
errorPixel = xDivs[0];
errorEdge = "top";
goto getout;
}
// Find top and bottom of sizing areas...
if (get_vertical_ticks(image->rows, 0, H, transparent, true, &yDivs[0],
&yDivs[1], &errorMsg, &numYDivs, true) != NO_ERROR) {
errorPixel = yDivs[0];
errorEdge = "left";
goto getout;
}
// Copy patch size data into image...
image->info9Patch.numXDivs = numXDivs;
image->info9Patch.numYDivs = numYDivs;
// Find left and right of padding area...
if (get_horizontal_ticks(image->rows[H-1], W, transparent, false, &image->info9Patch.paddingLeft,
&image->info9Patch.paddingRight, &errorMsg, NULL, false) != NO_ERROR) {
errorPixel = image->info9Patch.paddingLeft;
errorEdge = "bottom";
goto getout;
}
// Find top and bottom of padding area...
if (get_vertical_ticks(image->rows, (W-1)*4, H, transparent, false, &image->info9Patch.paddingTop,
&image->info9Patch.paddingBottom, &errorMsg, NULL, false) != NO_ERROR) {
errorPixel = image->info9Patch.paddingTop;
errorEdge = "right";
goto getout;
}
// Find left and right of layout padding...
get_horizontal_layout_bounds_ticks(image->rows[H-1], W, transparent, false,
&image->layoutBoundsLeft,
&image->layoutBoundsRight, &errorMsg);
get_vertical_layout_bounds_ticks(image->rows, (W-1)*4, H, transparent, false,
&image->layoutBoundsTop,
&image->layoutBoundsBottom, &errorMsg);
image->haveLayoutBounds = image->layoutBoundsLeft != 0
|| image->layoutBoundsRight != 0
|| image->layoutBoundsTop != 0
|| image->layoutBoundsBottom != 0;
if (image->haveLayoutBounds) {
if (kIsDebug) {
printf("layoutBounds=%d %d %d %d\n", image->layoutBoundsLeft, image->layoutBoundsTop,
image->layoutBoundsRight, image->layoutBoundsBottom);
}
}
// use opacity of pixels to estimate the round rect outline
get_outline(image);
// If padding is not yet specified, take values from size.
if (image->info9Patch.paddingLeft < 0) {
image->info9Patch.paddingLeft = xDivs[0];
image->info9Patch.paddingRight = W - 2 - xDivs[1];
} else {
// Adjust value to be correct!
image->info9Patch.paddingRight = W - 2 - image->info9Patch.paddingRight;
}
if (image->info9Patch.paddingTop < 0) {
image->info9Patch.paddingTop = yDivs[0];
image->info9Patch.paddingBottom = H - 2 - yDivs[1];
} else {
// Adjust value to be correct!
image->info9Patch.paddingBottom = H - 2 - image->info9Patch.paddingBottom;
}
if (kIsDebug) {
printf("Size ticks for %s: x0=%d, x1=%d, y0=%d, y1=%d\n", imageName,
xDivs[0], xDivs[1],
yDivs[0], yDivs[1]);
printf("padding ticks for %s: l=%d, r=%d, t=%d, b=%d\n", imageName,
image->info9Patch.paddingLeft, image->info9Patch.paddingRight,
image->info9Patch.paddingTop, image->info9Patch.paddingBottom);
}
// Remove frame from image.
image->rows = (png_bytepp)malloc((H-2) * sizeof(png_bytep));
for (i=0; i<(H-2); i++) {
image->rows[i] = image->allocRows[i+1];
memmove(image->rows[i], image->rows[i]+4, (W-2)*4);
}
image->width -= 2;
W = image->width;
image->height -= 2;
H = image->height;
// Figure out the number of rows and columns in the N-patch
numCols = numXDivs + 1;
if (xDivs[0] == 0) { // Column 1 is strechable
numCols--;
}
if (xDivs[numXDivs - 1] == W) {
numCols--;
}
numRows = numYDivs + 1;
if (yDivs[0] == 0) { // Row 1 is strechable
numRows--;
}
if (yDivs[numYDivs - 1] == H) {
numRows--;
}
// Make sure the amount of rows and columns will fit in the number of
// colors we can use in the 9-patch format.
if (numRows * numCols > 0x7F) {
errorMsg = "Too many rows and columns in 9-patch perimeter";
goto getout;
}
numColors = numRows * numCols;
image->info9Patch.numColors = numColors;
image->colors = (uint32_t*)malloc(numColors * sizeof(uint32_t));
// Fill in color information for each patch.
uint32_t c;
top = 0;
// The first row always starts with the top being at y=0 and the bottom
// being either yDivs[1] (if yDivs[0]=0) of yDivs[0]. In the former case
// the first row is stretchable along the Y axis, otherwise it is fixed.
