blob: c074029ab553b9f0fc86d1f015391691a781131f [file] [log] [blame]
/*
* Copyright (C) 2007 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_NDEBUG 0
#define LOG_TAG "BootAnimation"
#include <vector>
#include <stdint.h>
#include <inttypes.h>
#include <sys/inotify.h>
#include <sys/poll.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <math.h>
#include <fcntl.h>
#include <utils/misc.h>
#include <signal.h>
#include <time.h>
#include <cutils/atomic.h>
#include <cutils/properties.h>
#include <android/imagedecoder.h>
#include <androidfw/AssetManager.h>
#include <binder/IPCThreadState.h>
#include <utils/Errors.h>
#include <utils/Log.h>
#include <utils/SystemClock.h>
#include <android-base/properties.h>
#include <ui/DisplayMode.h>
#include <ui/PixelFormat.h>
#include <ui/Rect.h>
#include <ui/Region.h>
#include <gui/ISurfaceComposer.h>
#include <gui/DisplayEventReceiver.h>
#include <gui/Surface.h>
#include <gui/SurfaceComposerClient.h>
#include <GLES2/gl2.h>
#include <GLES2/gl2ext.h>
#include <EGL/eglext.h>
#include "BootAnimation.h"
#define ANIM_PATH_MAX 255
#define STR(x) #x
#define STRTO(x) STR(x)
namespace android {
using ui::DisplayMode;
static const char OEM_BOOTANIMATION_FILE[] = "/oem/media/bootanimation.zip";
static const char PRODUCT_BOOTANIMATION_DARK_FILE[] = "/product/media/bootanimation-dark.zip";
static const char PRODUCT_BOOTANIMATION_FILE[] = "/product/media/bootanimation.zip";
static const char SYSTEM_BOOTANIMATION_FILE[] = "/system/media/bootanimation.zip";
static const char APEX_BOOTANIMATION_FILE[] = "/apex/com.android.bootanimation/etc/bootanimation.zip";
static const char PRODUCT_ENCRYPTED_BOOTANIMATION_FILE[] = "/product/media/bootanimation-encrypted.zip";
static const char SYSTEM_ENCRYPTED_BOOTANIMATION_FILE[] = "/system/media/bootanimation-encrypted.zip";
static const char OEM_SHUTDOWNANIMATION_FILE[] = "/oem/media/shutdownanimation.zip";
static const char PRODUCT_SHUTDOWNANIMATION_FILE[] = "/product/media/shutdownanimation.zip";
static const char SYSTEM_SHUTDOWNANIMATION_FILE[] = "/system/media/shutdownanimation.zip";
static constexpr const char* PRODUCT_USERSPACE_REBOOT_ANIMATION_FILE = "/product/media/userspace-reboot.zip";
static constexpr const char* OEM_USERSPACE_REBOOT_ANIMATION_FILE = "/oem/media/userspace-reboot.zip";
static constexpr const char* SYSTEM_USERSPACE_REBOOT_ANIMATION_FILE = "/system/media/userspace-reboot.zip";
static const char SYSTEM_DATA_DIR_PATH[] = "/data/system";
static const char SYSTEM_TIME_DIR_NAME[] = "time";
static const char SYSTEM_TIME_DIR_PATH[] = "/data/system/time";
static const char CLOCK_FONT_ASSET[] = "images/clock_font.png";
static const char CLOCK_FONT_ZIP_NAME[] = "clock_font.png";
static const char PROGRESS_FONT_ASSET[] = "images/progress_font.png";
static const char PROGRESS_FONT_ZIP_NAME[] = "progress_font.png";
static const char LAST_TIME_CHANGED_FILE_NAME[] = "last_time_change";
static const char LAST_TIME_CHANGED_FILE_PATH[] = "/data/system/time/last_time_change";
static const char ACCURATE_TIME_FLAG_FILE_NAME[] = "time_is_accurate";
static const char ACCURATE_TIME_FLAG_FILE_PATH[] = "/data/system/time/time_is_accurate";
static const char TIME_FORMAT_12_HOUR_FLAG_FILE_PATH[] = "/data/system/time/time_format_12_hour";
// Java timestamp format. Don't show the clock if the date is before 2000-01-01 00:00:00.
static const long long ACCURATE_TIME_EPOCH = 946684800000;
static constexpr char FONT_BEGIN_CHAR = ' ';
static constexpr char FONT_END_CHAR = '~' + 1;
static constexpr size_t FONT_NUM_CHARS = FONT_END_CHAR - FONT_BEGIN_CHAR + 1;
static constexpr size_t FONT_NUM_COLS = 16;
static constexpr size_t FONT_NUM_ROWS = FONT_NUM_CHARS / FONT_NUM_COLS;
static const int TEXT_CENTER_VALUE = INT_MAX;
static const int TEXT_MISSING_VALUE = INT_MIN;
static const char EXIT_PROP_NAME[] = "service.bootanim.exit";
static const char PROGRESS_PROP_NAME[] = "service.bootanim.progress";
static const char DISPLAYS_PROP_NAME[] = "persist.service.bootanim.displays";
static const int ANIM_ENTRY_NAME_MAX = ANIM_PATH_MAX + 1;
static constexpr size_t TEXT_POS_LEN_MAX = 16;
static const int DYNAMIC_COLOR_COUNT = 4;
static const char U_TEXTURE[] = "uTexture";
static const char U_FADE[] = "uFade";
static const char U_CROP_AREA[] = "uCropArea";
static const char U_START_COLOR_PREFIX[] = "uStartColor";
static const char U_END_COLOR_PREFIX[] = "uEndColor";
static const char U_COLOR_PROGRESS[] = "uColorProgress";
static const char A_UV[] = "aUv";
static const char A_POSITION[] = "aPosition";
static const char VERTEX_SHADER_SOURCE[] = R"(
precision mediump float;
attribute vec4 aPosition;
attribute highp vec2 aUv;
varying highp vec2 vUv;
void main() {
gl_Position = aPosition;
vUv = aUv;
})";
static const char IMAGE_FRAG_DYNAMIC_COLORING_SHADER_SOURCE[] = R"(
precision mediump float;
const float cWhiteMaskThreshold = 0.05;
uniform sampler2D uTexture;
uniform float uFade;
uniform float uColorProgress;
uniform vec4 uStartColor0;
uniform vec4 uStartColor1;
uniform vec4 uStartColor2;
uniform vec4 uStartColor3;
uniform vec4 uEndColor0;
uniform vec4 uEndColor1;
uniform vec4 uEndColor2;
uniform vec4 uEndColor3;
varying highp vec2 vUv;
void main() {
vec4 mask = texture2D(uTexture, vUv);
float r = mask.r;
float g = mask.g;
float b = mask.b;
float a = mask.a;
// If all channels have values, render pixel as a shade of white.
