blob: 56b52dc2abe763bea5b25511f45b8c7971087d09 [file] [log] [blame]
/*
* Copyright (C) 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "CanvasContext.h"
#include <apex/window.h>
#include <fcntl.h>
#include <gui/TraceUtils.h>
#include <strings.h>
#include <sys/stat.h>
#include <ui/Fence.h>
#include <algorithm>
#include <cstdint>
#include <cstdlib>
#include <functional>
#include "../Properties.h"
#include "AnimationContext.h"
#include "Frame.h"
#include "LayerUpdateQueue.h"
#include "Properties.h"
#include "RenderThread.h"
#include "hwui/Canvas.h"
#include "pipeline/skia/SkiaOpenGLPipeline.h"
#include "pipeline/skia/SkiaPipeline.h"
#include "pipeline/skia/SkiaVulkanPipeline.h"
#include "thread/CommonPool.h"
#include "utils/GLUtils.h"
#include "utils/TimeUtils.h"
#define LOG_FRAMETIME_MMA 0
#if LOG_FRAMETIME_MMA
static float sBenchMma = 0;
static int sFrameCount = 0;
static const float NANOS_PER_MILLIS_F = 1000000.0f;
#endif
namespace android {
namespace uirenderer {
namespace renderthread {
namespace {
class ScopedActiveContext {
public:
ScopedActiveContext(CanvasContext* context) { sActiveContext = context; }
~ScopedActiveContext() { sActiveContext = nullptr; }
static CanvasContext* getActiveContext() { return sActiveContext; }
private:
static CanvasContext* sActiveContext;
};
CanvasContext* ScopedActiveContext::sActiveContext = nullptr;
} /* namespace */
CanvasContext* CanvasContext::create(RenderThread& thread, bool translucent,
RenderNode* rootRenderNode, IContextFactory* contextFactory,
int32_t uiThreadId, int32_t renderThreadId) {
auto renderType = Properties::getRenderPipelineType();
switch (renderType) {
case RenderPipelineType::SkiaGL:
return new CanvasContext(thread, translucent, rootRenderNode, contextFactory,
std::make_unique<skiapipeline::SkiaOpenGLPipeline>(thread),
uiThreadId, renderThreadId);
case RenderPipelineType::SkiaVulkan:
return new CanvasContext(thread, translucent, rootRenderNode, contextFactory,
std::make_unique<skiapipeline::SkiaVulkanPipeline>(thread),
uiThreadId, renderThreadId);
default:
LOG_ALWAYS_FATAL("canvas context type %d not supported", (int32_t)renderType);
break;
}
return nullptr;
}
void CanvasContext::invokeFunctor(const RenderThread& thread, Functor* functor) {
ATRACE_CALL();
auto renderType = Properties::getRenderPipelineType();
switch (renderType) {
case RenderPipelineType::SkiaGL:
skiapipeline::SkiaOpenGLPipeline::invokeFunctor(thread, functor);
break;
case RenderPipelineType::SkiaVulkan:
skiapipeline::SkiaVulkanPipeline::invokeFunctor(thread, functor);
break;
default:
LOG_ALWAYS_FATAL("canvas context type %d not supported", (int32_t)renderType);
break;
}
}
void CanvasContext::prepareToDraw(const RenderThread& thread, Bitmap* bitmap) {
skiapipeline::SkiaPipeline::prepareToDraw(thread, bitmap);
}
CanvasContext::CanvasContext(RenderThread& thread, bool translucent, RenderNode* rootRenderNode,
IContextFactory* contextFactory,
std::unique_ptr<IRenderPipeline> renderPipeline, pid_t uiThreadId,
pid_t renderThreadId)
: mRenderThread(thread)
, mGenerationID(0)
, mOpaque(!translucent)
, mAnimationContext(contextFactory->createAnimationContext(mRenderThread.timeLord()))
, mJankTracker(&thread.globalProfileData())
, mProfiler(mJankTracker.frames(), thread.timeLord().frameIntervalNanos())
, mContentDrawBounds(0, 0, 0, 0)
, mRenderPipeline(std::move(renderPipeline))
, mHintSessionWrapper(std::make_shared<HintSessionWrapper>(uiThreadId, renderThreadId)) {
mRenderThread.cacheManager().registerCanvasContext(this);
mRenderThread.renderState().registerContextCallback(this);
rootRenderNode->makeRoot();
