| // |
| // Copyright 2006 The Android Open Source Project |
| // |
| // Build resource files from raw assets. |
| // |
| |
| #define PNG_INTERNAL |
| |
| #include "Images.h" |
| |
| #include <androidfw/PathUtils.h> |
| #include <androidfw/ResourceTypes.h> |
| #include <utils/ByteOrder.h> |
| |
| #include <png.h> |
| #include <zlib.h> |
| |
| // Change this to true for noisy debug output. |
| static const bool kIsDebug = false; |
| |
| static void |
| png_write_aapt_file(png_structp png_ptr, png_bytep data, png_size_t length) |
| { |
| AaptFile* aaptfile = (AaptFile*) png_get_io_ptr(png_ptr); |
| status_t err = aaptfile->writeData(data, length); |
| if (err != NO_ERROR) { |
| png_error(png_ptr, "Write Error"); |
| } |
| } |
| |
| |
| static void |
| png_flush_aapt_file(png_structp /* png_ptr */) |
| { |
| } |
| |
| // This holds an image as 8bpp RGBA. |
| struct image_info |
| { |
| image_info() : rows(NULL), is9Patch(false), |
| xDivs(NULL), yDivs(NULL), colors(NULL), allocRows(NULL) { } |
| |
| ~image_info() { |
| if (rows && rows != allocRows) { |
| free(rows); |
| } |
| if (allocRows) { |
| for (int i=0; i<(int)allocHeight; i++) { |
| free(allocRows[i]); |
| } |
| free(allocRows); |
| } |
| free(xDivs); |
| free(yDivs); |
| free(colors); |
| } |
| |
| void* serialize9patch() { |
| void* serialized = Res_png_9patch::serialize(info9Patch, xDivs, yDivs, colors); |
| reinterpret_cast<Res_png_9patch*>(serialized)->deviceToFile(); |
| return serialized; |
| } |
| |
| png_uint_32 width; |
| png_uint_32 height; |
| png_bytepp rows; |
| |
| // 9-patch info. |
| bool is9Patch; |
| Res_png_9patch info9Patch; |
| int32_t* xDivs; |
| int32_t* yDivs; |
| uint32_t* colors; |
| |
| // Layout padding, if relevant |
| bool haveLayoutBounds; |
| int32_t layoutBoundsLeft; |
| int32_t layoutBoundsTop; |
| int32_t layoutBoundsRight; |
| int32_t layoutBoundsBottom; |
| |
| // Round rect outline description |
| int32_t outlineInsetsLeft; |
| int32_t outlineInsetsTop; |
| int32_t outlineInsetsRight; |
| int32_t outlineInsetsBottom; |
| float outlineRadius; |
| uint8_t outlineAlpha; |
| |
| png_uint_32 allocHeight; |
| png_bytepp allocRows; |
| }; |
| |
| static void log_warning(png_structp png_ptr, png_const_charp warning_message) |
| { |
| const char* imageName = (const char*) png_get_error_ptr(png_ptr); |
| fprintf(stderr, "%s: libpng warning: %s\n", imageName, warning_message); |
| } |
| |
| static void read_png(const char* imageName, |
| png_structp read_ptr, png_infop read_info, |
| image_info* outImageInfo) |
| { |
| int color_type; |
| int bit_depth, interlace_type, compression_type; |
| int i; |
| |
| png_set_error_fn(read_ptr, const_cast<char*>(imageName), |
| NULL /* use default errorfn */, log_warning); |
| png_read_info(read_ptr, read_info); |
| |
| png_get_IHDR(read_ptr, read_info, &outImageInfo->width, |
| &outImageInfo->height, &bit_depth, &color_type, |
| &interlace_type, &compression_type, NULL); |
| |
| //printf("Image %s:\n", imageName); |
| //printf("color_type=%d, bit_depth=%d, interlace_type=%d, compression_type=%d\n", |
| // color_type, bit_depth, interlace_type, compression_type); |
| |
| if (color_type == PNG_COLOR_TYPE_PALETTE) |
| png_set_palette_to_rgb(read_ptr); |
| |
| if (color_type == PNG_COLOR_TYPE_GRAY && bit_depth < 8) |
| png_set_expand_gray_1_2_4_to_8(read_ptr); |
| |
| if (png_get_valid(read_ptr, read_info, PNG_INFO_tRNS)) { |
| //printf("Has PNG_INFO_tRNS!\n"); |
| png_set_tRNS_to_alpha(read_ptr); |
| } |
| |
| if (bit_depth == 16) |
| png_set_strip_16(read_ptr); |
| |
| if ((color_type&PNG_COLOR_MASK_ALPHA) == 0) |
| png_set_add_alpha(read_ptr, 0xFF, PNG_FILLER_AFTER); |
| |
| if (color_type == PNG_COLOR_TYPE_GRAY || color_type == PNG_COLOR_TYPE_GRAY_ALPHA) |
| png_set_gray_to_rgb(read_ptr); |
| |
| png_set_interlace_handling(read_ptr); |
| |
| png_read_update_info(read_ptr, read_info); |
| |
| outImageInfo->rows = (png_bytepp)malloc( |
| outImageInfo->height * sizeof(png_bytep)); |
| outImageInfo->allocHeight = outImageInfo->height; |
| outImageInfo->allocRows = outImageInfo->rows; |
| |
| png_set_rows(read_ptr, read_info, outImageInfo->rows); |
| |
| for (i = 0; i < (int)outImageInfo->height; i++) |
| { |
| outImageInfo->rows[i] = (png_bytep) |
| malloc(png_get_rowbytes(read_ptr, read_info)); |
| } |
| |
| png_read_image(read_ptr, outImageInfo->rows); |
| |
| png_read_end(read_ptr, read_info); |
| |
| if (kIsDebug) { |
| printf("Image %s: w=%d, h=%d, d=%d, colors=%d, inter=%d, comp=%d\n", |
| imageName, |
| (int)outImageInfo->width, (int)outImageInfo->height, |
| bit_depth, color_type, |
| interlace_type, compression_type); |
| } |
| |
| png_get_IHDR(read_ptr, read_info, &outImageInfo->width, |
| &outImageInfo->height, &bit_depth, &color_type, |
| &interlace_type, &compression_type, NULL); |
| } |
| |
| #define COLOR_TRANSPARENT 0 |
| #define COLOR_WHITE 0xFFFFFFFF |
| #define COLOR_TICK 0xFF000000 |
| #define COLOR_LAYOUT_BOUNDS_TICK 0xFF0000FF |
| |
| enum { |
| TICK_TYPE_NONE, |
| TICK_TYPE_TICK, |
| TICK_TYPE_LAYOUT_BOUNDS, |
| TICK_TYPE_BOTH |
| }; |
| |
| static int tick_type(png_bytep p, bool transparent, const char** outError) |
| { |
| png_uint_32 color = p[0] | (p[1] << 8) | (p[2] << 16) | (p[3] << 24); |
| |
| if (transparent) { |
| if (p[3] == 0) { |
| return TICK_TYPE_NONE; |
| } |
| if (color == COLOR_LAYOUT_BOUNDS_TICK) { |
| return TICK_TYPE_LAYOUT_BOUNDS; |
| } |
| if (color == COLOR_TICK) { |
| return TICK_TYPE_TICK; |
| } |
| |
| // Error cases |
| if (p[3] != 0xff) { |
| *outError = "Frame pixels must be either solid or transparent (not intermediate alphas)"; |
| return TICK_TYPE_NONE; |
| } |
| if (p[0] != 0 || p[1] != 0 || p[2] != 0) { |
| *outError = "Ticks in transparent frame must be black or red"; |
| } |
| return TICK_TYPE_TICK; |
| } |
| |
| if (p[3] != 0xFF) { |
| *outError = "White frame must be a solid color (no alpha)"; |
| } |
| if (color == COLOR_WHITE) { |
| return TICK_TYPE_NONE; |
| } |
| if (color == COLOR_TICK) { |
| return TICK_TYPE_TICK; |
| } |
| if (color == COLOR_LAYOUT_BOUNDS_TICK) { |