// The last row always ends with the bottom being bitmap.height and the top
// being either yDivs[numYDivs-2] (if yDivs[numYDivs-1]=bitmap.height) or
// yDivs[numYDivs-1]. In the former case the last row is stretchable along
// the Y axis, otherwise it is fixed.
//
// The first and last columns are similarly treated with respect to the X
// axis.
//
// The above is to help explain some of the special casing that goes on the
// code below.
// The initial yDiv and whether the first row is considered stretchable or
// not depends on whether yDiv[0] was zero or not.
for (j = (yDivs[0] == 0 ? 1 : 0);
j <= numYDivs && top < H;
j++) {
if (j == numYDivs) {
bottom = H;
} else {
bottom = yDivs[j];
}
left = 0;
// The initial xDiv and whether the first column is considered
// stretchable or not depends on whether xDiv[0] was zero or not.
for (i = xDivs[0] == 0 ? 1 : 0;
i <= numXDivs && left < W;
i++) {
if (i == numXDivs) {
right = W;
} else {
right = xDivs[i];
}
c = get_color(image->rows, left, top, right - 1, bottom - 1);
image->colors[colorIndex++] = c;
if (kIsDebug) {
if (c != Res_png_9patch::NO_COLOR)
hasColor = true;
}
left = right;
}
top = bottom;
}
assert(colorIndex == numColors);
for (i=0; i<numColors; i++) {
if (hasColor) {
if (i == 0) printf("Colors in %s:\n ", imageName);
printf(" #%08x", image->colors[i]);
if (i == numColors - 1) printf("\n");
}
}
getout:
if (errorMsg) {
fprintf(stderr,
"ERROR: 9-patch image %s malformed.\n"
" %s.\n", imageName, errorMsg);
if (errorEdge != NULL) {
if (errorPixel >= 0) {
fprintf(stderr,
" Found at pixel #%d along %s edge.\n", errorPixel, errorEdge);
} else {
fprintf(stderr,
" Found along %s edge.\n", errorEdge);
}
}
return UNKNOWN_ERROR;
}
return NO_ERROR;
}
static void checkNinePatchSerialization(Res_png_9patch* inPatch, void* data)
{
size_t patchSize = inPatch->serializedSize();
void* newData = malloc(patchSize);
memcpy(newData, data, patchSize);
Res_png_9patch* outPatch = inPatch->deserialize(newData);
// deserialization is done in place, so outPatch == newData
assert(outPatch == newData);
assert(outPatch->numXDivs == inPatch->numXDivs);
assert(outPatch->numYDivs == inPatch->numYDivs);
assert(outPatch->paddingLeft == inPatch->paddingLeft);
assert(outPatch->paddingRight == inPatch->paddingRight);
assert(outPatch->paddingTop == inPatch->paddingTop);
assert(outPatch->paddingBottom == inPatch->paddingBottom);
for (int i = 0; i < outPatch->numXDivs; i++) {
assert(outPatch->getXDivs()[i] == inPatch->getXDivs()[i]);
}
for (int i = 0; i < outPatch->numYDivs; i++) {
assert(outPatch->getYDivs()[i] == inPatch->getYDivs()[i]);
}
for (int i = 0; i < outPatch->numColors; i++) {
assert(outPatch->getColors()[i] == inPatch->getColors()[i]);
}
free(newData);
}
static void dump_image(int w, int h, png_bytepp rows, int color_type)
{
int i, j, rr, gg, bb, aa;
int bpp;
if (color_type == PNG_COLOR_TYPE_PALETTE || color_type == PNG_COLOR_TYPE_GRAY) {
bpp = 1;
} else if (color_type == PNG_COLOR_TYPE_GRAY_ALPHA) {
bpp = 2;
} else if (color_type == PNG_COLOR_TYPE_RGB || color_type == PNG_COLOR_TYPE_RGB_ALPHA) {
// We use a padding byte even when there is no alpha
bpp = 4;
} else {
printf("Unknown color type %d.\n", color_type);
return;
}
for (j = 0; j < h; j++) {
png_bytep row = rows[j];
for (i = 0; i < w; i++) {
rr = row[0];
gg = row[1];
bb = row[2];
aa = row[3];
row += bpp;
if (i == 0) {
printf("Row %d:", j);
}
switch (bpp) {
case 1:
printf(" (%d)", rr);
break;
case 2:
printf(" (%d %d", rr, gg);
break;
case 3:
printf(" (%d %d %d)", rr, gg, bb);
break;
case 4:
printf(" (%d %d %d %d)", rr, gg, bb, aa);
break;
}
if (i == (w - 1)) {
printf("\n");
}
}
}
}
#define MAX(a,b) ((a)>(b)?(a):(b))
#define ABS(a) ((a)<0?-(a):(a))
static void analyze_image(const char *imageName, image_info &imageInfo, int grayscaleTolerance,
png_colorp rgbPalette, png_bytep alphaPalette,
int *paletteEntries, int *alphaPaletteEntries, bool *hasTransparency,
int *colorType, png_bytepp outRows)
{
int w = imageInfo.width;
int h = imageInfo.height;
int i, j, rr, gg, bb, aa, idx;;
uint32_t opaqueColors[256], alphaColors[256];
uint32_t col;
int numOpaqueColors = 0, numAlphaColors = 0;
int maxGrayDeviation = 0;
bool isOpaque = true;
bool isPalette = true;
bool isGrayscale = true;
// Scan the entire image and determine if:
// 1. Every pixel has R == G == B (grayscale)
// 2. Every pixel has A == 255 (opaque)
// 3. There are no more than 256 distinct RGBA colors
// We will track opaque colors separately from colors with
// alpha. This allows us to reencode the color table more
// efficiently (color tables entries without a corresponding
// alpha value are assumed to be opaque).
if (kIsDebug) {
printf("Initial image data:\n");
dump_image(w, h, imageInfo.rows, PNG_COLOR_TYPE_RGB_ALPHA);
}
for (j = 0; j < h; j++) {
png_bytep row = imageInfo.rows[j];
png_bytep out = outRows[j];
for (i = 0; i < w; i++) {
// Make sure any zero alpha pixels are fully zeroed. On average,
// each of our PNG assets seem to have about four distinct pixels
// with zero alpha.
// There are several advantages to setting these to zero:
// (1) Images are more likely able to be encodable with a palette.
// (2) Image palettes will be smaller.
// (3) Premultiplied and unpremultiplied PNG decodes can skip
// writing zeros to memory, often saving significant numbers
// of memory pages.
aa = *(row + 3);
if (aa == 0) {
rr = 0;
gg = 0;
bb = 0;
// Also set red, green, and blue to zero in "row". If we later
// decide to encode the PNG as RGB or RGBA, we will use the
// values stored there.
*(row) = 0;
*(row + 1) = 0;
*(row + 2) = 0;
} else {
rr = *(row);
gg = *(row + 1);
bb = *(row + 2);
}
row += 4;
int odev = maxGrayDeviation;
maxGrayDeviation = MAX(ABS(rr - gg), maxGrayDeviation);
maxGrayDeviation = MAX(ABS(gg - bb), maxGrayDeviation);
maxGrayDeviation = MAX(ABS(bb - rr), maxGrayDeviation);
if (maxGrayDeviation > odev) {
if (kIsDebug) {
printf("New max dev. = %d at pixel (%d, %d) = (%d %d %d %d)\n",
maxGrayDeviation, i, j, rr, gg, bb, aa);
}
}
// Check if image is really grayscale
if (isGrayscale) {
if (rr != gg || rr != bb) {
if (kIsDebug) {
printf("Found a non-gray pixel at %d, %d = (%d %d %d %d)\n",
i, j, rr, gg, bb, aa);
}
isGrayscale = false;
}
}
// Check if image is really opaque
if (isOpaque) {
if (aa != 0xff) {
if (kIsDebug) {
printf("Found a non-opaque pixel at %d, %d = (%d %d %d %d)\n",
i, j, rr, gg, bb, aa);
}
isOpaque = false;
}
}
// Check if image is really <= 256 colors
if (isPalette) {
col = (uint32_t) ((rr << 24) | (gg << 16) | (bb << 8) | aa);
bool match = false;
if (aa == 0xff) {
for (idx = 0; idx < numOpaqueColors; idx++) {
if (opaqueColors[idx] == col) {
match = true;
break;
}
}
if (!match) {
if (numOpaqueColors < 256) {
opaqueColors[numOpaqueColors] = col;
}
numOpaqueColors++;
}
// Write the palette index for the pixel to outRows optimistically.