mRenderNodes.emplace_back(rootRenderNode);
mProfiler.setDensity(DeviceInfo::getDensity());
}
CanvasContext::~CanvasContext() {
destroy();
for (auto& node : mRenderNodes) {
node->clearRoot();
}
mRenderNodes.clear();
mRenderThread.cacheManager().unregisterCanvasContext(this);
mRenderThread.renderState().removeContextCallback(this);
mHintSessionWrapper->destroy();
}
void CanvasContext::addRenderNode(RenderNode* node, bool placeFront) {
int pos = placeFront ? 0 : static_cast<int>(mRenderNodes.size());
node->makeRoot();
mRenderNodes.emplace(mRenderNodes.begin() + pos, node);
}
void CanvasContext::removeRenderNode(RenderNode* node) {
node->clearRoot();
mRenderNodes.erase(std::remove(mRenderNodes.begin(), mRenderNodes.end(), node),
mRenderNodes.end());
}
void CanvasContext::destroy() {
stopDrawing();
setHardwareBuffer(nullptr);
setSurface(nullptr);
setSurfaceControl(nullptr);
freePrefetchedLayers();
destroyHardwareResources();
mAnimationContext->destroy();
mRenderThread.cacheManager().onContextStopped(this);
mHintSessionWrapper->delayedDestroy(mRenderThread, 2_s, mHintSessionWrapper);
}
static void setBufferCount(ANativeWindow* window) {
int query_value;
int err = window->query(window, NATIVE_WINDOW_MIN_UNDEQUEUED_BUFFERS, &query_value);
if (err != 0 || query_value < 0) {
ALOGE("window->query failed: %s (%d) value=%d", strerror(-err), err, query_value);
return;
}
auto min_undequeued_buffers = static_cast<uint32_t>(query_value);
// We only need to set min_undequeued + 2 because the renderahead amount was already factored into the
// query for min_undequeued
int bufferCount = min_undequeued_buffers + 2;
native_window_set_buffer_count(window, bufferCount);
}
void CanvasContext::setHardwareBuffer(AHardwareBuffer* buffer) {
if (mHardwareBuffer) {
AHardwareBuffer_release(mHardwareBuffer);
mHardwareBuffer = nullptr;
}
if (buffer) {
AHardwareBuffer_acquire(buffer);
mHardwareBuffer = buffer;
}
mRenderPipeline->setHardwareBuffer(mHardwareBuffer);
}
void CanvasContext::setSurface(ANativeWindow* window, bool enableTimeout) {
ATRACE_CALL();
startHintSession();
if (window) {
mNativeSurface = std::make_unique<ReliableSurface>(window);
mNativeSurface->init();
if (enableTimeout) {
// TODO: Fix error handling & re-shorten timeout
ANativeWindow_setDequeueTimeout(window, 4000_ms);
}
} else {
mNativeSurface = nullptr;
}
setupPipelineSurface();
}
void CanvasContext::setSurfaceControl(ASurfaceControl* surfaceControl) {
if (surfaceControl == mSurfaceControl) return;
auto funcs = mRenderThread.getASurfaceControlFunctions();
if (surfaceControl == nullptr) {
setASurfaceTransactionCallback(nullptr);
setPrepareSurfaceControlForWebviewCallback(nullptr);
}
if (mSurfaceControl != nullptr) {
funcs.unregisterListenerFunc(this, &onSurfaceStatsAvailable);
funcs.releaseFunc(mSurfaceControl);
}
mSurfaceControl = surfaceControl;
mSurfaceControlGenerationId++;
mExpectSurfaceStats = surfaceControl != nullptr;
if (mExpectSurfaceStats) {
funcs.acquireFunc(mSurfaceControl);
funcs.registerListenerFunc(surfaceControl, mSurfaceControlGenerationId, this,
&onSurfaceStatsAvailable);
}
}
void CanvasContext::setupPipelineSurface() {
bool hasSurface = mRenderPipeline->setSurface(
mNativeSurface ? mNativeSurface->getNativeWindow() : nullptr, mSwapBehavior);
if (mNativeSurface && !mNativeSurface->didSetExtraBuffers()) {
setBufferCount(mNativeSurface->getNativeWindow());
}
mFrameNumber = 0;
if (mNativeSurface != nullptr && hasSurface) {
mHaveNewSurface = true;
mSwapHistory.clear();
// Enable frame stats after the surface has been bound to the appropriate graphics API.