| return TICK_TYPE_LAYOUT_BOUNDS; |
| } |
| |
| if (p[0] != 0 || p[1] != 0 || p[2] != 0) { |
| *outError = "Ticks in white frame must be black or red"; |
| return TICK_TYPE_NONE; |
| } |
| return TICK_TYPE_TICK; |
| } |
| |
| enum { |
| TICK_START, |
| TICK_INSIDE_1, |
| TICK_OUTSIDE_1 |
| }; |
| |
| static status_t get_horizontal_ticks( |
| png_bytep row, int width, bool transparent, bool required, |
| int32_t* outLeft, int32_t* outRight, const char** outError, |
| uint8_t* outDivs, bool multipleAllowed) |
| { |
| int i; |
| *outLeft = *outRight = -1; |
| int state = TICK_START; |
| bool found = false; |
| |
| for (i=1; i<width-1; i++) { |
| if (TICK_TYPE_TICK == tick_type(row+i*4, transparent, outError)) { |
| if (state == TICK_START || |
| (state == TICK_OUTSIDE_1 && multipleAllowed)) { |
| *outLeft = i-1; |
| *outRight = width-2; |
| found = true; |
| if (outDivs != NULL) { |
| *outDivs += 2; |
| } |
| state = TICK_INSIDE_1; |
| } else if (state == TICK_OUTSIDE_1) { |
| *outError = "Can't have more than one marked region along edge"; |
| *outLeft = i; |
| return UNKNOWN_ERROR; |
| } |
| } else if (*outError == NULL) { |
| if (state == TICK_INSIDE_1) { |
| // We're done with this div. Move on to the next. |
| *outRight = i-1; |
| outRight += 2; |
| outLeft += 2; |
| state = TICK_OUTSIDE_1; |
| } |
| } else { |
| *outLeft = i; |
| return UNKNOWN_ERROR; |
| } |
| } |
| |
| if (required && !found) { |
| *outError = "No marked region found along edge"; |
| *outLeft = -1; |
| return UNKNOWN_ERROR; |
| } |
| |
| return NO_ERROR; |
| } |
| |
| static status_t get_vertical_ticks( |
| png_bytepp rows, int offset, int height, bool transparent, bool required, |
| int32_t* outTop, int32_t* outBottom, const char** outError, |
| uint8_t* outDivs, bool multipleAllowed) |
| { |
| int i; |
| *outTop = *outBottom = -1; |
| int state = TICK_START; |
| bool found = false; |
| |
| for (i=1; i<height-1; i++) { |
| if (TICK_TYPE_TICK == tick_type(rows[i]+offset, transparent, outError)) { |
| if (state == TICK_START || |
| (state == TICK_OUTSIDE_1 && multipleAllowed)) { |
| *outTop = i-1; |
| *outBottom = height-2; |
| found = true; |
| if (outDivs != NULL) { |
| *outDivs += 2; |
| } |
| state = TICK_INSIDE_1; |
| } else if (state == TICK_OUTSIDE_1) { |
| *outError = "Can't have more than one marked region along edge"; |
| *outTop = i; |
| return UNKNOWN_ERROR; |
| } |
| } else if (*outError == NULL) { |
| if (state == TICK_INSIDE_1) { |
| // We're done with this div. Move on to the next. |
| *outBottom = i-1; |
| outTop += 2; |
| outBottom += 2; |
| state = TICK_OUTSIDE_1; |
| } |
| } else { |
| *outTop = i; |
| return UNKNOWN_ERROR; |
| } |
| } |
| |
| if (required && !found) { |
| *outError = "No marked region found along edge"; |
| *outTop = -1; |
| return UNKNOWN_ERROR; |
| } |
| |
| return NO_ERROR; |
| } |
| |
| static status_t get_horizontal_layout_bounds_ticks( |
| png_bytep row, int width, bool transparent, bool /* required */, |
| int32_t* outLeft, int32_t* outRight, const char** outError) |
| { |
| int i; |
| *outLeft = *outRight = 0; |
| |
| // Look for left tick |
| if (TICK_TYPE_LAYOUT_BOUNDS == tick_type(row + 4, transparent, outError)) { |
| // Starting with a layout padding tick |
| i = 1; |
| while (i < width - 1) { |
| (*outLeft)++; |
| i++; |
| int tick = tick_type(row + i * 4, transparent, outError); |
| if (tick != TICK_TYPE_LAYOUT_BOUNDS) { |
| break; |
| } |
| } |
| } |
| |
| // Look for right tick |
| if (TICK_TYPE_LAYOUT_BOUNDS == tick_type(row + (width - 2) * 4, transparent, outError)) { |
| // Ending with a layout padding tick |
| i = width - 2; |
| while (i > 1) { |
| (*outRight)++; |
| i--; |
| int tick = tick_type(row+i*4, transparent, outError); |
| if (tick != TICK_TYPE_LAYOUT_BOUNDS) { |
| break; |
| } |
| } |
| } |
| |
| return NO_ERROR; |
| } |
| |
| static status_t get_vertical_layout_bounds_ticks( |
| png_bytepp rows, int offset, int height, bool transparent, bool /* required */, |
| int32_t* outTop, int32_t* outBottom, const char** outError) |
| { |
| int i; |
| *outTop = *outBottom = 0; |
| |
| // Look for top tick |
| if (TICK_TYPE_LAYOUT_BOUNDS == tick_type(rows[1] + offset, transparent, outError)) { |
| // Starting with a layout padding tick |
| i = 1; |
| while (i < height - 1) { |
| (*outTop)++; |
| i++; |
| int tick = tick_type(rows[i] + offset, transparent, outError); |
| if (tick != TICK_TYPE_LAYOUT_BOUNDS) { |
| break; |
| } |
| } |
| } |
| |
| // Look for bottom tick |
| if (TICK_TYPE_LAYOUT_BOUNDS == tick_type(rows[height - 2] + offset, transparent, outError)) { |
| // Ending with a layout padding tick |
| i = height - 2; |
| while (i > 1) { |
| (*outBottom)++; |
| i--; |
| int tick = tick_type(rows[i] + offset, transparent, outError); |
| if (tick != TICK_TYPE_LAYOUT_BOUNDS) { |
| break; |
| } |
| } |
| } |
| |
| return NO_ERROR; |
| } |
| |
| static void find_max_opacity(png_byte** rows, |
| int startX, int startY, int endX, int endY, int dX, int dY, |
| int* out_inset) |
| { |
| uint8_t max_opacity = 0; |
| int inset = 0; |
| *out_inset = 0; |
| for (int x = startX, y = startY; x != endX && y != endY; x += dX, y += dY, inset++) { |
| png_byte* color = rows[y] + x * 4; |
| uint8_t opacity = color[3]; |
| if (opacity > max_opacity) { |
| max_opacity = opacity; |
| *out_inset = inset; |
| } |
| if (opacity == 0xff) return; |
| } |
| } |
| |
| static uint8_t max_alpha_over_row(png_byte* row, int startX, int endX) |
| { |
| uint8_t max_alpha = 0; |
| for (int x = startX; x < endX; x++) { |
| uint8_t alpha = (row + x * 4)[3]; |
| if (alpha > max_alpha) max_alpha = alpha; |
| } |
| return max_alpha; |
| } |
| |
| static uint8_t max_alpha_over_col(png_byte** rows, int offsetX, int startY, int endY) |
| { |
| uint8_t max_alpha = 0; |
| for (int y = startY; y < endY; y++) { |
| uint8_t alpha = (rows[y] + offsetX * 4)[3]; |
| if (alpha > max_alpha) max_alpha = alpha; |
| } |
| return max_alpha; |
| } |
| |
| static void get_outline(image_info* image) |
| { |
| int midX = image->width / 2; |
