blob: eab36050896f71a27064997077631d529f9759a9 [file] [log] [blame]
/*
* Copyright (C) 2013 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "RenderProxy.h"
#include <SkBitmap.h>
#include <SkImage.h>
#include <SkPicture.h>
#include <gui/TraceUtils.h>
#include <pthread.h>
#include <ui/GraphicBufferAllocator.h>
#include "DeferredLayerUpdater.h"
#include "DisplayList.h"
#include "Properties.h"
#include "Readback.h"
#include "Rect.h"
#include "WebViewFunctorManager.h"
#include "renderthread/CanvasContext.h"
#include "renderthread/RenderTask.h"
#include "renderthread/RenderThread.h"
#include "utils/Macros.h"
#include "utils/TimeUtils.h"
namespace android {
namespace uirenderer {
namespace renderthread {
RenderProxy::RenderProxy(bool translucent, RenderNode* rootRenderNode,
IContextFactory* contextFactory)
: mRenderThread(RenderThread::getInstance()), mContext(nullptr) {
pid_t uiThreadId = pthread_gettid_np(pthread_self());
pid_t renderThreadId = getRenderThreadTid();
mContext = mRenderThread.queue().runSync([=, this]() -> CanvasContext* {
CanvasContext* context = CanvasContext::create(mRenderThread, translucent, rootRenderNode,
contextFactory, uiThreadId, renderThreadId);
if (context != nullptr) {
mRenderThread.queue().post([=] { context->startHintSession(); });
}
return context;
});
mDrawFrameTask.setContext(&mRenderThread, mContext, rootRenderNode);
}
RenderProxy::~RenderProxy() {
destroyContext();
}
void RenderProxy::destroyContext() {
if (mContext) {
mDrawFrameTask.setContext(nullptr, nullptr, nullptr);
// This is also a fence as we need to be certain that there are no
// outstanding mDrawFrame tasks posted before it is destroyed
mRenderThread.queue().runSync([this]() { delete mContext; });
mContext = nullptr;
}
}
void RenderProxy::setSwapBehavior(SwapBehavior swapBehavior) {
mRenderThread.queue().post([this, swapBehavior]() { mContext->setSwapBehavior(swapBehavior); });
}
bool RenderProxy::loadSystemProperties() {
return mRenderThread.queue().runSync([this]() -> bool {
bool needsRedraw = Properties::load();
if (mContext->profiler().consumeProperties()) {
needsRedraw = true;
}
return needsRedraw;
});
}
void RenderProxy::setName(const char* name) {
// block since name/value pointers owned by caller
// TODO: Support move arguments
mRenderThread.queue().runSync([this, name]() { mContext->setName(std::string(name)); });
}
void RenderProxy::setHardwareBuffer(AHardwareBuffer* buffer) {
if (buffer) {
AHardwareBuffer_acquire(buffer);
}
mRenderThread.queue().post([this, hardwareBuffer = buffer]() mutable {
mContext->setHardwareBuffer(hardwareBuffer);
if (hardwareBuffer) {
AHardwareBuffer_release(hardwareBuffer);
}
});
}
void RenderProxy::setSurface(ANativeWindow* window, bool enableTimeout) {
if (window) { ANativeWindow_acquire(window); }
mRenderThread.queue().post([this, win = window, enableTimeout]() mutable {
mContext->setSurface(win, enableTimeout);
if (win) { ANativeWindow_release(win); }
});
}
void RenderProxy::setSurfaceControl(ASurfaceControl* surfaceControl) {
auto funcs = mRenderThread.getASurfaceControlFunctions();
if (surfaceControl) {
funcs.acquireFunc(surfaceControl);
}
mRenderThread.queue().post([this, control = surfaceControl, funcs]() mutable {
mContext->setSurfaceControl(control);
if (control) {
funcs.releaseFunc(control);
}
});
}
void RenderProxy::allocateBuffers() {
mRenderThread.queue().post([this]() { mContext->allocateBuffers(); });
}
bool RenderProxy::pause() {
return mRenderThread.queue().runSync([this]() -> bool { return mContext->pauseSurface(); });
}
void RenderProxy::setStopped(bool stopped) {
mRenderThread.queue().runSync([this, stopped]() { mContext->setStopped(stopped); });
}
void RenderProxy::setLightAlpha(uint8_t ambientShadowAlpha, uint8_t spotShadowAlpha) {
mRenderThread.queue().post(
[=, this]() { mContext->setLightAlpha(ambientShadowAlpha, spotShadowAlpha); });
}
void RenderProxy::setLightGeometry(const Vector3& lightCenter, float lightRadius) {
mRenderThread.queue().post(
[=, this]() { mContext->setLightGeometry(lightCenter, lightRadius); });
}
void RenderProxy::setOpaque(bool opaque) {
mRenderThread.queue().post([=, this]() { mContext->setOpaque(opaque); });
}
float RenderProxy::setColorMode(ColorMode mode) {
// We only need to figure out what the renderer supports for HDR, otherwise this can stay
// an async call since we already know the return value
if (mode == ColorMode::Hdr || mode == ColorMode::Hdr10) {
return mRenderThread.queue().runSync(
[=, this]() -> float { return mContext->setColorMode(mode); });
} else {
mRenderThread.queue().post([=, this]() { mContext->setColorMode(mode); });
return 1.f;
}
}
void RenderProxy::setRenderSdrHdrRatio(float ratio) {
mDrawFrameTask.setRenderSdrHdrRatio(ratio);
}
int64_t* RenderProxy::frameInfo() {
return mDrawFrameTask.frameInfo();
}
void RenderProxy::forceDrawNextFrame() {
mDrawFrameTask.forceDrawNextFrame();
}
int RenderProxy::syncAndDrawFrame() {
return mDrawFrameTask.drawFrame();
}
void RenderProxy::destroy() {
// destroyCanvasAndSurface() needs a fence as when it returns the
// underlying BufferQueue is going to be released from under
// the render thread.