float useWhiteMask = step(cWhiteMaskThreshold, r)
* step(cWhiteMaskThreshold, g)
* step(cWhiteMaskThreshold, b)
* step(cWhiteMaskThreshold, a);
vec4 color = r * mix(uStartColor0, uEndColor0, uColorProgress)
+ g * mix(uStartColor1, uEndColor1, uColorProgress)
+ b * mix(uStartColor2, uEndColor2, uColorProgress)
+ a * mix(uStartColor3, uEndColor3, uColorProgress);
color = mix(color, vec4(vec3((r + g + b + a) * 0.25), 1.0), useWhiteMask);
gl_FragColor = vec4(color.x, color.y, color.z, (1.0 - uFade)) * color.a;
})";
static const char IMAGE_FRAG_SHADER_SOURCE[] = R"(
precision mediump float;
uniform sampler2D uTexture;
uniform float uFade;
varying highp vec2 vUv;
void main() {
vec4 color = texture2D(uTexture, vUv);
gl_FragColor = vec4(color.x, color.y, color.z, (1.0 - uFade)) * color.a;
})";
static const char TEXT_FRAG_SHADER_SOURCE[] = R"(
precision mediump float;
uniform sampler2D uTexture;
uniform vec4 uCropArea;
varying highp vec2 vUv;
void main() {
vec2 uv = vec2(mix(uCropArea.x, uCropArea.z, vUv.x),
mix(uCropArea.y, uCropArea.w, vUv.y));
gl_FragColor = texture2D(uTexture, uv);
})";
static GLfloat quadPositions[] = {
-0.5f, -0.5f,
+0.5f, -0.5f,
+0.5f, +0.5f,
+0.5f, +0.5f,
-0.5f, +0.5f,
-0.5f, -0.5f
};
static GLfloat quadUVs[] = {
0.0f, 1.0f,
1.0f, 1.0f,
1.0f, 0.0f,
1.0f, 0.0f,
0.0f, 0.0f,
0.0f, 1.0f
};
// ---------------------------------------------------------------------------
BootAnimation::BootAnimation(sp<Callbacks> callbacks)
: Thread(false), mLooper(new Looper(false)), mClockEnabled(true), mTimeIsAccurate(false),
mTimeFormat12Hour(false), mTimeCheckThread(nullptr), mCallbacks(callbacks) {
mSession = new SurfaceComposerClient();
std::string powerCtl = android::base::GetProperty("sys.powerctl", "");
if (powerCtl.empty()) {
mShuttingDown = false;
} else {
mShuttingDown = true;
}
ALOGD("%sAnimationStartTiming start time: %" PRId64 "ms", mShuttingDown ? "Shutdown" : "Boot",
elapsedRealtime());
}
BootAnimation::~BootAnimation() {
if (mAnimation != nullptr) {
releaseAnimation(mAnimation);
mAnimation = nullptr;
}
ALOGD("%sAnimationStopTiming start time: %" PRId64 "ms", mShuttingDown ? "Shutdown" : "Boot",
elapsedRealtime());
}
void BootAnimation::onFirstRef() {
status_t err = mSession->linkToComposerDeath(this);
SLOGE_IF(err, "linkToComposerDeath failed (%s) ", strerror(-err));
if (err == NO_ERROR) {
// Load the animation content -- this can be slow (eg 200ms)
// called before waitForSurfaceFlinger() in main() to avoid wait
ALOGD("%sAnimationPreloadTiming start time: %" PRId64 "ms",
mShuttingDown ? "Shutdown" : "Boot", elapsedRealtime());
preloadAnimation();
ALOGD("%sAnimationPreloadStopTiming start time: %" PRId64 "ms",
mShuttingDown ? "Shutdown" : "Boot", elapsedRealtime());
}
}
sp<SurfaceComposerClient> BootAnimation::session() const {
return mSession;
}
void BootAnimation::binderDied(const wp<IBinder>&) {
// woah, surfaceflinger died!
SLOGD("SurfaceFlinger died, exiting...");
// calling requestExit() is not enough here because the Surface code
// might be blocked on a condition variable that will never be updated.
kill( getpid(), SIGKILL );
requestExit();
}
static void* decodeImage(const void* encodedData, size_t dataLength, AndroidBitmapInfo* outInfo,
bool premultiplyAlpha) {
AImageDecoder* decoder = nullptr;
AImageDecoder_createFromBuffer(encodedData, dataLength, &decoder);
if (!decoder) {
return nullptr;
}
const AImageDecoderHeaderInfo* info = AImageDecoder_getHeaderInfo(decoder);
outInfo->width = AImageDecoderHeaderInfo_getWidth(info);
outInfo->height = AImageDecoderHeaderInfo_getHeight(info);
outInfo->format = AImageDecoderHeaderInfo_getAndroidBitmapFormat(info);
outInfo->stride = AImageDecoder_getMinimumStride(decoder);
outInfo->flags = 0;
if (!premultiplyAlpha) {
AImageDecoder_setUnpremultipliedRequired(decoder, true);
}
const size_t size = outInfo->stride * outInfo->height;
void* pixels = malloc(size);
int result = AImageDecoder_decodeImage(decoder, pixels, outInfo->stride, size);
AImageDecoder_delete(decoder);
if (result != ANDROID_IMAGE_DECODER_SUCCESS) {
free(pixels);
return nullptr;
}
return pixels;
}
status_t BootAnimation::initTexture(Texture* texture, AssetManager& assets,
const char* name, bool premultiplyAlpha) {
Asset* asset = assets.open(name, Asset::ACCESS_BUFFER);
if (asset == nullptr)
return NO_INIT;
AndroidBitmapInfo bitmapInfo;
void* pixels = decodeImage(asset->getBuffer(false), asset->getLength(), &bitmapInfo,
premultiplyAlpha);
auto pixelDeleter = std::unique_ptr<void, decltype(free)*>{ pixels, free };
asset->close();
delete asset;
if (!pixels) {
return NO_INIT;
}
const int w = bitmapInfo.width;
const int h = bitmapInfo.height;
texture->w = w;
texture->h = h;
glGenTextures(1, &texture->name);
glBindTexture(GL_TEXTURE_2D, texture->name);
switch (bitmapInfo.format) {
case ANDROID_BITMAP_FORMAT_A_8:
glTexImage2D(GL_TEXTURE_2D, 0, GL_ALPHA, w, h, 0, GL_ALPHA,
GL_UNSIGNED_BYTE, pixels);
break;
case ANDROID_BITMAP_FORMAT_RGBA_4444:
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, w, h, 0, GL_RGBA,
GL_UNSIGNED_SHORT_4_4_4_4, pixels);
break;
case ANDROID_BITMAP_FORMAT_RGBA_8888:
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, w, h, 0, GL_RGBA,
GL_UNSIGNED_BYTE, pixels);
break;
case ANDROID_BITMAP_FORMAT_RGB_565:
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, w, h, 0, GL_RGB,
GL_UNSIGNED_SHORT_5_6_5, pixels);
break;
default:
break;
}
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
return NO_ERROR;
}
status_t BootAnimation::initTexture(FileMap* map, int* width, int* height,
bool premultiplyAlpha) {
AndroidBitmapInfo bitmapInfo;
void* pixels = decodeImage(map->getDataPtr(), map->getDataLength(), &bitmapInfo,
premultiplyAlpha);
auto pixelDeleter = std::unique_ptr<void, decltype(free)*>{ pixels, free };
// FileMap memory is never released until application exit.
// Release it now as the texture is already loaded and the memory used for
// the packed resource can be released.
delete map;
if (!pixels) {
return NO_INIT;
}
const int w = bitmapInfo.width;
const int h = bitmapInfo.height;
int tw = 1 << (31 - __builtin_clz(w));
int th = 1 << (31 - __builtin_clz(h));
if (tw < w) tw <<= 1;
if (th < h) th <<= 1;
switch (bitmapInfo.format) {
case ANDROID_BITMAP_FORMAT_RGBA_8888:
if (!mUseNpotTextures && (tw != w || th != h)) {
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, tw, th, 0, GL_RGBA,
GL_UNSIGNED_BYTE, nullptr);
glTexSubImage2D(GL_TEXTURE_2D, 0,
0, 0, w, h, GL_RGBA, GL_UNSIGNED_BYTE, pixels);
} else {
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, w, h, 0, GL_RGBA,
GL_UNSIGNED_BYTE, pixels);
}
break;
case ANDROID_BITMAP_FORMAT_RGB_565:
if (!mUseNpotTextures && (tw != w || th != h)) {
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, tw, th, 0, GL_RGB,
GL_UNSIGNED_SHORT_5_6_5, nullptr);
glTexSubImage2D(GL_TEXTURE_2D, 0,
0, 0, w, h, GL_RGB, GL_UNSIGNED_SHORT_5_6_5, pixels);
} else {
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, w, h, 0, GL_RGB,
GL_UNSIGNED_SHORT_5_6_5, pixels);
}
break;
default:
break;
}
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
*width = w;
*height = h;
return NO_ERROR;
}
class BootAnimation::DisplayEventCallback : public LooperCallback {
BootAnimation* mBootAnimation;
public:
DisplayEventCallback(BootAnimation* bootAnimation) {
mBootAnimation = bootAnimation;
}
int handleEvent(int /* fd */, int events, void* /* data */) {