| int midY = image->height / 2; |
| int endX = image->width - 2; |
| int endY = image->height - 2; |
| |
| // find left and right extent of nine patch content on center row |
| if (image->width > 4) { |
| find_max_opacity(image->rows, 1, midY, midX, -1, 1, 0, &image->outlineInsetsLeft); |
| find_max_opacity(image->rows, endX, midY, midX, -1, -1, 0, &image->outlineInsetsRight); |
| } else { |
| image->outlineInsetsLeft = 0; |
| image->outlineInsetsRight = 0; |
| } |
| |
| // find top and bottom extent of nine patch content on center column |
| if (image->height > 4) { |
| find_max_opacity(image->rows, midX, 1, -1, midY, 0, 1, &image->outlineInsetsTop); |
| find_max_opacity(image->rows, midX, endY, -1, midY, 0, -1, &image->outlineInsetsBottom); |
| } else { |
| image->outlineInsetsTop = 0; |
| image->outlineInsetsBottom = 0; |
| } |
| |
| int innerStartX = 1 + image->outlineInsetsLeft; |
| int innerStartY = 1 + image->outlineInsetsTop; |
| int innerEndX = endX - image->outlineInsetsRight; |
| int innerEndY = endY - image->outlineInsetsBottom; |
| int innerMidX = (innerEndX + innerStartX) / 2; |
| int innerMidY = (innerEndY + innerStartY) / 2; |
| |
| // assuming the image is a round rect, compute the radius by marching |
| // diagonally from the top left corner towards the center |
| image->outlineAlpha = std::max( |
| max_alpha_over_row(image->rows[innerMidY], innerStartX, innerEndX), |
| max_alpha_over_col(image->rows, innerMidX, innerStartY, innerStartY)); |
| |
| int diagonalInset = 0; |
| find_max_opacity(image->rows, innerStartX, innerStartY, innerMidX, innerMidY, 1, 1, |
| &diagonalInset); |
| |
| /* Determine source radius based upon inset: |
| * sqrt(r^2 + r^2) = sqrt(i^2 + i^2) + r |
| * sqrt(2) * r = sqrt(2) * i + r |
| * (sqrt(2) - 1) * r = sqrt(2) * i |
| * r = sqrt(2) / (sqrt(2) - 1) * i |
| */ |
| image->outlineRadius = 3.4142f * diagonalInset; |
| |
| if (kIsDebug) { |
| printf("outline insets %d %d %d %d, rad %f, alpha %x\n", |
| image->outlineInsetsLeft, |
| image->outlineInsetsTop, |
| image->outlineInsetsRight, |
| image->outlineInsetsBottom, |
| image->outlineRadius, |
| image->outlineAlpha); |
| } |
| } |
| |
| |
| static uint32_t get_color( |
| png_bytepp rows, int left, int top, int right, int bottom) |
| { |
| png_bytep color = rows[top] + left*4; |
| |
| if (left > right || top > bottom) { |
| return Res_png_9patch::TRANSPARENT_COLOR; |
| } |
| |
| while (top <= bottom) { |
| for (int i = left; i <= right; i++) { |
| png_bytep p = rows[top]+i*4; |
| if (color[3] == 0) { |
| if (p[3] != 0) { |
| return Res_png_9patch::NO_COLOR; |
| } |
| } else if (p[0] != color[0] || p[1] != color[1] |
| || p[2] != color[2] || p[3] != color[3]) { |
| return Res_png_9patch::NO_COLOR; |
| } |
| } |
| top++; |
| } |
| |
| if (color[3] == 0) { |
| return Res_png_9patch::TRANSPARENT_COLOR; |
| } |
| return (color[3]<<24) | (color[0]<<16) | (color[1]<<8) | color[2]; |
| } |
| |
| static status_t do_9patch(const char* imageName, image_info* image) |
| { |
| image->is9Patch = true; |
| |
| int W = image->width; |
| int H = image->height; |
| int i, j; |
| |
| int maxSizeXDivs = W * sizeof(int32_t); |
| int maxSizeYDivs = H * sizeof(int32_t); |
| int32_t* xDivs = image->xDivs = (int32_t*) malloc(maxSizeXDivs); |
| int32_t* yDivs = image->yDivs = (int32_t*) malloc(maxSizeYDivs); |
| uint8_t numXDivs = 0; |
| uint8_t numYDivs = 0; |
| |
| int8_t numColors; |
| int numRows; |
| int numCols; |
| int top; |
| int left; |
| int right; |
| int bottom; |
| memset(xDivs, -1, maxSizeXDivs); |
| memset(yDivs, -1, maxSizeYDivs); |
| image->info9Patch.paddingLeft = image->info9Patch.paddingRight = |
| image->info9Patch.paddingTop = image->info9Patch.paddingBottom = -1; |
| |
| image->layoutBoundsLeft = image->layoutBoundsRight = |
| image->layoutBoundsTop = image->layoutBoundsBottom = 0; |
| |
| png_bytep p = image->rows[0]; |
| bool transparent = p[3] == 0; |
| bool hasColor = false; |
| |
| const char* errorMsg = NULL; |
| int errorPixel = -1; |
| const char* errorEdge = NULL; |
| |
| int colorIndex = 0; |
| |
| // Validate size... |
| if (W < 3 || H < 3) { |
| errorMsg = "Image must be at least 3x3 (1x1 without frame) pixels"; |
| goto getout; |
| } |
| |
| // Validate frame... |
| if (!transparent && |
| (p[0] != 0xFF || p[1] != 0xFF || p[2] != 0xFF || p[3] != 0xFF)) { |
| errorMsg = "Must have one-pixel frame that is either transparent or white"; |
| goto getout; |
| } |
| |
| // Find left and right of sizing areas... |
| if (get_horizontal_ticks(p, W, transparent, true, &xDivs[0], |
| &xDivs[1], &errorMsg, &numXDivs, true) != NO_ERROR) { |
| errorPixel = xDivs[0]; |
| errorEdge = "top"; |
| goto getout; |
| } |
| |
| // Find top and bottom of sizing areas... |
| if (get_vertical_ticks(image->rows, 0, H, transparent, true, &yDivs[0], |
| &yDivs[1], &errorMsg, &numYDivs, true) != NO_ERROR) { |
| errorPixel = yDivs[0]; |
| errorEdge = "left"; |
| goto getout; |
| } |
| |
| // Copy patch size data into image... |
| image->info9Patch.numXDivs = numXDivs; |
| image->info9Patch.numYDivs = numYDivs; |
| |
| // Find left and right of padding area... |
| if (get_horizontal_ticks(image->rows[H-1], W, transparent, false, &image->info9Patch.paddingLeft, |
| &image->info9Patch.paddingRight, &errorMsg, NULL, false) != NO_ERROR) { |
| errorPixel = image->info9Patch.paddingLeft; |
| errorEdge = "bottom"; |
| goto getout; |
| } |
| |
| // Find top and bottom of padding area... |
| if (get_vertical_ticks(image->rows, (W-1)*4, H, transparent, false, &image->info9Patch.paddingTop, |
| &image->info9Patch.paddingBottom, &errorMsg, NULL, false) != NO_ERROR) { |
| errorPixel = image->info9Patch.paddingTop; |
| errorEdge = "right"; |
| goto getout; |
| } |
| |
| // Find left and right of layout padding... |
| get_horizontal_layout_bounds_ticks(image->rows[H-1], W, transparent, false, |
| &image->layoutBoundsLeft, |
| &image->layoutBoundsRight, &errorMsg); |
| |
| get_vertical_layout_bounds_ticks(image->rows, (W-1)*4, H, transparent, false, |
| &image->layoutBoundsTop, |