mRenderThread.queue().runSync([this]() { mContext->destroy(); });
}
void RenderProxy::destroyFunctor(int functor) {
ATRACE_CALL();
RenderThread& thread = RenderThread::getInstance();
thread.queue().post([=]() { WebViewFunctorManager::instance().destroyFunctor(functor); });
}
DeferredLayerUpdater* RenderProxy::createTextureLayer() {
return mRenderThread.queue().runSync([this]() -> auto {
return mContext->createTextureLayer();
});
}
void RenderProxy::buildLayer(RenderNode* node) {
mRenderThread.queue().runSync([&]() { mContext->buildLayer(node); });
}
bool RenderProxy::copyLayerInto(DeferredLayerUpdater* layer, SkBitmap& bitmap) {
ATRACE_NAME("TextureView#getBitmap");
auto& thread = RenderThread::getInstance();
return thread.queue().runSync([&]() -> bool {
return thread.readback().copyLayerInto(layer, &bitmap) == CopyResult::Success;
});
}
void RenderProxy::pushLayerUpdate(DeferredLayerUpdater* layer) {
mDrawFrameTask.pushLayerUpdate(layer);
}
void RenderProxy::cancelLayerUpdate(DeferredLayerUpdater* layer) {
mDrawFrameTask.removeLayerUpdate(layer);
}
void RenderProxy::detachSurfaceTexture(DeferredLayerUpdater* layer) {
return mRenderThread.queue().runSync([&]() { layer->detachSurfaceTexture(); });
}
void RenderProxy::destroyHardwareResources() {
return mRenderThread.queue().runSync([&]() { mContext->destroyHardwareResources(); });
}
void RenderProxy::trimMemory(int level) {
// Avoid creating a RenderThread to do a trimMemory.
if (RenderThread::hasInstance()) {
RenderThread& thread = RenderThread::getInstance();
const auto trimLevel = static_cast<TrimLevel>(level);
thread.queue().post([&thread, trimLevel]() { thread.trimMemory(trimLevel); });
}
}
void RenderProxy::trimCaches(int level) {
// Avoid creating a RenderThread to do a trimMemory.