// We might overwrite it later if we decide to encode as gray or
// gray + alpha. We may also need to overwrite it when we combine
// into a single palette.
*out++ = idx;
} else {
for (idx = 0; idx < numAlphaColors; idx++) {
if (alphaColors[idx] == col) {
match = true;
break;
}
}
if (!match) {
if (numAlphaColors < 256) {
alphaColors[numAlphaColors] = col;
}
numAlphaColors++;
}
// Write the palette index for the pixel to outRows optimistically.
// We might overwrite it later if we decide to encode as gray or
// gray + alpha.
*out++ = idx;
}
if (numOpaqueColors + numAlphaColors > 256) {
if (kIsDebug) {
printf("Found 257th color at %d, %d\n", i, j);
}
isPalette = false;
}
}
}
}
// If we decide to encode the image using a palette, we will reset these counts
// to the appropriate values later. Initializing them here avoids compiler
// complaints about uses of possibly uninitialized variables.
*paletteEntries = 0;
*alphaPaletteEntries = 0;
*hasTransparency = !isOpaque;
int paletteSize = w * h + 3 * numOpaqueColors + 4 * numAlphaColors;
int bpp = isOpaque ? 3 : 4;
if (kIsDebug) {
printf("isGrayscale = %s\n", isGrayscale ? "true" : "false");
printf("isOpaque = %s\n", isOpaque ? "true" : "false");
printf("isPalette = %s\n", isPalette ? "true" : "false");
printf("Size w/ palette = %d, gray+alpha = %d, rgb(a) = %d\n",
paletteSize, 2 * w * h, bpp * w * h);
printf("Max gray deviation = %d, tolerance = %d\n", maxGrayDeviation, grayscaleTolerance);
}
// Choose the best color type for the image.
// 1. Opaque gray - use COLOR_TYPE_GRAY at 1 byte/pixel
// 2. Gray + alpha - use COLOR_TYPE_PALETTE if the number of distinct combinations
// is sufficiently small, otherwise use COLOR_TYPE_GRAY_ALPHA
// 3. RGB(A) - use COLOR_TYPE_PALETTE if the number of distinct colors is sufficiently
// small, otherwise use COLOR_TYPE_RGB{_ALPHA}
if (isGrayscale) {
if (isOpaque) {
*colorType = PNG_COLOR_TYPE_GRAY; // 1 byte/pixel
} else {
// Use a simple heuristic to determine whether using a palette will
// save space versus using gray + alpha for each pixel.
// This doesn't take into account chunk overhead, filtering, LZ
// compression, etc.
if (isPalette && (paletteSize < 2 * w * h)) {
*colorType = PNG_COLOR_TYPE_PALETTE; // 1 byte/pixel + 4 bytes/color
} else {
*colorType = PNG_COLOR_TYPE_GRAY_ALPHA; // 2 bytes per pixel
}
}
} else if (isPalette && (paletteSize < bpp * w * h)) {
*colorType = PNG_COLOR_TYPE_PALETTE;
} else {
if (maxGrayDeviation <= grayscaleTolerance) {
printf("%s: forcing image to gray (max deviation = %d)\n", imageName, maxGrayDeviation);
*colorType = isOpaque ? PNG_COLOR_TYPE_GRAY : PNG_COLOR_TYPE_GRAY_ALPHA;
} else {
*colorType = isOpaque ? PNG_COLOR_TYPE_RGB : PNG_COLOR_TYPE_RGB_ALPHA;
}
}
// Perform postprocessing of the image or palette data based on the final
// color type chosen
if (*colorType == PNG_COLOR_TYPE_PALETTE) {
// Combine the alphaColors and the opaqueColors into a single palette.