| &image->layoutBoundsBottom, &errorMsg); |
| |
| image->haveLayoutBounds = image->layoutBoundsLeft != 0 |
| || image->layoutBoundsRight != 0 |
| || image->layoutBoundsTop != 0 |
| || image->layoutBoundsBottom != 0; |
| |
| if (image->haveLayoutBounds) { |
| if (kIsDebug) { |
| printf("layoutBounds=%d %d %d %d\n", image->layoutBoundsLeft, image->layoutBoundsTop, |
| image->layoutBoundsRight, image->layoutBoundsBottom); |
| } |
| } |
| |
| // use opacity of pixels to estimate the round rect outline |
| get_outline(image); |
| |
| // If padding is not yet specified, take values from size. |
| if (image->info9Patch.paddingLeft < 0) { |
| image->info9Patch.paddingLeft = xDivs[0]; |
| image->info9Patch.paddingRight = W - 2 - xDivs[1]; |
| } else { |
| // Adjust value to be correct! |
| image->info9Patch.paddingRight = W - 2 - image->info9Patch.paddingRight; |
| } |
| if (image->info9Patch.paddingTop < 0) { |
| image->info9Patch.paddingTop = yDivs[0]; |
| image->info9Patch.paddingBottom = H - 2 - yDivs[1]; |
| } else { |
| // Adjust value to be correct! |
| image->info9Patch.paddingBottom = H - 2 - image->info9Patch.paddingBottom; |
| } |
| |
| if (kIsDebug) { |
| printf("Size ticks for %s: x0=%d, x1=%d, y0=%d, y1=%d\n", imageName, |
| xDivs[0], xDivs[1], |
| yDivs[0], yDivs[1]); |
| printf("padding ticks for %s: l=%d, r=%d, t=%d, b=%d\n", imageName, |
| image->info9Patch.paddingLeft, image->info9Patch.paddingRight, |
| image->info9Patch.paddingTop, image->info9Patch.paddingBottom); |
| } |
| |
| // Remove frame from image. |
| image->rows = (png_bytepp)malloc((H-2) * sizeof(png_bytep)); |
| for (i=0; i<(H-2); i++) { |
| image->rows[i] = image->allocRows[i+1]; |
| memmove(image->rows[i], image->rows[i]+4, (W-2)*4); |
| } |
| image->width -= 2; |
| W = image->width; |
| image->height -= 2; |
| H = image->height; |
| |
| // Figure out the number of rows and columns in the N-patch |
| numCols = numXDivs + 1; |
| if (xDivs[0] == 0) { // Column 1 is strechable |
| numCols--; |
| } |
| if (xDivs[numXDivs - 1] == W) { |
| numCols--; |
| } |
| numRows = numYDivs + 1; |
| if (yDivs[0] == 0) { // Row 1 is strechable |
| numRows--; |
| } |
| if (yDivs[numYDivs - 1] == H) { |
| numRows--; |
| } |
| |
| // Make sure the amount of rows and columns will fit in the number of |
| // colors we can use in the 9-patch format. |
| if (numRows * numCols > 0x7F) { |
| errorMsg = "Too many rows and columns in 9-patch perimeter"; |
| goto getout; |
| } |
| |
| numColors = numRows * numCols; |
| image->info9Patch.numColors = numColors; |
| image->colors = (uint32_t*)malloc(numColors * sizeof(uint32_t)); |
| |
| // Fill in color information for each patch. |
| |
| uint32_t c; |
| top = 0; |
| |
| // The first row always starts with the top being at y=0 and the bottom |
| // being either yDivs[1] (if yDivs[0]=0) of yDivs[0]. In the former case |
| // the first row is stretchable along the Y axis, otherwise it is fixed. |
| // The last row always ends with the bottom being bitmap.height and the top |
| // being either yDivs[numYDivs-2] (if yDivs[numYDivs-1]=bitmap.height) or |
| // yDivs[numYDivs-1]. In the former case the last row is stretchable along |
| // the Y axis, otherwise it is fixed. |
| // |
| // The first and last columns are similarly treated with respect to the X |
| // axis. |
| // |
| // The above is to help explain some of the special casing that goes on the |
| // code below. |
| |
| // The initial yDiv and whether the first row is considered stretchable or |
| // not depends on whether yDiv[0] was zero or not. |
| for (j = (yDivs[0] == 0 ? 1 : 0); |
| j <= numYDivs && top < H; |
| j++) { |
| if (j == numYDivs) { |
| bottom = H; |
| } else { |
| bottom = yDivs[j]; |
| } |
| left = 0; |
| // The initial xDiv and whether the first column is considered |
| // stretchable or not depends on whether xDiv[0] was zero or not. |
| for (i = xDivs[0] == 0 ? 1 : 0; |
| i <= numXDivs && left < W; |
| i++) { |
| if (i == numXDivs) { |
| right = W; |
| } else { |
| right = xDivs[i]; |
| } |
| c = get_color(image->rows, left, top, right - 1, bottom - 1); |
| image->colors[colorIndex++] = c; |
| if (kIsDebug) { |
| if (c != Res_png_9patch::NO_COLOR) |
| hasColor = true; |
| } |
| left = right; |
| } |
| top = bottom; |
| } |
| |
| assert(colorIndex == numColors); |
| |
| for (i=0; i<numColors; i++) { |
| if (hasColor) { |
| if (i == 0) printf("Colors in %s:\n ", imageName); |
| printf(" #%08x", image->colors[i]); |
| if (i == numColors - 1) printf("\n"); |
| } |
| } |
| getout: |
| if (errorMsg) { |
| fprintf(stderr, |
| "ERROR: 9-patch image %s malformed.\n" |
| " %s.\n", imageName, errorMsg); |
| if (errorEdge != NULL) { |
| if (errorPixel >= 0) { |
| fprintf(stderr, |
| " Found at pixel #%d along %s edge.\n", errorPixel, errorEdge); |
| } else { |
| fprintf(stderr, |
| " Found along %s edge.\n", errorEdge); |
| } |
| } |
| return UNKNOWN_ERROR; |
| } |
| return NO_ERROR; |
| } |
| |
| static void checkNinePatchSerialization(Res_png_9patch* inPatch, void* data) |
| { |
| size_t patchSize = inPatch->serializedSize(); |
| void* newData = malloc(patchSize); |
| memcpy(newData, data, patchSize); |
| Res_png_9patch* outPatch = inPatch->deserialize(newData); |
| // deserialization is done in place, so outPatch == newData |
| assert(outPatch == newData); |
| assert(outPatch->numXDivs == inPatch->numXDivs); |
| assert(outPatch->numYDivs == inPatch->numYDivs); |
| assert(outPatch->paddingLeft == inPatch->paddingLeft); |
| assert(outPatch->paddingRight == inPatch->paddingRight); |
| assert(outPatch->paddingTop == inPatch->paddingTop); |
| assert(outPatch->paddingBottom == inPatch->paddingBottom); |
| for (int i = 0; i < outPatch->numXDivs; i++) { |
| assert(outPatch->getXDivs()[i] == inPatch->getXDivs()[i]); |
| } |
| for (int i = 0; i < outPatch->numYDivs; i++) { |
| assert(outPatch->getYDivs()[i] == inPatch->getYDivs()[i]); |
| } |
| for (int i = 0; i < outPatch->numColors; i++) { |
| assert(outPatch->getColors()[i] == inPatch->getColors()[i]); |
| } |