if (RenderThread::hasInstance()) {
RenderThread& thread = RenderThread::getInstance();
const auto trimLevel = static_cast<CacheTrimLevel>(level);
thread.queue().post([&thread, trimLevel]() { thread.trimCaches(trimLevel); });
}
}
void RenderProxy::purgeCaches() {
if (RenderThread::hasInstance()) {
RenderThread& thread = RenderThread::getInstance();
thread.queue().post([&thread]() {
if (thread.getGrContext()) {
thread.cacheManager().trimMemory(TrimLevel::COMPLETE);
}
});
}
}
void RenderProxy::overrideProperty(const char* name, const char* value) {
// expensive, but block here since name/value pointers owned by caller
RenderThread::getInstance().queue().runSync(
[&]() { Properties::overrideProperty(name, value); });
}
void RenderProxy::fence() {
mRenderThread.queue().runSync([]() {});
}
int RenderProxy::maxTextureSize() {
static int maxTextureSize = RenderThread::getInstance().queue().runSync(
[]() { return DeviceInfo::get()->maxTextureSize(); });
return maxTextureSize;
}
void RenderProxy::stopDrawing() {
mRenderThread.queue().runSync([this]() { mContext->stopDrawing(); });
}
void RenderProxy::notifyFramePending() {
mRenderThread.queue().post([this]() { mContext->notifyFramePending(); });
}
void RenderProxy::notifyCallbackPending() {
mRenderThread.queue().post([this]() { mContext->sendLoadResetHint(); });
}
void RenderProxy::notifyExpensiveFrame() {
mRenderThread.queue().post([this]() { mContext->sendLoadIncreaseHint(); });
}
void RenderProxy::dumpProfileInfo(int fd, int dumpFlags) {
mRenderThread.queue().runSync([&]() {
std::lock_guard lock(mRenderThread.getJankDataMutex());
mContext->profiler().dumpData(fd);
if (dumpFlags & DumpFlags::FrameStats) {
mContext->dumpFrames(fd);
}
if (dumpFlags & DumpFlags::JankStats) {
mRenderThread.globalProfileData()->dump(fd);
}
if (dumpFlags & DumpFlags::Reset) {
mContext->resetFrameStats();
}
});
}
void RenderProxy::resetProfileInfo() {
mRenderThread.queue().runSync([this]() {
std::lock_guard lock(mRenderThread.getJankDataMutex());
mContext->resetFrameStats();
});
}
uint32_t RenderProxy::frameTimePercentile(int percentile) {
return mRenderThread.queue().runSync([&]() -> auto {
std::lock_guard lock(mRenderThread.globalProfileData().getDataMutex());
return mRenderThread.globalProfileData()->findPercentile(percentile);
});
}
void RenderProxy::dumpGraphicsMemory(int fd, bool includeProfileData, bool resetProfile) {
if (RenderThread::hasInstance()) {
auto& thread = RenderThread::getInstance();
thread.queue().runSync([&]() {
thread.dumpGraphicsMemory(fd, includeProfileData);
if (resetProfile) {
thread.globalProfileData()->reset();
}
});
}
if (!Properties::isolatedProcess) {
std::string grallocInfo;
GraphicBufferAllocator::getInstance().dump(grallocInfo);
dprintf(fd, "%s\n", grallocInfo.c_str());
}
}
void RenderProxy::getMemoryUsage(size_t* cpuUsage, size_t* gpuUsage) {
if (RenderThread::hasInstance()) {
auto& thread = RenderThread::getInstance();
thread.queue().runSync([&]() { thread.getMemoryUsage(cpuUsage, gpuUsage); });
}
}
void RenderProxy::setProcessStatsBuffer(int fd) {
auto& rt = RenderThread::getInstance();
rt.queue().post([&rt, fd = dup(fd)]() {
rt.globalProfileData().switchStorageToAshmem(fd);
close(fd);
});
}
void RenderProxy::rotateProcessStatsBuffer() {
auto& rt = RenderThread::getInstance();
rt.queue().post([&rt]() { rt.globalProfileData().rotateStorage(); });
}
int RenderProxy::getRenderThreadTid() {
return mRenderThread.getTid();
}
void RenderProxy::addRenderNode(RenderNode* node, bool placeFront) {
mRenderThread.queue().post([=, this]() { mContext->addRenderNode(node, placeFront); });
}
void RenderProxy::removeRenderNode(RenderNode* node) {
mRenderThread.queue().post([=, this]() { mContext->removeRenderNode(node); });
}
void RenderProxy::drawRenderNode(RenderNode* node) {
mRenderThread.queue().runSync([=, this]() { mContext->prepareAndDraw(node); });
}
void RenderProxy::setContentDrawBounds(int left, int top, int right, int bottom) {
mDrawFrameTask.setContentDrawBounds(left, top, right, bottom);
}
void RenderProxy::setHardwareBufferRenderParams(const HardwareBufferRenderParams& params) {
mDrawFrameTask.setHardwareBufferRenderParams(params);
}
void RenderProxy::setPictureCapturedCallback(
const std::function<void(sk_sp<SkPicture>&&)>& callback) {
mRenderThread.queue().post(
[this, cb = callback]() { mContext->setPictureCapturedCallback(cb); });
}
void RenderProxy::setASurfaceTransactionCallback(