// The alphaColors must be at the start of the palette.
uint32_t* colors = alphaColors;
memcpy(colors + numAlphaColors, opaqueColors, 4 * numOpaqueColors);
// Fix the indices of the opaque colors in the image.
for (j = 0; j < h; j++) {
png_bytep row = imageInfo.rows[j];
png_bytep out = outRows[j];
for (i = 0; i < w; i++) {
uint32_t pixel = ((uint32_t*) row)[i];
if (pixel >> 24 == 0xFF) {
out[i] += numAlphaColors;
}
}
}
// Create separate RGB and Alpha palettes and set the number of colors
int numColors = numOpaqueColors + numAlphaColors;
*paletteEntries = numColors;
*alphaPaletteEntries = numAlphaColors;
// Create the RGB and alpha palettes
for (int idx = 0; idx < numColors; idx++) {
col = colors[idx];
rgbPalette[idx].red = (png_byte) ((col >> 24) & 0xff);
rgbPalette[idx].green = (png_byte) ((col >> 16) & 0xff);
rgbPalette[idx].blue = (png_byte) ((col >> 8) & 0xff);
if (idx < numAlphaColors) {
alphaPalette[idx] = (png_byte) (col & 0xff);
}
}
} else if (*colorType == PNG_COLOR_TYPE_GRAY || *colorType == PNG_COLOR_TYPE_GRAY_ALPHA) {
// If the image is gray or gray + alpha, compact the pixels into outRows
for (j = 0; j < h; j++) {
png_bytep row = imageInfo.rows[j];
png_bytep out = outRows[j];
for (i = 0; i < w; i++) {
rr = *row++;
gg = *row++;
bb = *row++;
aa = *row++;
if (isGrayscale) {
*out++ = rr;
} else {
*out++ = (png_byte) (rr * 0.2126f + gg * 0.7152f + bb * 0.0722f);
}
if (!isOpaque) {
*out++ = aa;
}
}
}
}
}
static void write_png(const char* imageName,
png_structp write_ptr, png_infop write_info,
image_info& imageInfo, const Bundle* bundle)
{
png_uint_32 width, height;
int color_type;
int bit_depth, interlace_type, compression_type;
int i;
png_unknown_chunk unknowns[3];
unknowns[0].data = NULL;
unknowns[1].data = NULL;
unknowns[2].data = NULL;
png_bytepp outRows = (png_bytepp) malloc((int) imageInfo.height * sizeof(png_bytep));
if (outRows == (png_bytepp) 0) {
printf("Can't allocate output buffer!\n");
exit(1);
}
for (i = 0; i < (int) imageInfo.height; i++) {
outRows[i] = (png_bytep) malloc(2 * (int) imageInfo.width);
if (outRows[i] == (png_bytep) 0) {
printf("Can't allocate output buffer!\n");
exit(1);
}
}
png_set_compression_level(write_ptr, Z_BEST_COMPRESSION);
if (kIsDebug) {
printf("Writing image %s: w = %d, h = %d\n", imageName,
(int) imageInfo.width, (int) imageInfo.height);
}
png_color rgbPalette[256];
png_byte alphaPalette[256];
bool hasTransparency;
int paletteEntries, alphaPaletteEntries;
int grayscaleTolerance = bundle->getGrayscaleTolerance();
analyze_image(imageName, imageInfo, grayscaleTolerance, rgbPalette, alphaPalette,
&paletteEntries, &alphaPaletteEntries, &hasTransparency, &color_type, outRows);
// Legacy versions of aapt would always encode 9patch PNGs as RGBA. This had the unintended
// benefit of working around a bug decoding paletted images in Android 4.1.
// https://code.google.com/p/android/issues/detail?id=34619
//
// If SDK_JELLY_BEAN is supported, we need to avoid a paletted encoding in order to not expose
// this bug.