| free(newData); |
| } |
| |
| static void dump_image(int w, int h, png_bytepp rows, int color_type) |
| { |
| int i, j, rr, gg, bb, aa; |
| |
| int bpp; |
| if (color_type == PNG_COLOR_TYPE_PALETTE || color_type == PNG_COLOR_TYPE_GRAY) { |
| bpp = 1; |
| } else if (color_type == PNG_COLOR_TYPE_GRAY_ALPHA) { |
| bpp = 2; |
| } else if (color_type == PNG_COLOR_TYPE_RGB || color_type == PNG_COLOR_TYPE_RGB_ALPHA) { |
| // We use a padding byte even when there is no alpha |
| bpp = 4; |
| } else { |
| printf("Unknown color type %d.\n", color_type); |
| return; |
| } |
| |
| for (j = 0; j < h; j++) { |
| png_bytep row = rows[j]; |
| for (i = 0; i < w; i++) { |
| rr = row[0]; |
| gg = row[1]; |
| bb = row[2]; |
| aa = row[3]; |
| row += bpp; |
| |
| if (i == 0) { |
| printf("Row %d:", j); |
| } |
| switch (bpp) { |
| case 1: |
| printf(" (%d)", rr); |
| break; |
| case 2: |
| printf(" (%d %d", rr, gg); |
| break; |
| case 3: |
| printf(" (%d %d %d)", rr, gg, bb); |
| break; |
| case 4: |
| printf(" (%d %d %d %d)", rr, gg, bb, aa); |
| break; |
| } |
| if (i == (w - 1)) { |
| printf("\n"); |
| } |
| } |
| } |
| } |
| |
| #define MAX(a,b) ((a)>(b)?(a):(b)) |
| #define ABS(a) ((a)<0?-(a):(a)) |
| |
| static void analyze_image(const char *imageName, image_info &imageInfo, int grayscaleTolerance, |
| png_colorp rgbPalette, png_bytep alphaPalette, |
| int *paletteEntries, int *alphaPaletteEntries, bool *hasTransparency, |
| int *colorType, png_bytepp outRows) |
| { |
| int w = imageInfo.width; |
| int h = imageInfo.height; |
| int i, j, rr, gg, bb, aa, idx;; |
| uint32_t opaqueColors[256], alphaColors[256]; |
| uint32_t col; |
| int numOpaqueColors = 0, numAlphaColors = 0; |
| int maxGrayDeviation = 0; |
| |
| bool isOpaque = true; |
| bool isPalette = true; |
| bool isGrayscale = true; |
| |
| // Scan the entire image and determine if: |
| // 1. Every pixel has R == G == B (grayscale) |
| // 2. Every pixel has A == 255 (opaque) |
| // 3. There are no more than 256 distinct RGBA colors |
| // We will track opaque colors separately from colors with |
| // alpha. This allows us to reencode the color table more |
| // efficiently (color tables entries without a corresponding |
| // alpha value are assumed to be opaque). |
| |
| if (kIsDebug) { |
| printf("Initial image data:\n"); |
| dump_image(w, h, imageInfo.rows, PNG_COLOR_TYPE_RGB_ALPHA); |
| } |
| |
| for (j = 0; j < h; j++) { |
| png_bytep row = imageInfo.rows[j]; |
| png_bytep out = outRows[j]; |
| for (i = 0; i < w; i++) { |
| |
| // Make sure any zero alpha pixels are fully zeroed. On average, |
| // each of our PNG assets seem to have about four distinct pixels |
| // with zero alpha. |
| // There are several advantages to setting these to zero: |
| // (1) Images are more likely able to be encodable with a palette. |
| // (2) Image palettes will be smaller. |
| // (3) Premultiplied and unpremultiplied PNG decodes can skip |
| // writing zeros to memory, often saving significant numbers |
| // of memory pages. |
| aa = *(row + 3); |
| if (aa == 0) { |
| rr = 0; |
| gg = 0; |
| bb = 0; |
| |
| // Also set red, green, and blue to zero in "row". If we later |
| // decide to encode the PNG as RGB or RGBA, we will use the |
| // values stored there. |
| *(row) = 0; |
| *(row + 1) = 0; |
| *(row + 2) = 0; |
| } else { |
| rr = *(row); |
| gg = *(row + 1); |
| bb = *(row + 2); |
| } |
| row += 4; |
| |
| int odev = maxGrayDeviation; |
| maxGrayDeviation = MAX(ABS(rr - gg), maxGrayDeviation); |
| maxGrayDeviation = MAX(ABS(gg - bb), maxGrayDeviation); |
| maxGrayDeviation = MAX(ABS(bb - rr), maxGrayDeviation); |
| if (maxGrayDeviation > odev) { |
| if (kIsDebug) { |
| printf("New max dev. = %d at pixel (%d, %d) = (%d %d %d %d)\n", |
| maxGrayDeviation, i, j, rr, gg, bb, aa); |
| } |
| } |
| |
| // Check if image is really grayscale |
| if (isGrayscale) { |
| if (rr != gg || rr != bb) { |
| if (kIsDebug) { |
| printf("Found a non-gray pixel at %d, %d = (%d %d %d %d)\n", |
| i, j, rr, gg, bb, aa); |
| } |
| isGrayscale = false; |
| } |
| } |
| |
| // Check if image is really opaque |
| if (isOpaque) { |
| if (aa != 0xff) { |
| if (kIsDebug) { |
| printf("Found a non-opaque pixel at %d, %d = (%d %d %d %d)\n", |
| i, j, rr, gg, bb, aa); |
| } |
| isOpaque = false; |
| } |
| } |
| |
| // Check if image is really <= 256 colors |
| if (isPalette) { |
| col = (uint32_t) ((rr << 24) | (gg << 16) | (bb << 8) | aa); |
| bool match = false; |
| |
| if (aa == 0xff) { |
| for (idx = 0; idx < numOpaqueColors; idx++) { |
| if (opaqueColors[idx] == col) { |
| match = true; |
| break; |
| } |
| } |
| |
| if (!match) { |
| if (numOpaqueColors < 256) { |
| opaqueColors[numOpaqueColors] = col; |
| } |
| numOpaqueColors++; |
| } |
| |
| // Write the palette index for the pixel to outRows optimistically. |
| // We might overwrite it later if we decide to encode as gray or |
| // gray + alpha. We may also need to overwrite it when we combine |
| // into a single palette. |
| *out++ = idx; |
| } else { |
| for (idx = 0; idx < numAlphaColors; idx++) { |
| if (alphaColors[idx] == col) { |
| match = true; |
| break; |
| } |
| } |
| |
| if (!match) { |
| if (numAlphaColors < 256) { |
| alphaColors[numAlphaColors] = col; |
| } |
| numAlphaColors++; |
| } |
| |
| // Write the palette index for the pixel to outRows optimistically. |
| // We might overwrite it later if we decide to encode as gray or |
| // gray + alpha. |
| *out++ = idx; |
| } |
| |
| if (numOpaqueColors + numAlphaColors > 256) { |
| if (kIsDebug) { |
| printf("Found 257th color at %d, %d\n", i, j); |
| } |
| isPalette = false; |
| } |
| } |
| } |
| } |
| |
| // If we decide to encode the image using a palette, we will reset these counts |
| // to the appropriate values later. Initializing them here avoids compiler |
| // complaints about uses of possibly uninitialized variables. |
| *paletteEntries = 0; |
| *alphaPaletteEntries = 0; |
| |
| *hasTransparency = !isOpaque; |
| int paletteSize = w * h + 3 * numOpaqueColors + 4 * numAlphaColors; |
| |
| int bpp = isOpaque ? 3 : 4; |