if (events & (Looper::EVENT_ERROR | Looper::EVENT_HANGUP)) {
ALOGE("Display event receiver pipe was closed or an error occurred. events=0x%x",
events);
return 0; // remove the callback
}
if (!(events & Looper::EVENT_INPUT)) {
ALOGW("Received spurious callback for unhandled poll event. events=0x%x", events);
return 1; // keep the callback
}
constexpr int kBufferSize = 100;
DisplayEventReceiver::Event buffer[kBufferSize];
ssize_t numEvents;
do {
numEvents = mBootAnimation->mDisplayEventReceiver->getEvents(buffer, kBufferSize);
for (size_t i = 0; i < static_cast<size_t>(numEvents); i++) {
const auto& event = buffer[i];
if (event.header.type == DisplayEventReceiver::DISPLAY_EVENT_HOTPLUG) {
SLOGV("Hotplug received");
if (!event.hotplug.connected) {
// ignore hotplug disconnect
continue;
}
auto token = SurfaceComposerClient::getPhysicalDisplayToken(
event.header.displayId);
if (token != mBootAnimation->mDisplayToken) {
// ignore hotplug of a secondary display
continue;
}
DisplayMode displayMode;
const status_t error = SurfaceComposerClient::getActiveDisplayMode(
mBootAnimation->mDisplayToken, &displayMode);
if (error != NO_ERROR) {
SLOGE("Can't get active display mode.");
}
mBootAnimation->resizeSurface(displayMode.resolution.getWidth(),
displayMode.resolution.getHeight());
}
}
} while (numEvents > 0);
return 1; // keep the callback
}
};
EGLConfig BootAnimation::getEglConfig(const EGLDisplay& display) {
const EGLint attribs[] = {
EGL_RED_SIZE, 8,
EGL_GREEN_SIZE, 8,
EGL_BLUE_SIZE, 8,
EGL_DEPTH_SIZE, 0,
EGL_NONE
};
EGLint numConfigs;
EGLConfig config;
eglChooseConfig(display, attribs, &config, 1, &numConfigs);
return config;
}
ui::Size BootAnimation::limitSurfaceSize(int width, int height) const {
ui::Size limited(width, height);
bool wasLimited = false;
const float aspectRatio = float(width) / float(height);
if (mMaxWidth != 0 && width > mMaxWidth) {
limited.height = mMaxWidth / aspectRatio;
limited.width = mMaxWidth;
wasLimited = true;
}
if (mMaxHeight != 0 && limited.height > mMaxHeight) {
limited.height = mMaxHeight;
limited.width = mMaxHeight * aspectRatio;
wasLimited = true;
}
SLOGV_IF(wasLimited, "Surface size has been limited to [%dx%d] from [%dx%d]",
limited.width, limited.height, width, height);
return limited;
}
status_t BootAnimation::readyToRun() {
mAssets.addDefaultAssets();
mDisplayToken = SurfaceComposerClient::getInternalDisplayToken();
if (mDisplayToken == nullptr)
return NAME_NOT_FOUND;
DisplayMode displayMode;
const status_t error =
SurfaceComposerClient::getActiveDisplayMode(mDisplayToken, &displayMode);
if (error != NO_ERROR)
return error;
mMaxWidth = android::base::GetIntProperty("ro.surface_flinger.max_graphics_width", 0);
mMaxHeight = android::base::GetIntProperty("ro.surface_flinger.max_graphics_height", 0);
ui::Size resolution = displayMode.resolution;
resolution = limitSurfaceSize(resolution.width, resolution.height);
// create the native surface
sp<SurfaceControl> control = session()->createSurface(String8("BootAnimation"),
resolution.getWidth(), resolution.getHeight(), PIXEL_FORMAT_RGB_565);
SurfaceComposerClient::Transaction t;
// this guest property specifies multi-display IDs to show the boot animation
// multiple ids can be set with comma (,) as separator, for example:
// setprop persist.boot.animation.displays 19260422155234049,19261083906282754
Vector<PhysicalDisplayId> physicalDisplayIds;
char displayValue[PROPERTY_VALUE_MAX] = "";
property_get(DISPLAYS_PROP_NAME, displayValue, "");
bool isValid = displayValue[0] != '\0';
if (isValid) {
char *p = displayValue;
while (*p) {
if (!isdigit(*p) && *p != ',') {
isValid = false;
break;
}
p ++;
}
if (!isValid)
SLOGE("Invalid syntax for the value of system prop: %s", DISPLAYS_PROP_NAME);
}
if (isValid) {
std::istringstream stream(displayValue);
for (PhysicalDisplayId id; stream >> id.value; ) {
physicalDisplayIds.add(id);
if (stream.peek() == ',')
stream.ignore();
}
// In the case of multi-display, boot animation shows on the specified displays
// in addition to the primary display
auto ids = SurfaceComposerClient::getPhysicalDisplayIds();
constexpr uint32_t LAYER_STACK = 0;
for (auto id : physicalDisplayIds) {
if (std::find(ids.begin(), ids.end(), id) != ids.end()) {
sp<IBinder> token = SurfaceComposerClient::getPhysicalDisplayToken(id);
if (token != nullptr)
t.setDisplayLayerStack(token, LAYER_STACK);
}
}
t.setLayerStack(control, LAYER_STACK);
}
t.setLayer(control, 0x40000000)
.apply();
sp<Surface> s = control->getSurface();
// initialize opengl and egl
EGLDisplay display = eglGetDisplay(EGL_DEFAULT_DISPLAY);
eglInitialize(display, nullptr, nullptr);
EGLConfig config = getEglConfig(display);
EGLSurface surface = eglCreateWindowSurface(display, config, s.get(), nullptr);
// Initialize egl context with client version number 2.0.
EGLint contextAttributes[] = {EGL_CONTEXT_CLIENT_VERSION, 2, EGL_NONE};
EGLContext context = eglCreateContext(display, config, nullptr, contextAttributes);
EGLint w, h;
eglQuerySurface(display, surface, EGL_WIDTH, &w);
eglQuerySurface(display, surface, EGL_HEIGHT, &h);
if (eglMakeCurrent(display, surface, surface, context) == EGL_FALSE)
return NO_INIT;
mDisplay = display;
mContext = context;
mSurface = surface;
mWidth = w;
mHeight = h;
mFlingerSurfaceControl = control;
mFlingerSurface = s;
mTargetInset = -1;
projectSceneToWindow();
// Register a display event receiver
mDisplayEventReceiver = std::make_unique<DisplayEventReceiver>();
status_t status = mDisplayEventReceiver->initCheck();
SLOGE_IF(status != NO_ERROR, "Initialization of DisplayEventReceiver failed with status: %d",
status);
mLooper->addFd(mDisplayEventReceiver->getFd(), 0, Looper::EVENT_INPUT,
new DisplayEventCallback(this), nullptr);
return NO_ERROR;
}
void BootAnimation::projectSceneToWindow() {
glViewport(0, 0, mWidth, mHeight);
glScissor(0, 0, mWidth, mHeight);
}
void BootAnimation::resizeSurface(int newWidth, int newHeight) {
// We assume this function is called on the animation thread.
if (newWidth == mWidth && newHeight == mHeight) {
return;
}
SLOGV("Resizing the boot animation surface to %d %d", newWidth, newHeight);
eglMakeCurrent(mDisplay, EGL_NO_SURFACE, EGL_NO_SURFACE, EGL_NO_CONTEXT);
eglDestroySurface(mDisplay, mSurface);
const auto limitedSize = limitSurfaceSize(newWidth, newHeight);
mWidth = limitedSize.width;
mHeight = limitedSize.height;
SurfaceComposerClient::Transaction t;
t.setSize(mFlingerSurfaceControl, mWidth, mHeight);
t.apply();
EGLConfig config = getEglConfig(mDisplay);
EGLSurface surface = eglCreateWindowSurface(mDisplay, config, mFlingerSurface.get(), nullptr);
if (eglMakeCurrent(mDisplay, surface, surface, mContext) == EGL_FALSE) {
SLOGE("Can't make the new surface current. Error %d", eglGetError());
return;
}
projectSceneToWindow();
mSurface = surface;
}
bool BootAnimation::preloadAnimation() {
findBootAnimationFile();
if (!mZipFileName.isEmpty()) {
mAnimation = loadAnimation(mZipFileName);
return (mAnimation != nullptr);
}
return false;
}
bool BootAnimation::findBootAnimationFileInternal(const std::vector<std::string> &files) {
for (const std::string& f : files) {
if (access(f.c_str(), R_OK) == 0) {
mZipFileName = f.c_str();
return true;
}
}
return false;
}
void BootAnimation::findBootAnimationFile() {
// If the device has encryption turned on or is in process
// of being encrypted we show the encrypted boot animation.