if (!bundle->isMinSdkAtLeast(SDK_JELLY_BEAN_MR1)) {
if (imageInfo.is9Patch && PNG_COLOR_TYPE_PALETTE == color_type) {
if (hasTransparency) {
color_type = PNG_COLOR_TYPE_RGB_ALPHA;
} else {
color_type = PNG_COLOR_TYPE_RGB;
}
}
}
if (kIsDebug) {
switch (color_type) {
case PNG_COLOR_TYPE_PALETTE:
printf("Image %s has %d colors%s, using PNG_COLOR_TYPE_PALETTE\n",
imageName, paletteEntries,
hasTransparency ? " (with alpha)" : "");
break;
case PNG_COLOR_TYPE_GRAY:
printf("Image %s is opaque gray, using PNG_COLOR_TYPE_GRAY\n", imageName);
break;
case PNG_COLOR_TYPE_GRAY_ALPHA:
printf("Image %s is gray + alpha, using PNG_COLOR_TYPE_GRAY_ALPHA\n", imageName);
break;
case PNG_COLOR_TYPE_RGB:
printf("Image %s is opaque RGB, using PNG_COLOR_TYPE_RGB\n", imageName);
break;
case PNG_COLOR_TYPE_RGB_ALPHA:
printf("Image %s is RGB + alpha, using PNG_COLOR_TYPE_RGB_ALPHA\n", imageName);
break;
}
}
png_set_IHDR(write_ptr, write_info, imageInfo.width, imageInfo.height,
8, color_type, PNG_INTERLACE_NONE,
PNG_COMPRESSION_TYPE_DEFAULT, PNG_FILTER_TYPE_DEFAULT);
if (color_type == PNG_COLOR_TYPE_PALETTE) {
png_set_PLTE(write_ptr, write_info, rgbPalette, paletteEntries);
if (hasTransparency) {
png_set_tRNS(write_ptr, write_info, alphaPalette, alphaPaletteEntries,
(png_color_16p) 0);
}
png_set_filter(write_ptr, 0, PNG_NO_FILTERS);
} else {
png_set_filter(write_ptr, 0, PNG_ALL_FILTERS);
}
if (imageInfo.is9Patch) {
int chunk_count = 2 + (imageInfo.haveLayoutBounds ? 1 : 0);
int p_index = imageInfo.haveLayoutBounds ? 2 : 1;
int b_index = 1;
int o_index = 0;
// Chunks ordered thusly because older platforms depend on the base 9 patch data being last
png_byte *chunk_names = imageInfo.haveLayoutBounds
? (png_byte*)"npOl\0npLb\0npTc\0"
: (png_byte*)"npOl\0npTc";
// base 9 patch data
if (kIsDebug) {
printf("Adding 9-patch info...\n");
}
memcpy((char*)unknowns[p_index].name, "npTc", 5);
unknowns[p_index].data = (png_byte*)imageInfo.serialize9patch();
unknowns[p_index].size = imageInfo.info9Patch.serializedSize();
// TODO: remove the check below when everything works
checkNinePatchSerialization(&imageInfo.info9Patch, unknowns[p_index].data);
// automatically generated 9 patch outline data
int chunk_size = sizeof(png_uint_32) * 6;
memcpy((char*)unknowns[o_index].name, "npOl", 5);
unknowns[o_index].data = (png_byte*) calloc(chunk_size, 1);
png_byte outputData[chunk_size];
memcpy(&outputData, &imageInfo.outlineInsetsLeft, 4 * sizeof(png_uint_32));
((float*) outputData)[4] = imageInfo.outlineRadius;
((png_uint_32*) outputData)[5] = imageInfo.outlineAlpha;
memcpy(unknowns[o_index].data, &outputData, chunk_size);
unknowns[o_index].size = chunk_size;
// optional optical inset / layout bounds data
if (imageInfo.haveLayoutBounds) {
int chunk_size = sizeof(png_uint_32) * 4;
memcpy((char*)unknowns[b_index].name, "npLb", 5);
unknowns[b_index].data = (png_byte*) calloc(chunk_size, 1);
memcpy(unknowns[b_index].data, &imageInfo.layoutBoundsLeft, chunk_size);
unknowns[b_index].size = chunk_size;
}
for (int i = 0; i < chunk_count; i++) {
unknowns[i].location = PNG_HAVE_IHDR;
}
png_set_keep_unknown_chunks(write_ptr, PNG_HANDLE_CHUNK_ALWAYS,
chunk_names, chunk_count);
png_set_unknown_chunks(write_ptr, write_info, unknowns, chunk_count);
}
png_write_info(write_ptr, write_info);
png_bytepp rows;
if (color_type == PNG_COLOR_TYPE_RGB || color_type == PNG_COLOR_TYPE_RGB_ALPHA) {
if (color_type == PNG_COLOR_TYPE_RGB) {
png_set_filler(write_ptr, 0, PNG_FILLER_AFTER);
}
rows = imageInfo.rows;
} else {
rows = outRows;
}
png_write_image(write_ptr, rows);
if (kIsDebug) {
printf("Final image data:\n");
dump_image(imageInfo.width, imageInfo.height, rows, color_type);
}