| if (kIsDebug) { |
| printf("isGrayscale = %s\n", isGrayscale ? "true" : "false"); |
| printf("isOpaque = %s\n", isOpaque ? "true" : "false"); |
| printf("isPalette = %s\n", isPalette ? "true" : "false"); |
| printf("Size w/ palette = %d, gray+alpha = %d, rgb(a) = %d\n", |
| paletteSize, 2 * w * h, bpp * w * h); |
| printf("Max gray deviation = %d, tolerance = %d\n", maxGrayDeviation, grayscaleTolerance); |
| } |
| |
| // Choose the best color type for the image. |
| // 1. Opaque gray - use COLOR_TYPE_GRAY at 1 byte/pixel |
| // 2. Gray + alpha - use COLOR_TYPE_PALETTE if the number of distinct combinations |
| // is sufficiently small, otherwise use COLOR_TYPE_GRAY_ALPHA |
| // 3. RGB(A) - use COLOR_TYPE_PALETTE if the number of distinct colors is sufficiently |
| // small, otherwise use COLOR_TYPE_RGB{_ALPHA} |
| if (isGrayscale) { |
| if (isOpaque) { |
| *colorType = PNG_COLOR_TYPE_GRAY; // 1 byte/pixel |
| } else { |
| // Use a simple heuristic to determine whether using a palette will |
| // save space versus using gray + alpha for each pixel. |
| // This doesn't take into account chunk overhead, filtering, LZ |
| // compression, etc. |
| if (isPalette && (paletteSize < 2 * w * h)) { |
| *colorType = PNG_COLOR_TYPE_PALETTE; // 1 byte/pixel + 4 bytes/color |
| } else { |
| *colorType = PNG_COLOR_TYPE_GRAY_ALPHA; // 2 bytes per pixel |
| } |
| } |
| } else if (isPalette && (paletteSize < bpp * w * h)) { |
| *colorType = PNG_COLOR_TYPE_PALETTE; |
| } else { |
| if (maxGrayDeviation <= grayscaleTolerance) { |
| printf("%s: forcing image to gray (max deviation = %d)\n", imageName, maxGrayDeviation); |
| *colorType = isOpaque ? PNG_COLOR_TYPE_GRAY : PNG_COLOR_TYPE_GRAY_ALPHA; |
| } else { |
| *colorType = isOpaque ? PNG_COLOR_TYPE_RGB : PNG_COLOR_TYPE_RGB_ALPHA; |
| } |
| } |
| |
| // Perform postprocessing of the image or palette data based on the final |
| // color type chosen |
| |
| if (*colorType == PNG_COLOR_TYPE_PALETTE) { |
| // Combine the alphaColors and the opaqueColors into a single palette. |
| // The alphaColors must be at the start of the palette. |
| uint32_t* colors = alphaColors; |
| memcpy(colors + numAlphaColors, opaqueColors, 4 * numOpaqueColors); |
| |
| // Fix the indices of the opaque colors in the image. |
| for (j = 0; j < h; j++) { |
| png_bytep row = imageInfo.rows[j]; |
| png_bytep out = outRows[j]; |
| for (i = 0; i < w; i++) { |
| uint32_t pixel = ((uint32_t*) row)[i]; |
| if (pixel >> 24 == 0xFF) { |
| out[i] += numAlphaColors; |
| } |
| } |
| } |
| |
| // Create separate RGB and Alpha palettes and set the number of colors |
| int numColors = numOpaqueColors + numAlphaColors; |
| *paletteEntries = numColors; |
| *alphaPaletteEntries = numAlphaColors; |
| |
| // Create the RGB and alpha palettes |
| for (int idx = 0; idx < numColors; idx++) { |
| col = colors[idx]; |
| rgbPalette[idx].red = (png_byte) ((col >> 24) & 0xff); |
| rgbPalette[idx].green = (png_byte) ((col >> 16) & 0xff); |
| rgbPalette[idx].blue = (png_byte) ((col >> 8) & 0xff); |
| if (idx < numAlphaColors) { |
| alphaPalette[idx] = (png_byte) (col & 0xff); |
| } |
| } |
| } else if (*colorType == PNG_COLOR_TYPE_GRAY || *colorType == PNG_COLOR_TYPE_GRAY_ALPHA) { |
| // If the image is gray or gray + alpha, compact the pixels into outRows |
| for (j = 0; j < h; j++) { |
| png_bytep row = imageInfo.rows[j]; |
| png_bytep out = outRows[j]; |
| for (i = 0; i < w; i++) { |
| rr = *row++; |
| gg = *row++; |
| bb = *row++; |
| aa = *row++; |
| |
| if (isGrayscale) { |
| *out++ = rr; |
| } else { |
| *out++ = (png_byte) (rr * 0.2126f + gg * 0.7152f + bb * 0.0722f); |
| } |
| if (!isOpaque) { |
| *out++ = aa; |
| } |
| } |
| } |
| } |
| } |
| |
| static void write_png(const char* imageName, |
| png_structp write_ptr, png_infop write_info, |
| image_info& imageInfo, const Bundle* bundle) |
| { |
| png_uint_32 width, height; |
| int color_type; |
| int bit_depth, interlace_type, compression_type; |
| int i; |
| |
| png_unknown_chunk unknowns[3]; |
| unknowns[0].data = NULL; |
| unknowns[1].data = NULL; |
| unknowns[2].data = NULL; |
| |
| png_bytepp outRows = (png_bytepp) malloc((int) imageInfo.height * sizeof(png_bytep)); |
| if (outRows == (png_bytepp) 0) { |
| printf("Can't allocate output buffer!\n"); |
| exit(1); |
| } |
| for (i = 0; i < (int) imageInfo.height; i++) { |
| outRows[i] = (png_bytep) malloc(2 * (int) imageInfo.width); |
| if (outRows[i] == (png_bytep) 0) { |
| printf("Can't allocate output buffer!\n"); |
| exit(1); |
| } |
| } |
| |
| png_set_compression_level(write_ptr, Z_BEST_COMPRESSION); |
| |
| if (kIsDebug) { |
| printf("Writing image %s: w = %d, h = %d\n", imageName, |
| (int) imageInfo.width, (int) imageInfo.height); |
| } |
| |
| png_color rgbPalette[256]; |
| png_byte alphaPalette[256]; |
| bool hasTransparency; |
| int paletteEntries, alphaPaletteEntries; |
| |
| int grayscaleTolerance = bundle->getGrayscaleTolerance(); |
| analyze_image(imageName, imageInfo, grayscaleTolerance, rgbPalette, alphaPalette, |
| &paletteEntries, &alphaPaletteEntries, &hasTransparency, &color_type, outRows); |
| |
| // Legacy versions of aapt would always encode 9patch PNGs as RGBA. This had the unintended |
| // benefit of working around a bug decoding paletted images in Android 4.1. |
| // https://code.google.com/p/android/issues/detail?id=34619 |
| // |
| // If SDK_JELLY_BEAN is supported, we need to avoid a paletted encoding in order to not expose |
| // this bug. |
| if (!bundle->isMinSdkAtLeast(SDK_JELLY_BEAN_MR1)) { |
| if (imageInfo.is9Patch && PNG_COLOR_TYPE_PALETTE == color_type) { |
| if (hasTransparency) { |
| color_type = PNG_COLOR_TYPE_RGB_ALPHA; |
| } else { |
| color_type = PNG_COLOR_TYPE_RGB; |
| } |
| } |
| } |
| |
| if (kIsDebug) { |
| switch (color_type) { |
| case PNG_COLOR_TYPE_PALETTE: |
| printf("Image %s has %d colors%s, using PNG_COLOR_TYPE_PALETTE\n", |
| imageName, paletteEntries, |
| hasTransparency ? " (with alpha)" : ""); |
| break; |
| case PNG_COLOR_TYPE_GRAY: |