char decrypt[PROPERTY_VALUE_MAX];
property_get("vold.decrypt", decrypt, "");
bool encryptedAnimation = atoi(decrypt) != 0 ||
!strcmp("trigger_restart_min_framework", decrypt);
if (!mShuttingDown && encryptedAnimation) {
static const std::vector<std::string> encryptedBootFiles = {
PRODUCT_ENCRYPTED_BOOTANIMATION_FILE, SYSTEM_ENCRYPTED_BOOTANIMATION_FILE,
};
if (findBootAnimationFileInternal(encryptedBootFiles)) {
return;
}
}
const bool playDarkAnim = android::base::GetIntProperty("ro.boot.theme", 0) == 1;
static const std::vector<std::string> bootFiles = {
APEX_BOOTANIMATION_FILE, playDarkAnim ? PRODUCT_BOOTANIMATION_DARK_FILE : PRODUCT_BOOTANIMATION_FILE,
OEM_BOOTANIMATION_FILE, SYSTEM_BOOTANIMATION_FILE
};
static const std::vector<std::string> shutdownFiles = {
PRODUCT_SHUTDOWNANIMATION_FILE, OEM_SHUTDOWNANIMATION_FILE, SYSTEM_SHUTDOWNANIMATION_FILE, ""
};
static const std::vector<std::string> userspaceRebootFiles = {
PRODUCT_USERSPACE_REBOOT_ANIMATION_FILE, OEM_USERSPACE_REBOOT_ANIMATION_FILE,
SYSTEM_USERSPACE_REBOOT_ANIMATION_FILE,
};
if (android::base::GetBoolProperty("sys.init.userspace_reboot.in_progress", false)) {
findBootAnimationFileInternal(userspaceRebootFiles);
} else if (mShuttingDown) {
findBootAnimationFileInternal(shutdownFiles);
} else {
findBootAnimationFileInternal(bootFiles);
}
}
GLuint compileShader(GLenum shaderType, const GLchar *source) {
GLuint shader = glCreateShader(shaderType);
glShaderSource(shader, 1, &source, 0);
glCompileShader(shader);
GLint isCompiled = 0;
glGetShaderiv(shader, GL_COMPILE_STATUS, &isCompiled);
if (isCompiled == GL_FALSE) {
SLOGE("Compile shader failed. Shader type: %d", shaderType);
GLint maxLength = 0;
glGetShaderiv(shader, GL_INFO_LOG_LENGTH, &maxLength);
std::vector<GLchar> errorLog(maxLength);
glGetShaderInfoLog(shader, maxLength, &maxLength, &errorLog[0]);
SLOGE("Shader compilation error: %s", &errorLog[0]);
return 0;
}
return shader;
}
GLuint linkShader(GLuint vertexShader, GLuint fragmentShader) {
GLuint program = glCreateProgram();
glAttachShader(program, vertexShader);
glAttachShader(program, fragmentShader);
glLinkProgram(program);
GLint isLinked = 0;
glGetProgramiv(program, GL_LINK_STATUS, (int *)&isLinked);
if (isLinked == GL_FALSE) {
SLOGE("Linking shader failed. Shader handles: vert %d, frag %d",
vertexShader, fragmentShader);
return 0;
}
return program;
}
void BootAnimation::initShaders() {
bool dynamicColoringEnabled = mAnimation != nullptr && mAnimation->dynamicColoringEnabled;
GLuint vertexShader = compileShader(GL_VERTEX_SHADER, (const GLchar *)VERTEX_SHADER_SOURCE);
GLuint imageFragmentShader =
compileShader(GL_FRAGMENT_SHADER, dynamicColoringEnabled
? (const GLchar *)IMAGE_FRAG_DYNAMIC_COLORING_SHADER_SOURCE
: (const GLchar *)IMAGE_FRAG_SHADER_SOURCE);
GLuint textFragmentShader =
compileShader(GL_FRAGMENT_SHADER, (const GLchar *)TEXT_FRAG_SHADER_SOURCE);
// Initialize image shader.
mImageShader = linkShader(vertexShader, imageFragmentShader);
GLint positionLocation = glGetAttribLocation(mImageShader, A_POSITION);
GLint uvLocation = glGetAttribLocation(mImageShader, A_UV);
mImageTextureLocation = glGetUniformLocation(mImageShader, U_TEXTURE);
mImageFadeLocation = glGetUniformLocation(mImageShader, U_FADE);
glEnableVertexAttribArray(positionLocation);
glVertexAttribPointer(positionLocation, 2, GL_FLOAT, GL_FALSE, 0, quadPositions);
glVertexAttribPointer(uvLocation, 2, GL_FLOAT, GL_FALSE, 0, quadUVs);
glEnableVertexAttribArray(uvLocation);
// Initialize text shader.
mTextShader = linkShader(vertexShader, textFragmentShader);
positionLocation = glGetAttribLocation(mTextShader, A_POSITION);
uvLocation = glGetAttribLocation(mTextShader, A_UV);
mTextTextureLocation = glGetUniformLocation(mTextShader, U_TEXTURE);
mTextCropAreaLocation = glGetUniformLocation(mTextShader, U_CROP_AREA);
glEnableVertexAttribArray(positionLocation);
glVertexAttribPointer(positionLocation, 2, GL_FLOAT, GL_FALSE, 0, quadPositions);
glVertexAttribPointer(uvLocation, 2, GL_FLOAT, GL_FALSE, 0, quadUVs);
glEnableVertexAttribArray(uvLocation);
}
bool BootAnimation::threadLoop() {
bool result;
initShaders();
// We have no bootanimation file, so we use the stock android logo
// animation.
if (mZipFileName.isEmpty()) {
result = android();
} else {
result = movie();
}
mCallbacks->shutdown();
eglMakeCurrent(mDisplay, EGL_NO_SURFACE, EGL_NO_SURFACE, EGL_NO_CONTEXT);
eglDestroyContext(mDisplay, mContext);
eglDestroySurface(mDisplay, mSurface);
mFlingerSurface.clear();
mFlingerSurfaceControl.clear();
eglTerminate(mDisplay);
eglReleaseThread();
IPCThreadState::self()->stopProcess();
return result;
}
bool BootAnimation::android() {
glActiveTexture(GL_TEXTURE0);
SLOGD("%sAnimationShownTiming start time: %" PRId64 "ms", mShuttingDown ? "Shutdown" : "Boot",
elapsedRealtime());
initTexture(&mAndroid[0], mAssets, "images/android-logo-mask.png");
initTexture(&mAndroid[1], mAssets, "images/android-logo-shine.png");
mCallbacks->init({});
// clear screen
glDisable(GL_DITHER);
glDisable(GL_SCISSOR_TEST);
glClearColor(0,0,0,1);
glClear(GL_COLOR_BUFFER_BIT);
eglSwapBuffers(mDisplay, mSurface);
// Blend state
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
const nsecs_t startTime = systemTime();
do {
processDisplayEvents();
const GLint xc = (mWidth - mAndroid[0].w) / 2;
const GLint yc = (mHeight - mAndroid[0].h) / 2;
const Rect updateRect(xc, yc, xc + mAndroid[0].w, yc + mAndroid[0].h);
glScissor(updateRect.left, mHeight - updateRect.bottom, updateRect.width(),
updateRect.height());
nsecs_t now = systemTime();
double time = now - startTime;
float t = 4.0f * float(time / us2ns(16667)) / mAndroid[1].w;
GLint offset = (1 - (t - floorf(t))) * mAndroid[1].w;
GLint x = xc - offset;
glDisable(GL_SCISSOR_TEST);
glClear(GL_COLOR_BUFFER_BIT);
glEnable(GL_SCISSOR_TEST);
glDisable(GL_BLEND);
glBindTexture(GL_TEXTURE_2D, mAndroid[1].name);
drawTexturedQuad(x, yc, mAndroid[1].w, mAndroid[1].h);
drawTexturedQuad(x + mAndroid[1].w, yc, mAndroid[1].w, mAndroid[1].h);
glEnable(GL_BLEND);
glBindTexture(GL_TEXTURE_2D, mAndroid[0].name);
drawTexturedQuad(xc, yc, mAndroid[0].w, mAndroid[0].h);
EGLBoolean res = eglSwapBuffers(mDisplay, mSurface);
if (res == EGL_FALSE)
break;
// 12fps: don't animate too fast to preserve CPU
const nsecs_t sleepTime = 83333 - ns2us(systemTime() - now);
if (sleepTime > 0)
usleep(sleepTime);
checkExit();
} while (!exitPending());
glDeleteTextures(1, &mAndroid[0].name);
glDeleteTextures(1, &mAndroid[1].name);
return false;
}
void BootAnimation::checkExit() {
// Allow surface flinger to gracefully request shutdown
char value[PROPERTY_VALUE_MAX];
property_get(EXIT_PROP_NAME, value, "0");
int exitnow = atoi(value);
if (exitnow) {
requestExit();
}
}
bool BootAnimation::validClock(const Animation::Part& part) {
return part.clockPosX != TEXT_MISSING_VALUE && part.clockPosY != TEXT_MISSING_VALUE;
}
bool parseTextCoord(const char* str, int* dest) {
if (strcmp("c", str) == 0) {
*dest = TEXT_CENTER_VALUE;
return true;
}
char* end;
int val = (int) strtol(str, &end, 0);
if (end == str || *end != '\0' || val == INT_MAX || val == INT_MIN) {
return false;
}
*dest = val;
return true;
}
// Parse two position coordinates. If only string is non-empty, treat it as the y value.
void parsePosition(const char* str1, const char* str2, int* x, int* y) {
bool success = false;
if (strlen(str1) == 0) { // No values were specified
// success = false
} else if (strlen(str2) == 0) { // we have only one value
if (parseTextCoord(str1, y)) {
*x = TEXT_CENTER_VALUE;
success = true;
}
} else {
if (parseTextCoord(str1, x) && parseTextCoord(str2, y)) {
success = true;
}
}
if (!success) {
*x = TEXT_MISSING_VALUE;
*y = TEXT_MISSING_VALUE;
}
}
// Parse a color represented as an HTML-style 'RRGGBB' string: each pair of
// characters in str is a hex number in [0, 255], which are converted to
// floating point values in the range [0.0, 1.0] and placed in the
// corresponding elements of color.