png_write_end(write_ptr, write_info);
for (i = 0; i < (int) imageInfo.height; i++) {
free(outRows[i]);
}
free(outRows);
free(unknowns[0].data);
free(unknowns[1].data);
free(unknowns[2].data);
png_get_IHDR(write_ptr, write_info, &width, &height,
&bit_depth, &color_type, &interlace_type,
&compression_type, NULL);
if (kIsDebug) {
printf("Image written: w=%d, h=%d, d=%d, colors=%d, inter=%d, comp=%d\n",
(int)width, (int)height, bit_depth, color_type, interlace_type,
compression_type);
}
}
static bool read_png_protected(png_structp read_ptr, String8& printableName, png_infop read_info,
const sp<AaptFile>& file, FILE* fp, image_info* imageInfo) {
if (setjmp(png_jmpbuf(read_ptr))) {
return false;
}
png_init_io(read_ptr, fp);
read_png(printableName.c_str(), read_ptr, read_info, imageInfo);
const size_t nameLen = file->getPath().length();
if (nameLen > 6) {
const char* name = file->getPath().c_str();
if (name[nameLen-5] == '9' && name[nameLen-6] == '.') {
if (do_9patch(printableName.c_str(), imageInfo) != NO_ERROR) {
return false;
}
}
}
return true;
}
static bool write_png_protected(png_structp write_ptr, String8& printableName, png_infop write_info,
image_info* imageInfo, const Bundle* bundle) {
if (setjmp(png_jmpbuf(write_ptr))) {
return false;
}
write_png(printableName.c_str(), write_ptr, write_info, *imageInfo, bundle);
return true;
}
status_t preProcessImage(const Bundle* bundle, const sp<AaptAssets>& /* assets */,
const sp<AaptFile>& file, String8* /* outNewLeafName */)
{
String8 ext(getPathExtension(file->getPath()));
// We currently only process PNG images.
if (strcmp(ext.c_str(), ".png") != 0) {
return NO_ERROR;
}
// Example of renaming a file:
//*outNewLeafName = file->getPath().getBasePath().getFileName();
//outNewLeafName->append(".nupng");
String8 printableName(file->getPrintableSource());
if (bundle->getVerbose()) {
printf("Processing image: %s\n", printableName.c_str());
}
png_structp read_ptr = NULL;
png_infop read_info = NULL;
FILE* fp;
image_info imageInfo;
png_structp write_ptr = NULL;
png_infop write_info = NULL;
status_t error = UNKNOWN_ERROR;
fp = fopen(file->getSourceFile().c_str(), "rb");
if (fp == NULL) {
fprintf(stderr, "%s: ERROR: Unable to open PNG file\n", printableName.c_str());
goto bail;
}
read_ptr = png_create_read_struct(PNG_LIBPNG_VER_STRING, 0, (png_error_ptr)NULL,
(png_error_ptr)NULL);
if (!read_ptr) {
goto bail;
}
read_info = png_create_info_struct(read_ptr);
if (!read_info) {
goto bail;
}
if (!read_png_protected(read_ptr, printableName, read_info, file, fp, &imageInfo)) {
goto bail;
}
write_ptr = png_create_write_struct(PNG_LIBPNG_VER_STRING, 0, (png_error_ptr)NULL,
(png_error_ptr)NULL);
if (!write_ptr)
{
goto bail;
}
write_info = png_create_info_struct(write_ptr);
if (!write_info)
{
goto bail;
}
png_set_write_fn(write_ptr, (void*)file.get(),
png_write_aapt_file, png_flush_aapt_file);
if (!write_png_protected(write_ptr, printableName, write_info, &imageInfo, bundle)) {
goto bail;
}
error = NO_ERROR;
if (bundle->getVerbose()) {
fseek(fp, 0, SEEK_END);
size_t oldSize = (size_t)ftell(fp);
size_t newSize = file->getSize();
float factor = ((float)newSize)/oldSize;
int percent = (int)(factor*100);
printf(" (processed image %s: %d%% size of source)\n", printableName.c_str(), percent);
}
bail:
if (read_ptr) {
png_destroy_read_struct(&read_ptr, &read_info, (png_infopp)NULL);
}
if (fp) {
fclose(fp);
}
if (write_ptr) {
png_destroy_write_struct(&write_ptr, &write_info);
}
if (error != NO_ERROR) {
fprintf(stderr, "ERROR: Failure processing PNG image %s\n",
file->getPrintableSource().c_str());
}
return error;
}
status_t preProcessImageToCache(const Bundle* bundle, const String8& source, const String8& dest)
