| #!/usr/bin/python |
| |
| import optparse |
| import sys |
| import sqlite3 |
| import scipy.stats |
| import numpy |
| from math import log10, floor |
| import matplotlib |
| |
| matplotlib.use("Agg") |
| |
| import matplotlib.pyplot as plt |
| import pylab |
| |
| import adbutil |
| from devices import DEVICES |
| |
| DB_PATH="/data/data/com.android.benchmark/databases/BenchmarkResults" |
| OUT_PATH = "db/" |
| |
| QUERY_BAD_FRAME = ("select run_id, name, iteration, total_duration from ui_results " |
| "where total_duration >= 16 order by run_id, name, iteration") |
| QUERY_PERCENT_JANK = ("select run_id, name, iteration, sum(jank_frame) as jank_count, count (*) as total " |
| "from ui_results group by run_id, name, iteration") |
| |
| SKIP_TESTS = [ |
| # "BMUpload", |
| # "Low-hitrate text render", |
| # "High-hitrate text render", |
| # "Edit Text Input", |
| # "List View Fling" |
| ] |
| |
| INCLUDE_TESTS = [ |
| #"BMUpload" |
| #"Shadow Grid Fling" |
| #"Image List View Fling" |
| #"Edit Text Input" |
| ] |
| |
| class IterationResult: |
| def __init__(self): |
| self.durations = [] |
| self.jank_count = 0 |
| self.total_count = 0 |
| |
| |
| def get_scoremap(dbpath): |
| db = sqlite3.connect(dbpath) |
| rows = db.execute(QUERY_BAD_FRAME) |
| |
| scoremap = {} |
| for row in rows: |
| run_id = row[0] |
| name = row[1] |
| iteration = row[2] |
| total_duration = row[3] |
| |
| if not run_id in scoremap: |
| scoremap[run_id] = {} |
| |
| if not name in scoremap[run_id]: |
| scoremap[run_id][name] = {} |
| |
| if not iteration in scoremap[run_id][name]: |
| scoremap[run_id][name][iteration] = IterationResult() |
| |
| scoremap[run_id][name][iteration].durations.append(float(total_duration)) |
| |
| for row in db.execute(QUERY_PERCENT_JANK): |
| run_id = row[0] |
| name = row[1] |
| iteration = row[2] |
| jank_count = row[3] |
| total_count = row[4] |
| |
| if run_id in scoremap.keys() and name in scoremap[run_id].keys() and iteration in scoremap[run_id][name].keys(): |
| scoremap[run_id][name][iteration].jank_count = long(jank_count) |
| scoremap[run_id][name][iteration].total_count = long(total_count) |
| |
| db.close() |
| return scoremap |
| |
| def round_to_2(val): |
| return val |
| if val == 0: |
| return val |
| return round(val , -int(floor(log10(abs(val)))) + 1) |
| |
| def score_device(name, serial, pull = False, verbose = False): |
| dbpath = OUT_PATH + name + ".db" |
| |
| if pull: |
| adbutil.root(serial) |
| adbutil.pull(serial, DB_PATH, dbpath) |
| |
| scoremap = None |
| try: |
| scoremap = get_scoremap(dbpath) |
| except sqlite3.DatabaseError: |
| print "Database corrupt, fetching..." |
| adbutil.root(serial) |
| adbutil.pull(serial, DB_PATH, dbpath) |
| scoremap = get_scoremap(dbpath) |
| |
| per_test_score = {} |
| per_test_sample_count = {} |
| global_overall = {} |
| |
| for run_id in iter(scoremap): |
| overall = [] |
| if len(scoremap[run_id]) < 1: |
| if verbose: |
| print "Skipping short run %s" % run_id |
| continue |
| print "Run: %s" % run_id |
| for test in iter(scoremap[run_id]): |
| if test in SKIP_TESTS: |
| continue |
| if INCLUDE_TESTS and test not in INCLUDE_TESTS: |
| continue |
| if verbose: |
| print "\t%s" % test |
| scores = [] |
| means = [] |
| stddevs = [] |
| pjs = [] |
| sample_count = 0 |
| hit_min_count = 0 |
| # try pooling together all iterations |
| for iteration in iter(scoremap[run_id][test]): |
| res = scoremap[run_id][test][iteration] |
| stddev = round_to_2(numpy.std(res.durations)) |
| mean = round_to_2(numpy.mean(res.durations)) |
| sample_count += len(res.durations) |