//
// If the input string isn't valid, parseColor returns false and color is
// left unchanged.
static bool parseColor(const char str[7], float color[3]) {
float tmpColor[3];
for (int i = 0; i < 3; i++) {
int val = 0;
for (int j = 0; j < 2; j++) {
val *= 16;
char c = str[2*i + j];
if (c >= '0' && c <= '9') val += c - '0';
else if (c >= 'A' && c <= 'F') val += (c - 'A') + 10;
else if (c >= 'a' && c <= 'f') val += (c - 'a') + 10;
else return false;
}
tmpColor[i] = static_cast<float>(val) / 255.0f;
}
memcpy(color, tmpColor, sizeof(tmpColor));
return true;
}
// Parse a color represented as a signed decimal int string.
// E.g. "-2757722" (whose hex 2's complement is 0xFFD5EBA6).
// If the input color string is empty, set color with values in defaultColor.
static void parseColorDecimalString(const std::string& colorString,
float color[3], float defaultColor[3]) {
if (colorString == "") {
memcpy(color, defaultColor, sizeof(float) * 3);
return;
}
int colorInt = atoi(colorString.c_str());
color[0] = ((float)((colorInt >> 16) & 0xFF)) / 0xFF; // r
color[1] = ((float)((colorInt >> 8) & 0xFF)) / 0xFF; // g
color[2] = ((float)(colorInt & 0xFF)) / 0xFF; // b
}
static bool readFile(ZipFileRO* zip, const char* name, String8& outString) {
ZipEntryRO entry = zip->findEntryByName(name);
SLOGE_IF(!entry, "couldn't find %s", name);
if (!entry) {
return false;
}
FileMap* entryMap = zip->createEntryFileMap(entry);
zip->releaseEntry(entry);
SLOGE_IF(!entryMap, "entryMap is null");
if (!entryMap) {
return false;
}
outString.setTo((char const*)entryMap->getDataPtr(), entryMap->getDataLength());
delete entryMap;
return true;
}
// The font image should be a 96x2 array of character images. The
// columns are the printable ASCII characters 0x20 - 0x7f. The
// top row is regular text; the bottom row is bold.
status_t BootAnimation::initFont(Font* font, const char* fallback) {
status_t status = NO_ERROR;
if (font->map != nullptr) {
glGenTextures(1, &font->texture.name);
glBindTexture(GL_TEXTURE_2D, font->texture.name);
status = initTexture(font->map, &font->texture.w, &font->texture.h);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
} else if (fallback != nullptr) {
status = initTexture(&font->texture, mAssets, fallback);
} else {
return NO_INIT;
}
if (status == NO_ERROR) {
font->char_width = font->texture.w / FONT_NUM_COLS;
font->char_height = font->texture.h / FONT_NUM_ROWS / 2; // There are bold and regular rows
}
return status;
}
void BootAnimation::drawText(const char* str, const Font& font, bool bold, int* x, int* y) {
glEnable(GL_BLEND); // Allow us to draw on top of the animation
glBindTexture(GL_TEXTURE_2D, font.texture.name);
glUseProgram(mTextShader);
glUniform1i(mTextTextureLocation, 0);
const int len = strlen(str);
const int strWidth = font.char_width * len;
if (*x == TEXT_CENTER_VALUE) {
*x = (mWidth - strWidth) / 2;
} else if (*x < 0) {
*x = mWidth + *x - strWidth;
}
if (*y == TEXT_CENTER_VALUE) {
*y = (mHeight - font.char_height) / 2;
} else if (*y < 0) {
*y = mHeight + *y - font.char_height;
}
for (int i = 0; i < len; i++) {
char c = str[i];
if (c < FONT_BEGIN_CHAR || c > FONT_END_CHAR) {
c = '?';
}
// Crop the texture to only the pixels in the current glyph
const int charPos = (c - FONT_BEGIN_CHAR); // Position in the list of valid characters
const int row = charPos / FONT_NUM_COLS;
const int col = charPos % FONT_NUM_COLS;
// Bold fonts are expected in the second half of each row.
float v0 = (row + (bold ? 0.5f : 0.0f)) / FONT_NUM_ROWS;
float u0 = ((float)col) / FONT_NUM_COLS;
float v1 = v0 + 1.0f / FONT_NUM_ROWS / 2;
float u1 = u0 + 1.0f / FONT_NUM_COLS;
glUniform4f(mTextCropAreaLocation, u0, v0, u1, v1);
drawTexturedQuad(*x, *y, font.char_width, font.char_height);
*x += font.char_width;
}
glDisable(GL_BLEND); // Return to the animation's default behaviour
glBindTexture(GL_TEXTURE_2D, 0);
}
// We render 12 or 24 hour time.
void BootAnimation::drawClock(const Font& font, const int xPos, const int yPos) {
static constexpr char TIME_FORMAT_12[] = "%l:%M";
static constexpr char TIME_FORMAT_24[] = "%H:%M";
static constexpr int TIME_LENGTH = 6;
time_t rawtime;
time(&rawtime);
struct tm* timeInfo = localtime(&rawtime);
char timeBuff[TIME_LENGTH];
const char* timeFormat = mTimeFormat12Hour ? TIME_FORMAT_12 : TIME_FORMAT_24;
size_t length = strftime(timeBuff, TIME_LENGTH, timeFormat, timeInfo);
if (length != TIME_LENGTH - 1) {
SLOGE("Couldn't format time; abandoning boot animation clock");
mClockEnabled = false;
return;
}
char* out = timeBuff[0] == ' ' ? &timeBuff[1] : &timeBuff[0];
int x = xPos;
int y = yPos;
drawText(out, font, false, &x, &y);
}
void BootAnimation::drawProgress(int percent, const Font& font, const int xPos, const int yPos) {
static constexpr int PERCENT_LENGTH = 5;
char percentBuff[PERCENT_LENGTH];
// ';' has the ascii code just after ':', and the font resource contains '%'
// for that ascii code.
sprintf(percentBuff, "%d;", percent);
int x = xPos;
int y = yPos;
drawText(percentBuff, font, false, &x, &y);
}
bool BootAnimation::parseAnimationDesc(Animation& animation) {
String8 desString;
if (!readFile(animation.zip, "desc.txt", desString)) {
return false;
}
char const* s = desString.string();
std::string dynamicColoringPartName = "";
bool postDynamicColoring = false;
// Parse the description file
for (;;) {
const char* endl = strstr(s, "\n");
if (endl == nullptr) break;
String8 line(s, endl - s);
const char* l = line.string();
int fps = 0;
int width = 0;
int height = 0;
int count = 0;
int pause = 0;
int progress = 0;
int framesToFadeCount = 0;
int colorTransitionStart = 0;
int colorTransitionEnd = 0;
char path[ANIM_ENTRY_NAME_MAX];
char color[7] = "000000"; // default to black if unspecified
char clockPos1[TEXT_POS_LEN_MAX + 1] = "";
char clockPos2[TEXT_POS_LEN_MAX + 1] = "";
char dynamicColoringPartNameBuffer[ANIM_ENTRY_NAME_MAX];
char pathType;
// start colors default to black if unspecified
char start_color_0[7] = "000000";
char start_color_1[7] = "000000";
char start_color_2[7] = "000000";
char start_color_3[7] = "000000";
int nextReadPos;
int topLineNumbers = sscanf(l, "%d %d %d %d", &width, &height, &fps, &progress);
if (topLineNumbers == 3 || topLineNumbers == 4) {
// SLOGD("> w=%d, h=%d, fps=%d, progress=%d", width, height, fps, progress);
animation.width = width;
animation.height = height;
animation.fps = fps;
if (topLineNumbers == 4) {
animation.progressEnabled = (progress != 0);
} else {
animation.progressEnabled = false;
}
} else if (sscanf(l, "dynamic_colors %" STRTO(ANIM_PATH_MAX) "s #%6s #%6s #%6s #%6s %d %d",
dynamicColoringPartNameBuffer,
start_color_0, start_color_1, start_color_2, start_color_3,
&colorTransitionStart, &colorTransitionEnd)) {
animation.dynamicColoringEnabled = true;
parseColor(start_color_0, animation.startColors[0]);
parseColor(start_color_1, animation.startColors[1]);
parseColor(start_color_2, animation.startColors[2]);
parseColor(start_color_3, animation.startColors[3]);
animation.colorTransitionStart = colorTransitionStart;
animation.colorTransitionEnd = colorTransitionEnd;
dynamicColoringPartName = std::string(dynamicColoringPartNameBuffer);
} else if (sscanf(l, "%c %d %d %" STRTO(ANIM_PATH_MAX) "s%n",
&pathType, &count, &pause, path, &nextReadPos) >= 4) {
if (pathType == 'f') {
sscanf(l + nextReadPos, " %d #%6s %16s %16s", &framesToFadeCount, color, clockPos1,
clockPos2);
} else {
sscanf(l + nextReadPos, " #%6s %16s %16s", color, clockPos1, clockPos2);
}
// SLOGD("> type=%c, count=%d, pause=%d, path=%s, framesToFadeCount=%d, color=%s, "
// "clockPos1=%s, clockPos2=%s",
// pathType, count, pause, path, framesToFadeCount, color, clockPos1, clockPos2);
Animation::Part part;
if (path == dynamicColoringPartName) {
// Part is specified to use dynamic coloring.