| printf("Image %s is opaque gray, using PNG_COLOR_TYPE_GRAY\n", imageName); |
| break; |
| case PNG_COLOR_TYPE_GRAY_ALPHA: |
| printf("Image %s is gray + alpha, using PNG_COLOR_TYPE_GRAY_ALPHA\n", imageName); |
| break; |
| case PNG_COLOR_TYPE_RGB: |
| printf("Image %s is opaque RGB, using PNG_COLOR_TYPE_RGB\n", imageName); |
| break; |
| case PNG_COLOR_TYPE_RGB_ALPHA: |
| printf("Image %s is RGB + alpha, using PNG_COLOR_TYPE_RGB_ALPHA\n", imageName); |
| break; |
| } |
| } |
| |
| png_set_IHDR(write_ptr, write_info, imageInfo.width, imageInfo.height, |
| 8, color_type, PNG_INTERLACE_NONE, |
| PNG_COMPRESSION_TYPE_DEFAULT, PNG_FILTER_TYPE_DEFAULT); |
| |
| if (color_type == PNG_COLOR_TYPE_PALETTE) { |
| png_set_PLTE(write_ptr, write_info, rgbPalette, paletteEntries); |
| if (hasTransparency) { |
| png_set_tRNS(write_ptr, write_info, alphaPalette, alphaPaletteEntries, |
| (png_color_16p) 0); |
| } |
| png_set_filter(write_ptr, 0, PNG_NO_FILTERS); |
| } else { |
| png_set_filter(write_ptr, 0, PNG_ALL_FILTERS); |
| } |
| |
| if (imageInfo.is9Patch) { |
| int chunk_count = 2 + (imageInfo.haveLayoutBounds ? 1 : 0); |
| int p_index = imageInfo.haveLayoutBounds ? 2 : 1; |
| int b_index = 1; |
| int o_index = 0; |
| |
| // Chunks ordered thusly because older platforms depend on the base 9 patch data being last |
| png_byte *chunk_names = imageInfo.haveLayoutBounds |
| ? (png_byte*)"npOl\0npLb\0npTc\0" |
| : (png_byte*)"npOl\0npTc"; |
| |
| // base 9 patch data |
| if (kIsDebug) { |
| printf("Adding 9-patch info...\n"); |
| } |
| memcpy((char*)unknowns[p_index].name, "npTc", 5); |
| unknowns[p_index].data = (png_byte*)imageInfo.serialize9patch(); |
| unknowns[p_index].size = imageInfo.info9Patch.serializedSize(); |
| // TODO: remove the check below when everything works |
| checkNinePatchSerialization(&imageInfo.info9Patch, unknowns[p_index].data); |
| |
| // automatically generated 9 patch outline data |
| int chunk_size = sizeof(png_uint_32) * 6; |
| memcpy((char*)unknowns[o_index].name, "npOl", 5); |
| unknowns[o_index].data = (png_byte*) calloc(chunk_size, 1); |
| png_byte outputData[chunk_size]; |
| memcpy(&outputData, &imageInfo.outlineInsetsLeft, 4 * sizeof(png_uint_32)); |
| ((float*) outputData)[4] = imageInfo.outlineRadius; |
| ((png_uint_32*) outputData)[5] = imageInfo.outlineAlpha; |
| memcpy(unknowns[o_index].data, &outputData, chunk_size); |
| unknowns[o_index].size = chunk_size; |
| |
| // optional optical inset / layout bounds data |
| if (imageInfo.haveLayoutBounds) { |
| int chunk_size = sizeof(png_uint_32) * 4; |
| memcpy((char*)unknowns[b_index].name, "npLb", 5); |
| unknowns[b_index].data = (png_byte*) calloc(chunk_size, 1); |
| memcpy(unknowns[b_index].data, &imageInfo.layoutBoundsLeft, chunk_size); |
| unknowns[b_index].size = chunk_size; |
| } |
| |
| for (int i = 0; i < chunk_count; i++) { |
| unknowns[i].location = PNG_HAVE_IHDR; |
| } |
| png_set_keep_unknown_chunks(write_ptr, PNG_HANDLE_CHUNK_ALWAYS, |
| chunk_names, chunk_count); |
| png_set_unknown_chunks(write_ptr, write_info, unknowns, chunk_count); |
| } |
| |
| |
| png_write_info(write_ptr, write_info); |
| |
| png_bytepp rows; |
| if (color_type == PNG_COLOR_TYPE_RGB || color_type == PNG_COLOR_TYPE_RGB_ALPHA) { |
| if (color_type == PNG_COLOR_TYPE_RGB) { |
| png_set_filler(write_ptr, 0, PNG_FILLER_AFTER); |
| } |
| rows = imageInfo.rows; |
| } else { |
| rows = outRows; |
| } |
| png_write_image(write_ptr, rows); |
| |
| if (kIsDebug) { |
| printf("Final image data:\n"); |
| dump_image(imageInfo.width, imageInfo.height, rows, color_type); |
| } |
| |
| png_write_end(write_ptr, write_info); |
| |
| for (i = 0; i < (int) imageInfo.height; i++) { |
| free(outRows[i]); |
| } |
| free(outRows); |
| free(unknowns[0].data); |
| free(unknowns[1].data); |
| free(unknowns[2].data); |
| |
| png_get_IHDR(write_ptr, write_info, &width, &height, |
| &bit_depth, &color_type, &interlace_type, |
| &compression_type, NULL); |
| |
| if (kIsDebug) { |
| printf("Image written: w=%d, h=%d, d=%d, colors=%d, inter=%d, comp=%d\n", |
| (int)width, (int)height, bit_depth, color_type, interlace_type, |
| compression_type); |
| } |
| } |
| |
| static bool read_png_protected(png_structp read_ptr, String8& printableName, png_infop read_info, |
| const sp<AaptFile>& file, FILE* fp, image_info* imageInfo) { |
| if (setjmp(png_jmpbuf(read_ptr))) { |
| return false; |
| } |
| |
| png_init_io(read_ptr, fp); |
| |
| read_png(printableName.c_str(), read_ptr, read_info, imageInfo); |
| |
| const size_t nameLen = file->getPath().length(); |
| if (nameLen > 6) { |
| const char* name = file->getPath().c_str(); |
| if (name[nameLen-5] == '9' && name[nameLen-6] == '.') { |
| if (do_9patch(printableName.c_str(), imageInfo) != NO_ERROR) { |
| return false; |
| } |
| } |
| } |
| |
| return true; |
| } |
| |
| static bool write_png_protected(png_structp write_ptr, String8& printableName, png_infop write_info, |
| image_info* imageInfo, const Bundle* bundle) { |
| if (setjmp(png_jmpbuf(write_ptr))) { |
| return false; |
| } |
| |
| write_png(printableName.c_str(), write_ptr, write_info, *imageInfo, bundle); |
| |
| return true; |
| } |
| |
| status_t preProcessImage(const Bundle* bundle, const sp<AaptAssets>& /* assets */, |
| const sp<AaptFile>& file, String8* /* outNewLeafName */) |
| { |
| String8 ext(getPathExtension(file->getPath())); |
| |
| // We currently only process PNG images. |
| if (strcmp(ext.c_str(), ".png") != 0) { |
| return NO_ERROR; |
| } |
| |
| // Example of renaming a file: |
| //*outNewLeafName = file->getPath().getBasePath().getFileName(); |
| //outNewLeafName->append(".nupng"); |
| |
| String8 printableName(file->getPrintableSource()); |
| |
| if (bundle->getVerbose()) { |
| printf("Processing image: %s\n", printableName.c_str()); |
| } |
| |
| png_structp read_ptr = NULL; |
| png_infop read_info = NULL; |
| FILE* fp; |
| |
| image_info imageInfo; |
| |
| png_structp write_ptr = NULL; |
| png_infop write_info = NULL; |
| |
| status_t error = UNKNOWN_ERROR; |
| |
| fp = fopen(file->getSourceFile().c_str(), "rb"); |