| pj = round_to_2(100 * res.jank_count / float(res.total_count)) |
| score = stddev * mean * pj |
| score = 100 * len(res.durations) / float(res.total_count) |
| if score == 0: |
| score = 1 |
| scores.append(score) |
| means.append(mean) |
| stddevs.append(stddev) |
| pjs.append(pj) |
| if verbose: |
| print "\t%s: Score = %f x %f x %f = %f (%d samples)" % (iteration, stddev, mean, pj, score, len(res.durations)) |
| |
| if verbose: |
| print "\tHit min: %d" % hit_min_count |
| print "\tMean Variation: %0.2f%%" % (100 * scipy.stats.variation(means)) |
| print "\tStdDev Variation: %0.2f%%" % (100 * scipy.stats.variation(stddevs)) |
| print "\tPJ Variation: %0.2f%%" % (100 * scipy.stats.variation(pjs)) |
| |
| geo_run = numpy.mean(scores) |
| if test not in per_test_score: |
| per_test_score[test] = [] |
| |
| if test not in per_test_sample_count: |
| per_test_sample_count[test] = [] |
| |
| sample_count /= len(scoremap[run_id][test]) |
| |
| per_test_score[test].append(geo_run) |
| per_test_sample_count[test].append(int(sample_count)) |
| overall.append(geo_run) |
| |
| if not verbose: |
| print "\t%s:\t%0.2f (%0.2f avg. sample count)" % (test, geo_run, sample_count) |
| else: |
| print "\tOverall:\t%0.2f (%0.2f avg. sample count)" % (geo_run, sample_count) |
| print "" |
| |
| global_overall[run_id] = scipy.stats.gmean(overall) |
| print "Run Overall: %f" % global_overall[run_id] |
| print "" |
| |
| print "" |
| print "Variability (CV) - %s:" % name |
| |
| worst_offender_test = None |
| worst_offender_variation = 0 |
| for test in per_test_score: |
| variation = 100 * scipy.stats.variation(per_test_score[test]) |
| if worst_offender_variation < variation: |
| worst_offender_test = test |
| worst_offender_variation = variation |
| print "\t%s:\t%0.2f%% (%0.2f avg sample count)" % (test, variation, numpy.mean(per_test_sample_count[test])) |
| |
| print "\tOverall: %0.2f%%" % (100 * scipy.stats.variation([x for x in global_overall.values()])) |
| print "" |
| |
| return { |
| "overall": global_overall.values(), |
| "worst_offender_test": (name, worst_offender_test, worst_offender_variation) |
| } |
| |
| def parse_options(argv): |
| usage = 'Usage: %prog [options]' |
| desc = 'Example: %prog' |
| parser = optparse.OptionParser(usage=usage, description=desc) |
| parser.add_option("-p", dest='pull', action="store_true") |
| parser.add_option("-d", dest='device', action="store") |
| parser.add_option("-v", dest='verbose', action="store_true") |
| options, categories = parser.parse_args(argv[1:]) |
| return options |
| |
| def main(): |
| options = parse_options(sys.argv) |
| if options.device != None: |
| score_device(options.device, DEVICES[options.device], options.pull, options.verbose) |
| else: |
| device_scores = [] |
| worst_offenders = [] |
| for name, serial in DEVICES.iteritems(): |
| print "======== %s =========" % name |
| result = score_device(name, serial, options.pull, options.verbose) |
| device_scores.append((name, result["overall"])) |
| worst_offenders.append(result["worst_offender_test"]) |
| |
| |
| device_scores.sort(cmp=(lambda x, y: cmp(x[1], y[1]))) |
| print "Ranking by max overall score:" |
| for name, score in device_scores: |
| plt.plot([0, 1, 2, 3, 4, 5], score, label=name) |
| print "\t%s: %s" % (name, score) |
| |
| plt.ylabel("Jank %") |
| plt.xlabel("Iteration") |
| plt.title("Jank Percentage") |
| plt.legend() |
| pylab.savefig("holy.png", bbox_inches="tight") |
| |
| print "Worst offender tests:" |
| for device, test, variation in worst_offenders: |
| print "\t%s: %s %.2f%%" % (device, test, variation) |
| |
| if __name__ == "__main__": |
| main() |
| |