part.useDynamicColoring = true;
part.postDynamicColoring = false;
postDynamicColoring = true;
} else {
// Part does not use dynamic coloring.
part.useDynamicColoring = false;
part.postDynamicColoring = postDynamicColoring;
}
part.playUntilComplete = pathType == 'c';
part.framesToFadeCount = framesToFadeCount;
part.count = count;
part.pause = pause;
part.path = path;
part.audioData = nullptr;
part.animation = nullptr;
if (!parseColor(color, part.backgroundColor)) {
SLOGE("> invalid color '#%s'", color);
part.backgroundColor[0] = 0.0f;
part.backgroundColor[1] = 0.0f;
part.backgroundColor[2] = 0.0f;
}
parsePosition(clockPos1, clockPos2, &part.clockPosX, &part.clockPosY);
animation.parts.add(part);
}
else if (strcmp(l, "$SYSTEM") == 0) {
// SLOGD("> SYSTEM");
Animation::Part part;
part.playUntilComplete = false;
part.framesToFadeCount = 0;
part.count = 1;
part.pause = 0;
part.audioData = nullptr;
part.animation = loadAnimation(String8(SYSTEM_BOOTANIMATION_FILE));
if (part.animation != nullptr)
animation.parts.add(part);
}
s = ++endl;
}
return true;
}
bool BootAnimation::preloadZip(Animation& animation) {
// read all the data structures
const size_t pcount = animation.parts.size();
void *cookie = nullptr;
ZipFileRO* zip = animation.zip;
if (!zip->startIteration(&cookie)) {
return false;
}
ZipEntryRO entry;
char name[ANIM_ENTRY_NAME_MAX];
while ((entry = zip->nextEntry(cookie)) != nullptr) {
const int foundEntryName = zip->getEntryFileName(entry, name, ANIM_ENTRY_NAME_MAX);
if (foundEntryName > ANIM_ENTRY_NAME_MAX || foundEntryName == -1) {
SLOGE("Error fetching entry file name");
continue;
}
const String8 entryName(name);
const String8 path(entryName.getPathDir());
const String8 leaf(entryName.getPathLeaf());
if (leaf.size() > 0) {
if (entryName == CLOCK_FONT_ZIP_NAME) {
FileMap* map = zip->createEntryFileMap(entry);
if (map) {
animation.clockFont.map = map;
}
continue;
}
if (entryName == PROGRESS_FONT_ZIP_NAME) {
FileMap* map = zip->createEntryFileMap(entry);
if (map) {
animation.progressFont.map = map;
}
continue;
}
for (size_t j = 0; j < pcount; j++) {
if (path == animation.parts[j].path) {
uint16_t method;
// supports only stored png files
if (zip->getEntryInfo(entry, &method, nullptr, nullptr, nullptr, nullptr, nullptr)) {
if (method == ZipFileRO::kCompressStored) {
FileMap* map = zip->createEntryFileMap(entry);
if (map) {
Animation::Part& part(animation.parts.editItemAt(j));
if (leaf == "audio.wav") {
// a part may have at most one audio file
part.audioData = (uint8_t *)map->getDataPtr();
part.audioLength = map->getDataLength();
} else if (leaf == "trim.txt") {
part.trimData.setTo((char const*)map->getDataPtr(),
map->getDataLength());
} else {
Animation::Frame frame;
frame.name = leaf;
frame.map = map;
frame.trimWidth = animation.width;
frame.trimHeight = animation.height;
frame.trimX = 0;
frame.trimY = 0;
part.frames.add(frame);
}
}
} else {
SLOGE("bootanimation.zip is compressed; must be only stored");
}
}
}
}
}
}
// If there is trimData present, override the positioning defaults.
for (Animation::Part& part : animation.parts) {
const char* trimDataStr = part.trimData.string();
for (size_t frameIdx = 0; frameIdx < part.frames.size(); frameIdx++) {
const char* endl = strstr(trimDataStr, "\n");
// No more trimData for this part.
if (endl == nullptr) {
break;
}
String8 line(trimDataStr, endl - trimDataStr);
const char* lineStr = line.string();
trimDataStr = ++endl;
int width = 0, height = 0, x = 0, y = 0;
if (sscanf(lineStr, "%dx%d+%d+%d", &width, &height, &x, &y) == 4) {
Animation::Frame& frame(part.frames.editItemAt(frameIdx));
frame.trimWidth = width;
frame.trimHeight = height;
frame.trimX = x;
frame.trimY = y;
} else {
SLOGE("Error parsing trim.txt, line: %s", lineStr);
break;
}
}
}
zip->endIteration(cookie);
return true;
}
bool BootAnimation::movie() {
if (mAnimation == nullptr) {
mAnimation = loadAnimation(mZipFileName);
}
if (mAnimation == nullptr)
return false;
// mCallbacks->init() may get called recursively,
// this loop is needed to get the same results
for (const Animation::Part& part : mAnimation->parts) {
if (part.animation != nullptr) {
mCallbacks->init(part.animation->parts);
}
}
mCallbacks->init(mAnimation->parts);
bool anyPartHasClock = false;
for (size_t i=0; i < mAnimation->parts.size(); i++) {
if(validClock(mAnimation->parts[i])) {
anyPartHasClock = true;
break;
}
}
if (!anyPartHasClock) {
mClockEnabled = false;
}
// Check if npot textures are supported
mUseNpotTextures = false;
String8 gl_extensions;
const char* exts = reinterpret_cast<const char*>(glGetString(GL_EXTENSIONS));
if (!exts) {
glGetError();
} else {
gl_extensions.setTo(exts);
if ((gl_extensions.find("GL_ARB_texture_non_power_of_two") != -1) ||
(gl_extensions.find("GL_OES_texture_npot") != -1)) {
mUseNpotTextures = true;
}
}
// Blend required to draw time on top of animation frames.