const std::function<bool(int64_t, int64_t, int64_t)>& callback) {
mRenderThread.queue().post(
[this, cb = callback]() { mContext->setASurfaceTransactionCallback(cb); });
}
void RenderProxy::setPrepareSurfaceControlForWebviewCallback(
const std::function<void()>& callback) {
mRenderThread.queue().post(
[this, cb = callback]() { mContext->setPrepareSurfaceControlForWebviewCallback(cb); });
}
void RenderProxy::setFrameCallback(
std::function<std::function<void(bool)>(int32_t, int64_t)>&& callback) {
mDrawFrameTask.setFrameCallback(std::move(callback));
}
void RenderProxy::setFrameCommitCallback(std::function<void(bool)>&& callback) {
mDrawFrameTask.setFrameCommitCallback(std::move(callback));
}
void RenderProxy::setFrameCompleteCallback(std::function<void()>&& callback) {
mDrawFrameTask.setFrameCompleteCallback(std::move(callback));
}
void RenderProxy::addFrameMetricsObserver(FrameMetricsObserver* observerPtr) {
mRenderThread.queue().post([this, observer = sp{observerPtr}]() {
mContext->addFrameMetricsObserver(observer.get());
});
}
void RenderProxy::removeFrameMetricsObserver(FrameMetricsObserver* observerPtr) {
mRenderThread.queue().post([this, observer = sp{observerPtr}]() {
mContext->removeFrameMetricsObserver(observer.get());
});
}
void RenderProxy::setForceDark(ForceDarkType type) {
mRenderThread.queue().post([this, type]() { mContext->setForceDark(type); });
}
void RenderProxy::copySurfaceInto(ANativeWindow* window, std::shared_ptr<CopyRequest>&& request) {
auto& thread = RenderThread::getInstance();
ANativeWindow_acquire(window);
thread.queue().post([&thread, window, request = std::move(request)] {
thread.readback().copySurfaceInto(window, request);
ANativeWindow_release(window);
});
}
void RenderProxy::prepareToDraw(Bitmap& bitmap) {
// If we haven't spun up a hardware accelerated window yet, there's no
// point in precaching these bitmaps as it can't impact jank.
// We also don't know if we even will spin up a hardware-accelerated
// window or not.
if (!RenderThread::hasInstance()) return;
RenderThread* renderThread = &RenderThread::getInstance();
bitmap.ref();
auto task = [renderThread, &bitmap]() {
CanvasContext::prepareToDraw(*renderThread, &bitmap);
bitmap.unref();
};
nsecs_t lastVsync = renderThread->timeLord().latestVsync();
nsecs_t estimatedNextVsync = lastVsync + renderThread->timeLord().frameIntervalNanos();
nsecs_t timeToNextVsync = estimatedNextVsync - systemTime(SYSTEM_TIME_MONOTONIC);
// We expect the UI thread to take 4ms and for RT to be active from VSYNC+4ms to
// VSYNC+12ms or so, so aim for the gap during which RT is expected to
// be idle
// TODO: Make this concept a first-class supported thing? RT could use
// knowledge of pending draws to better schedule this task
if (timeToNextVsync > -6_ms && timeToNextVsync < 1_ms) {
renderThread->queue().postAt(estimatedNextVsync + 8_ms, task);
} else {
renderThread->queue().post(task);
}
}
int RenderProxy::copyHWBitmapInto(Bitmap* hwBitmap, SkBitmap* bitmap) {
ATRACE_NAME("HardwareBitmap readback");
RenderThread& thread = RenderThread::getInstance();
if (gettid() == thread.getTid()) {
// TODO: fix everything that hits this. We should never be triggering a readback ourselves.
return (int)thread.readback().copyHWBitmapInto(hwBitmap, bitmap);
} else {
return thread.queue().runSync(
[&]() -> int { return (int)thread.readback().copyHWBitmapInto(hwBitmap, bitmap); });
}
}
int RenderProxy::copyImageInto(const sk_sp<SkImage>& image, SkBitmap* bitmap) {
RenderThread& thread = RenderThread::getInstance();
if (gettid() == thread.getTid()) {
// TODO: fix everything that hits this. We should never be triggering a readback ourselves.
return (int)thread.readback().copyImageInto(image, bitmap);
} else {
return thread.queue().runSync(
[&]() -> int { return (int)thread.readback().copyImageInto(image, bitmap); });
}
}
void RenderProxy::disableVsync() {
Properties::disableVsync = true;
}
void RenderProxy::preload() {
// Create RenderThread object and start the thread. Then preload Vulkan/EGL driver.
auto& thread = RenderThread::getInstance();
thread.queue().post([&thread]() { thread.preload(); });
}
void RenderProxy::setRtAnimationsEnabled(bool enabled) {
if (RenderThread::hasInstance()) {
RenderThread::getInstance().queue().post(
[enabled]() { Properties::enableRTAnimations = enabled; });
} else {
Properties::enableRTAnimations = enabled;
}
}
} /* namespace renderthread */
} /* namespace uirenderer */
} /* namespace android */