| if (fp == NULL) { |
| fprintf(stderr, "%s: ERROR: Unable to open PNG file\n", printableName.c_str()); |
| goto bail; |
| } |
| |
| read_ptr = png_create_read_struct(PNG_LIBPNG_VER_STRING, 0, (png_error_ptr)NULL, |
| (png_error_ptr)NULL); |
| if (!read_ptr) { |
| goto bail; |
| } |
| |
| read_info = png_create_info_struct(read_ptr); |
| if (!read_info) { |
| goto bail; |
| } |
| |
| if (!read_png_protected(read_ptr, printableName, read_info, file, fp, &imageInfo)) { |
| goto bail; |
| } |
| |
| write_ptr = png_create_write_struct(PNG_LIBPNG_VER_STRING, 0, (png_error_ptr)NULL, |
| (png_error_ptr)NULL); |
| if (!write_ptr) |
| { |
| goto bail; |
| } |
| |
| write_info = png_create_info_struct(write_ptr); |
| if (!write_info) |
| { |
| goto bail; |
| } |
| |
| png_set_write_fn(write_ptr, (void*)file.get(), |
| png_write_aapt_file, png_flush_aapt_file); |
| |
| if (!write_png_protected(write_ptr, printableName, write_info, &imageInfo, bundle)) { |
| goto bail; |
| } |
| |
| error = NO_ERROR; |
| |
| if (bundle->getVerbose()) { |
| fseek(fp, 0, SEEK_END); |
| size_t oldSize = (size_t)ftell(fp); |
| size_t newSize = file->getSize(); |
| float factor = ((float)newSize)/oldSize; |
| int percent = (int)(factor*100); |
| printf(" (processed image %s: %d%% size of source)\n", printableName.c_str(), percent); |
| } |
| |
| bail: |
| if (read_ptr) { |
| png_destroy_read_struct(&read_ptr, &read_info, (png_infopp)NULL); |
| } |
| if (fp) { |
| fclose(fp); |
| } |
| if (write_ptr) { |
| png_destroy_write_struct(&write_ptr, &write_info); |
| } |
| |
| if (error != NO_ERROR) { |
| fprintf(stderr, "ERROR: Failure processing PNG image %s\n", |
| file->getPrintableSource().c_str()); |
| } |
| return error; |
| } |
| |
| status_t preProcessImageToCache(const Bundle* bundle, const String8& source, const String8& dest) |
| { |
| png_structp read_ptr = NULL; |
| png_infop read_info = NULL; |
| |
| FILE* fp; |
| |
| image_info imageInfo; |
| |
| png_structp write_ptr = NULL; |
| png_infop write_info = NULL; |
| |
| status_t error = UNKNOWN_ERROR; |
| |
| if (bundle->getVerbose()) { |
| printf("Processing image to cache: %s => %s\n", source.c_str(), dest.c_str()); |
| } |
| |
| // Get a file handler to read from |
| fp = fopen(source.c_str(),"rb"); |
| if (fp == NULL) { |
| fprintf(stderr, "%s ERROR: Unable to open PNG file\n", source.c_str()); |
| return error; |
| } |
| |
| // Call libpng to get a struct to read image data into |
| read_ptr = png_create_read_struct(PNG_LIBPNG_VER_STRING, NULL, NULL, NULL); |
| if (!read_ptr) { |
| fclose(fp); |
| png_destroy_read_struct(&read_ptr, &read_info,NULL); |
| return error; |
| } |
| |
| // Call libpng to get a struct to read image info into |
| read_info = png_create_info_struct(read_ptr); |
| if (!read_info) { |
| fclose(fp); |
| png_destroy_read_struct(&read_ptr, &read_info,NULL); |
| return error; |
| } |
| |
| // Set a jump point for libpng to long jump back to on error |
| if (setjmp(png_jmpbuf(read_ptr))) { |
| fclose(fp); |
| png_destroy_read_struct(&read_ptr, &read_info,NULL); |
| return error; |
| } |
| |
| // Set up libpng to read from our file. |
| png_init_io(read_ptr,fp); |
| |
| // Actually read data from the file |
| read_png(source.c_str(), read_ptr, read_info, &imageInfo); |
| |
| // We're done reading so we can clean up |
| // Find old file size before releasing handle |
| fseek(fp, 0, SEEK_END); |
| size_t oldSize = (size_t)ftell(fp); |
| fclose(fp); |
| png_destroy_read_struct(&read_ptr, &read_info,NULL); |
| |
| // Check to see if we're dealing with a 9-patch |
| // If we are, process appropriately |
| if (getPathExtension(getBasePath(source)) == ".9") { |
| if (do_9patch(source.c_str(), &imageInfo) != NO_ERROR) { |
| return error; |
| } |
| } |
| |
| // Call libpng to create a structure to hold the processed image data |
| // that can be written to disk |
| write_ptr = png_create_write_struct(PNG_LIBPNG_VER_STRING, NULL, NULL, NULL); |
| if (!write_ptr) { |
| png_destroy_write_struct(&write_ptr, &write_info); |
| return error; |
| } |
| |
| // Call libpng to create a structure to hold processed image info that can |
| // be written to disk |
| write_info = png_create_info_struct(write_ptr); |
| if (!write_info) { |
| png_destroy_write_struct(&write_ptr, &write_info); |
| return error; |
| } |
| |
| // Open up our destination file for writing |
| fp = fopen(dest.c_str(), "wb"); |
| if (!fp) { |
| fprintf(stderr, "%s ERROR: Unable to open PNG file\n", dest.c_str()); |
| png_destroy_write_struct(&write_ptr, &write_info); |
| return error; |
| } |
| |
| // Set up libpng to write to our file |
| png_init_io(write_ptr, fp); |
| |
| // Set up a jump for libpng to long jump back on on errors |
| if (setjmp(png_jmpbuf(write_ptr))) { |
| fclose(fp); |
| png_destroy_write_struct(&write_ptr, &write_info); |
| return error; |
| } |
| |
| // Actually write out to the new png |
| write_png(dest.c_str(), write_ptr, write_info, imageInfo, bundle); |
| |
| if (bundle->getVerbose()) { |
| // Find the size of our new file |
| FILE* reader = fopen(dest.c_str(), "rb"); |
| fseek(reader, 0, SEEK_END); |
| size_t newSize = (size_t)ftell(reader); |
| fclose(reader); |
| |
| float factor = ((float)newSize)/oldSize; |
| int percent = (int)(factor*100); |
| printf(" (processed image to cache entry %s: %d%% size of source)\n", |
| dest.c_str(), percent); |
| } |
| |
| //Clean up |
| fclose(fp); |
| png_destroy_write_struct(&write_ptr, &write_info); |
| |
| return NO_ERROR; |
| } |
| |
| status_t postProcessImage(const Bundle* bundle, const sp<AaptAssets>& assets, |
| ResourceTable* table, const sp<AaptFile>& file) |
| { |
| String8 ext(getPathExtension(file->getPath())); |
| |
| // At this point, now that we have all the resource data, all we need to |
| // do is compile XML files. |
| if (strcmp(ext.c_str(), ".xml") == 0) { |
| String16 resourceName(parseResourceName(getPathLeaf(file->getSourceFile()))); |
| return compileXmlFile(bundle, assets, resourceName, file, table); |
| } |
| |
| return NO_ERROR; |
| } |