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
glDisable(GL_DITHER);
glDisable(GL_SCISSOR_TEST);
glDisable(GL_BLEND);
glEnable(GL_TEXTURE_2D);
glBindTexture(GL_TEXTURE_2D, 0);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
bool clockFontInitialized = false;
if (mClockEnabled) {
clockFontInitialized =
(initFont(&mAnimation->clockFont, CLOCK_FONT_ASSET) == NO_ERROR);
mClockEnabled = clockFontInitialized;
}
initFont(&mAnimation->progressFont, PROGRESS_FONT_ASSET);
if (mClockEnabled && !updateIsTimeAccurate()) {
mTimeCheckThread = new TimeCheckThread(this);
mTimeCheckThread->run("BootAnimation::TimeCheckThread", PRIORITY_NORMAL);
}
if (mAnimation != nullptr && mAnimation->dynamicColoringEnabled) {
initDynamicColors();
}
playAnimation(*mAnimation);
if (mTimeCheckThread != nullptr) {
mTimeCheckThread->requestExit();
mTimeCheckThread = nullptr;
}
if (clockFontInitialized) {
glDeleteTextures(1, &mAnimation->clockFont.texture.name);
}
releaseAnimation(mAnimation);
mAnimation = nullptr;
return false;
}
bool BootAnimation::shouldStopPlayingPart(const Animation::Part& part,
const int fadedFramesCount,
const int lastDisplayedProgress) {
// stop playing only if it is time to exit and it's a partial part which has been faded out
return exitPending() && !part.playUntilComplete && fadedFramesCount >= part.framesToFadeCount &&
(lastDisplayedProgress == 0 || lastDisplayedProgress == 100);
}
// Linear mapping from range <a1, a2> to range <b1, b2>
float mapLinear(float x, float a1, float a2, float b1, float b2) {
return b1 + ( x - a1 ) * ( b2 - b1 ) / ( a2 - a1 );
}
void BootAnimation::drawTexturedQuad(float xStart, float yStart, float width, float height) {
// Map coordinates from screen space to world space.
float x0 = mapLinear(xStart, 0, mWidth, -1, 1);
float y0 = mapLinear(yStart, 0, mHeight, -1, 1);
float x1 = mapLinear(xStart + width, 0, mWidth, -1, 1);
float y1 = mapLinear(yStart + height, 0, mHeight, -1, 1);
// Update quad vertex positions.
quadPositions[0] = x0;
quadPositions[1] = y0;
quadPositions[2] = x1;
quadPositions[3] = y0;
quadPositions[4] = x1;
quadPositions[5] = y1;
quadPositions[6] = x1;
quadPositions[7] = y1;
quadPositions[8] = x0;
quadPositions[9] = y1;
quadPositions[10] = x0;
quadPositions[11] = y0;
glDrawArrays(GL_TRIANGLES, 0,
sizeof(quadPositions) / sizeof(quadPositions[0]) / 2);
}
void BootAnimation::initDynamicColors() {
for (int i = 0; i < DYNAMIC_COLOR_COUNT; i++) {
parseColorDecimalString(
android::base::GetProperty("persist.bootanim.color" + std::to_string(i + 1), ""),
mAnimation->endColors[i], mAnimation->startColors[i]);
}
glUseProgram(mImageShader);
SLOGI("[BootAnimation] Dynamically coloring boot animation.");
for (int i = 0; i < DYNAMIC_COLOR_COUNT; i++) {
float *startColor = mAnimation->startColors[i];
float *endColor = mAnimation->endColors[i];
glUniform4f(glGetUniformLocation(mImageShader,
(U_START_COLOR_PREFIX + std::to_string(i)).c_str()),
startColor[0], startColor[1], startColor[2], 1 /* alpha */);
glUniform4f(glGetUniformLocation(mImageShader,
(U_END_COLOR_PREFIX + std::to_string(i)).c_str()),
endColor[0], endColor[1], endColor[2], 1 /* alpha */);
}
mImageColorProgressLocation = glGetUniformLocation(mImageShader, U_COLOR_PROGRESS);
}
bool BootAnimation::playAnimation(const Animation& animation) {
const size_t pcount = animation.parts.size();
nsecs_t frameDuration = s2ns(1) / animation.fps;
SLOGD("%sAnimationShownTiming start time: %" PRId64 "ms", mShuttingDown ? "Shutdown" : "Boot",
elapsedRealtime());
int fadedFramesCount = 0;
int lastDisplayedProgress = 0;
for (size_t i=0 ; i<pcount ; i++) {
const Animation::Part& part(animation.parts[i]);
const size_t fcount = part.frames.size();
// Handle animation package
if (part.animation != nullptr) {
playAnimation(*part.animation);
if (exitPending())
break;
continue; //to next part
}
// process the part not only while the count allows but also if already fading
for (int r=0 ; !part.count || r<part.count || fadedFramesCount > 0 ; r++) {
if (shouldStopPlayingPart(part, fadedFramesCount, lastDisplayedProgress)) break;
mCallbacks->playPart(i, part, r);
glClearColor(
part.backgroundColor[0],
part.backgroundColor[1],
part.backgroundColor[2],
1.0f);
// For the last animation, if we have progress indicator from
// the system, display it.
int currentProgress = android::base::GetIntProperty(PROGRESS_PROP_NAME, 0);
bool displayProgress = animation.progressEnabled &&
(i == (pcount -1)) && currentProgress != 0;
for (size_t j=0 ; j<fcount ; j++) {
if (shouldStopPlayingPart(part, fadedFramesCount, lastDisplayedProgress)) break;
// Color progress is
// - the animation progress, normalized from
// [colorTransitionStart,colorTransitionEnd] to [0, 1] for the dynamic coloring
// part.
// - 0 for parts that come before,
// - 1 for parts that come after.
float colorProgress = part.useDynamicColoring
? fmin(fmax(
((float)j - animation.colorTransitionStart) /
fmax(animation.colorTransitionEnd -
animation.colorTransitionStart, 1.0f), 0.0f), 1.0f)
: (part.postDynamicColoring ? 1 : 0);
processDisplayEvents();
const int animationX = (mWidth - animation.width) / 2;
const int animationY = (mHeight - animation.height) / 2;
const Animation::Frame& frame(part.frames[j]);
nsecs_t lastFrame = systemTime();
if (r > 0) {
glBindTexture(GL_TEXTURE_2D, frame.tid);
} else {
glGenTextures(1, &frame.tid);
glBindTexture(GL_TEXTURE_2D, frame.tid);
int w, h;
// Set decoding option to alpha unpremultiplied so that the R, G, B channels
// of transparent pixels are preserved.
initTexture(frame.map, &w, &h, false /* don't premultiply alpha */);
}
const int xc = animationX + frame.trimX;
const int yc = animationY + frame.trimY;
glClear(GL_COLOR_BUFFER_BIT);
// specify the y center as ceiling((mHeight - frame.trimHeight) / 2)
// which is equivalent to mHeight - (yc + frame.trimHeight)
const int frameDrawY = mHeight - (yc + frame.trimHeight);
float fade = 0;
// if the part hasn't been stopped yet then continue fading if necessary
if (exitPending() && part.hasFadingPhase()) {
fade = static_cast<float>(++fadedFramesCount) / part.framesToFadeCount;
if (fadedFramesCount >= part.framesToFadeCount) {
fadedFramesCount = MAX_FADED_FRAMES_COUNT; // no more fading
}
}
glUseProgram(mImageShader);
glUniform1i(mImageTextureLocation, 0);
glUniform1f(mImageFadeLocation, fade);
if (animation.dynamicColoringEnabled) {
glUniform1f(mImageColorProgressLocation, colorProgress);
}
glEnable(GL_BLEND);
drawTexturedQuad(xc, frameDrawY, frame.trimWidth, frame.trimHeight);
glDisable(GL_BLEND);
if (mClockEnabled && mTimeIsAccurate && validClock(part)) {
drawClock(animation.clockFont, part.clockPosX, part.clockPosY);
}
if (displayProgress) {
int newProgress = android::base::GetIntProperty(PROGRESS_PROP_NAME, 0);
// In case the new progress jumped suddenly, still show an
// increment of 1.
if (lastDisplayedProgress != 100) {
// Artificially sleep 1/10th a second to slow down the animation.
usleep(100000);
if (lastDisplayedProgress < newProgress) {
lastDisplayedProgress++;
}
}
// Put the progress percentage right below the animation.
int posY = animation.height / 3;
int posX = TEXT_CENTER_VALUE;
drawProgress(lastDisplayedProgress, animation.progressFont, posX, posY);
}
handleViewport(frameDuration);
eglSwapBuffers(mDisplay, mSurface);
nsecs_t now = systemTime();
nsecs_t delay = frameDuration - (now - lastFrame);
//SLOGD("%lld, %lld", ns2ms(now - lastFrame), ns2ms(delay));
lastFrame = now;
if (delay > 0) {
struct timespec spec;
spec.tv_sec = (now + delay) / 1000000000;
spec.tv_nsec = (now + delay) % 1000000000;
int err;
do {
err = clock_nanosleep(CLOCK_MONOTONIC, TIMER_ABSTIME, &spec, nullptr);
} while (err<0 && errno == EINTR);
}
checkExit();
}
usleep(part.pause * ns2us(frameDuration));
if (exitPending() && !part.count && mCurrentInset >= mTargetInset &&
!part.hasFadingPhase()) {
if (lastDisplayedProgress != 0 && lastDisplayedProgress != 100) {
android::base::SetProperty(PROGRESS_PROP_NAME, "100");
continue;
}
break; // exit the infinite non-fading part when it has been played at least once
}
}
}
// Free textures created for looping parts now that the animation is done.