{
png_structp read_ptr = NULL;
png_infop read_info = NULL;
FILE* fp;
image_info imageInfo;
png_structp write_ptr = NULL;
png_infop write_info = NULL;
status_t error = UNKNOWN_ERROR;
if (bundle->getVerbose()) {
printf("Processing image to cache: %s => %s\n", source.c_str(), dest.c_str());
}
// Get a file handler to read from
fp = fopen(source.c_str(),"rb");
if (fp == NULL) {
fprintf(stderr, "%s ERROR: Unable to open PNG file\n", source.c_str());
return error;
}
// Call libpng to get a struct to read image data into
read_ptr = png_create_read_struct(PNG_LIBPNG_VER_STRING, NULL, NULL, NULL);
if (!read_ptr) {
fclose(fp);
png_destroy_read_struct(&read_ptr, &read_info,NULL);
return error;
}
// Call libpng to get a struct to read image info into
read_info = png_create_info_struct(read_ptr);
if (!read_info) {
fclose(fp);
png_destroy_read_struct(&read_ptr, &read_info,NULL);
return error;
}
// Set a jump point for libpng to long jump back to on error
if (setjmp(png_jmpbuf(read_ptr))) {
fclose(fp);
png_destroy_read_struct(&read_ptr, &read_info,NULL);
return error;
}
// Set up libpng to read from our file.
png_init_io(read_ptr,fp);
// Actually read data from the file
read_png(source.c_str(), read_ptr, read_info, &imageInfo);
// We're done reading so we can clean up
// Find old file size before releasing handle
fseek(fp, 0, SEEK_END);
size_t oldSize = (size_t)ftell(fp);
fclose(fp);
png_destroy_read_struct(&read_ptr, &read_info,NULL);
// Check to see if we're dealing with a 9-patch
// If we are, process appropriately
if (getPathExtension(getBasePath(source)) == ".9") {
if (do_9patch(source.c_str(), &imageInfo) != NO_ERROR) {
return error;
}
}
// Call libpng to create a structure to hold the processed image data
// that can be written to disk
write_ptr = png_create_write_struct(PNG_LIBPNG_VER_STRING, NULL, NULL, NULL);
if (!write_ptr) {
png_destroy_write_struct(&write_ptr, &write_info);
return error;
}
// Call libpng to create a structure to hold processed image info that can
// be written to disk
write_info = png_create_info_struct(write_ptr);
if (!write_info) {
png_destroy_write_struct(&write_ptr, &write_info);
return error;
}
// Open up our destination file for writing
fp = fopen(dest.c_str(), "wb");
if (!fp) {
fprintf(stderr, "%s ERROR: Unable to open PNG file\n", dest.c_str());
png_destroy_write_struct(&write_ptr, &write_info);
return error;
}
// Set up libpng to write to our file
png_init_io(write_ptr, fp);
// Set up a jump for libpng to long jump back on on errors
if (setjmp(png_jmpbuf(write_ptr))) {
fclose(fp);
png_destroy_write_struct(&write_ptr, &write_info);
return error;
}
// Actually write out to the new png
write_png(dest.c_str(), write_ptr, write_info, imageInfo, bundle);
if (bundle->getVerbose()) {
// Find the size of our new file
FILE* reader = fopen(dest.c_str(), "rb");
fseek(reader, 0, SEEK_END);
size_t newSize = (size_t)ftell(reader);
fclose(reader);
float factor = ((float)newSize)/oldSize;
int percent = (int)(factor*100);
printf(" (processed image to cache entry %s: %d%% size of source)\n",
dest.c_str(), percent);
}
//Clean up
fclose(fp);
png_destroy_write_struct(&write_ptr, &write_info);
return NO_ERROR;
}
status_t postProcessImage(const Bundle* bundle, const sp<AaptAssets>& assets,
ResourceTable* table, const sp<AaptFile>& file)
{
String8 ext(getPathExtension(file->getPath()));
// At this point, now that we have all the resource data, all we need to
// do is compile XML files.
if (strcmp(ext.c_str(), ".xml") == 0) {
String16 resourceName(parseResourceName(getPathLeaf(file->getSourceFile())));
return compileXmlFile(bundle, assets, resourceName, file, table);
}
return NO_ERROR;
}