for (const Animation::Part& part : animation.parts) {
if (part.count != 1) {
const size_t fcount = part.frames.size();
for (size_t j = 0; j < fcount; j++) {
const Animation::Frame& frame(part.frames[j]);
glDeleteTextures(1, &frame.tid);
}
}
}
return true;
}
void BootAnimation::processDisplayEvents() {
// This will poll mDisplayEventReceiver and if there are new events it'll call
// displayEventCallback synchronously.
mLooper->pollOnce(0);
}
void BootAnimation::handleViewport(nsecs_t timestep) {
if (mShuttingDown || !mFlingerSurfaceControl || mTargetInset == 0) {
return;
}
if (mTargetInset < 0) {
// Poll the amount for the top display inset. This will return -1 until persistent properties
// have been loaded.
mTargetInset = android::base::GetIntProperty("persist.sys.displayinset.top",
-1 /* default */, -1 /* min */, mHeight / 2 /* max */);
}
if (mTargetInset <= 0) {
return;
}
if (mCurrentInset < mTargetInset) {
// After the device boots, the inset will effectively be cropped away. We animate this here.
float fraction = static_cast<float>(mCurrentInset) / mTargetInset;
int interpolatedInset = (cosf((fraction + 1) * M_PI) / 2.0f + 0.5f) * mTargetInset;
SurfaceComposerClient::Transaction()
.setCrop(mFlingerSurfaceControl, Rect(0, interpolatedInset, mWidth, mHeight))
.apply();
} else {
// At the end of the animation, we switch to the viewport that DisplayManager will apply
// later. This changes the coordinate system, and means we must move the surface up by
// the inset amount.
Rect layerStackRect(0, 0, mWidth, mHeight - mTargetInset);
Rect displayRect(0, mTargetInset, mWidth, mHeight);
SurfaceComposerClient::Transaction t;
t.setPosition(mFlingerSurfaceControl, 0, -mTargetInset)
.setCrop(mFlingerSurfaceControl, Rect(0, mTargetInset, mWidth, mHeight));
t.setDisplayProjection(mDisplayToken, ui::ROTATION_0, layerStackRect, displayRect);
t.apply();
mTargetInset = mCurrentInset = 0;
}
int delta = timestep * mTargetInset / ms2ns(200);
mCurrentInset += delta;
}
void BootAnimation::releaseAnimation(Animation* animation) const {
for (Vector<Animation::Part>::iterator it = animation->parts.begin(),
e = animation->parts.end(); it != e; ++it) {
if (it->animation)
releaseAnimation(it->animation);
}
if (animation->zip)
delete animation->zip;
delete animation;
}
BootAnimation::Animation* BootAnimation::loadAnimation(const String8& fn) {
if (mLoadedFiles.indexOf(fn) >= 0) {
SLOGE("File \"%s\" is already loaded. Cyclic ref is not allowed",
fn.string());
return nullptr;
}
ZipFileRO *zip = ZipFileRO::open(fn);
if (zip == nullptr) {
SLOGE("Failed to open animation zip \"%s\": %s",
fn.string(), strerror(errno));
return nullptr;
}
Animation *animation = new Animation;
animation->fileName = fn;
animation->zip = zip;
animation->clockFont.map = nullptr;
mLoadedFiles.add(animation->fileName);
parseAnimationDesc(*animation);
if (!preloadZip(*animation)) {
releaseAnimation(animation);
return nullptr;
}
mLoadedFiles.remove(fn);
return animation;
}
bool BootAnimation::updateIsTimeAccurate() {
static constexpr long long MAX_TIME_IN_PAST = 60000LL * 60LL * 24LL * 30LL; // 30 days
static constexpr long long MAX_TIME_IN_FUTURE = 60000LL * 90LL; // 90 minutes
if (mTimeIsAccurate) {
return true;
}
if (mShuttingDown) return true;
struct stat statResult;
if(stat(TIME_FORMAT_12_HOUR_FLAG_FILE_PATH, &statResult) == 0) {
mTimeFormat12Hour = true;
}
if(stat(ACCURATE_TIME_FLAG_FILE_PATH, &statResult) == 0) {
mTimeIsAccurate = true;
return true;
}
FILE* file = fopen(LAST_TIME_CHANGED_FILE_PATH, "r");
if (file != nullptr) {
long long lastChangedTime = 0;
fscanf(file, "%lld", &lastChangedTime);
fclose(file);
if (lastChangedTime > 0) {
struct timespec now;
clock_gettime(CLOCK_REALTIME, &now);
// Match the Java timestamp format
long long rtcNow = (now.tv_sec * 1000LL) + (now.tv_nsec / 1000000LL);
if (ACCURATE_TIME_EPOCH < rtcNow
&& lastChangedTime > (rtcNow - MAX_TIME_IN_PAST)
&& lastChangedTime < (rtcNow + MAX_TIME_IN_FUTURE)) {
mTimeIsAccurate = true;
}
}
}
return mTimeIsAccurate;
}
BootAnimation::TimeCheckThread::TimeCheckThread(BootAnimation* bootAnimation) : Thread(false),
mInotifyFd(-1), mSystemWd(-1), mTimeWd(-1), mBootAnimation(bootAnimation) {}
BootAnimation::TimeCheckThread::~TimeCheckThread() {
// mInotifyFd may be -1 but that's ok since we're not at risk of attempting to close a valid FD.
close(mInotifyFd);
}
bool BootAnimation::TimeCheckThread::threadLoop() {
bool shouldLoop = doThreadLoop() && !mBootAnimation->mTimeIsAccurate
&& mBootAnimation->mClockEnabled;
if (!shouldLoop) {
close(mInotifyFd);
mInotifyFd = -1;
}
return shouldLoop;
}
bool BootAnimation::TimeCheckThread::doThreadLoop() {
static constexpr int BUFF_LEN (10 * (sizeof(struct inotify_event) + NAME_MAX + 1));
// Poll instead of doing a blocking read so the Thread can exit if requested.
struct pollfd pfd = { mInotifyFd, POLLIN, 0 };
ssize_t pollResult = poll(&pfd, 1, 1000);
if (pollResult == 0) {
return true;
} else if (pollResult < 0) {
SLOGE("Could not poll inotify events");
return false;
}
char buff[BUFF_LEN] __attribute__ ((aligned(__alignof__(struct inotify_event))));;
ssize_t length = read(mInotifyFd, buff, BUFF_LEN);
if (length == 0) {
return true;
} else if (length < 0) {
SLOGE("Could not read inotify events");
return false;
}
const struct inotify_event *event;
for (char* ptr = buff; ptr < buff + length; ptr += sizeof(struct inotify_event) + event->len) {
event = (const struct inotify_event *) ptr;
if (event->wd == mSystemWd && strcmp(SYSTEM_TIME_DIR_NAME, event->name) == 0) {
addTimeDirWatch();
} else if (event->wd == mTimeWd && (strcmp(LAST_TIME_CHANGED_FILE_NAME, event->name) == 0
|| strcmp(ACCURATE_TIME_FLAG_FILE_NAME, event->name) == 0)) {
return !mBootAnimation->updateIsTimeAccurate();
}
}
return true;
}
void BootAnimation::TimeCheckThread::addTimeDirWatch() {
mTimeWd = inotify_add_watch(mInotifyFd, SYSTEM_TIME_DIR_PATH,
IN_CLOSE_WRITE | IN_MOVED_TO | IN_ATTRIB);
if (mTimeWd > 0) {
// No need to watch for the time directory to be created if it already exists
inotify_rm_watch(mInotifyFd, mSystemWd);
mSystemWd = -1;
}
}
status_t BootAnimation::TimeCheckThread::readyToRun() {
mInotifyFd = inotify_init();
if (mInotifyFd < 0) {
SLOGE("Could not initialize inotify fd");
return NO_INIT;
}
mSystemWd = inotify_add_watch(mInotifyFd, SYSTEM_DATA_DIR_PATH, IN_CREATE | IN_ATTRIB);
if (mSystemWd < 0) {
close(mInotifyFd);
mInotifyFd = -1;
SLOGE("Could not add watch for %s: %s", SYSTEM_DATA_DIR_PATH, strerror(errno));
return NO_INIT;
}
addTimeDirWatch();
if (mBootAnimation->updateIsTimeAccurate()) {
close(mInotifyFd);
mInotifyFd = -1;
return ALREADY_EXISTS;
}
return NO_ERROR;
}
// ---------------------------------------------------------------------------
} // namespace android