// Order is important when new and old surfaces are the same, because old surface has
// its frame stats disabled automatically.
native_window_enable_frame_timestamps(mNativeSurface->getNativeWindow(), true);
native_window_set_scaling_mode(mNativeSurface->getNativeWindow(),
NATIVE_WINDOW_SCALING_MODE_FREEZE);
} else {
mRenderThread.removeFrameCallback(this);
mGenerationID++;
}
}
void CanvasContext::setSwapBehavior(SwapBehavior swapBehavior) {
mSwapBehavior = swapBehavior;
}
bool CanvasContext::pauseSurface() {
mGenerationID++;
return mRenderThread.removeFrameCallback(this);
}
void CanvasContext::setStopped(bool stopped) {
if (mStopped != stopped) {
mStopped = stopped;
if (mStopped) {
mGenerationID++;
mRenderThread.removeFrameCallback(this);
mRenderPipeline->onStop();
mRenderThread.cacheManager().onContextStopped(this);
} else if (mIsDirty && hasOutputTarget()) {
mRenderThread.postFrameCallback(this);
}
}
}
void CanvasContext::allocateBuffers() {
if (mNativeSurface && Properties::isDrawingEnabled()) {
ANativeWindow_tryAllocateBuffers(mNativeSurface->getNativeWindow());
}
}
void CanvasContext::setLightAlpha(uint8_t ambientShadowAlpha, uint8_t spotShadowAlpha) {
mLightInfo.ambientShadowAlpha = ambientShadowAlpha;
mLightInfo.spotShadowAlpha = spotShadowAlpha;
}
void CanvasContext::setLightGeometry(const Vector3& lightCenter, float lightRadius) {
mLightGeometry.center = lightCenter;
mLightGeometry.radius = lightRadius;
}
void CanvasContext::setOpaque(bool opaque) {
mOpaque = opaque;
}
float CanvasContext::setColorMode(ColorMode mode) {
if (mode != mColorMode) {
mColorMode = mode;
mRenderPipeline->setSurfaceColorProperties(mode);
setupPipelineSurface();
}
switch (mColorMode) {
case ColorMode::Hdr:
return Properties::maxHdrHeadroomOn8bit;
case ColorMode::Hdr10:
return 10.f;
default:
return 1.f;
}
}
float CanvasContext::targetSdrHdrRatio() const {
if (mColorMode == ColorMode::Hdr || mColorMode == ColorMode::Hdr10) {
return mTargetSdrHdrRatio;
} else {
return 1.f;
}
}
void CanvasContext::setTargetSdrHdrRatio(float ratio) {
if (mTargetSdrHdrRatio == ratio) return;
mTargetSdrHdrRatio = ratio;
mRenderPipeline->setTargetSdrHdrRatio(ratio);
// We don't actually but we need to behave as if we do. Specifically we need to ensure
// all buffers in the swapchain are fully re-rendered as any partial updates to them will
// result in mixed target white points which looks really bad & flickery
mHaveNewSurface = true;
}
bool CanvasContext::makeCurrent() {
if (mStopped) return false;
auto result = mRenderPipeline->makeCurrent();
switch (result) {
case MakeCurrentResult::AlreadyCurrent:
return true;
case MakeCurrentResult::Failed:
mHaveNewSurface = true;
setSurface(nullptr);
return false;
case MakeCurrentResult::Succeeded:
mHaveNewSurface = true;
return true;
default:
LOG_ALWAYS_FATAL("unexpected result %d from IRenderPipeline::makeCurrent",
(int32_t)result);
}
return true;
}
static std::optional<SkippedFrameReason> wasSkipped(FrameInfo* info) {
if (info) return info->getSkippedFrameReason();
return std::nullopt;
}
bool CanvasContext::isSwapChainStuffed() {
static const auto SLOW_THRESHOLD = 6_ms;
if (mSwapHistory.size() != mSwapHistory.capacity()) {
// We want at least 3 frames of history before attempting to
// guess if the queue is stuffed
return false;
}
nsecs_t frameInterval = mRenderThread.timeLord().frameIntervalNanos();
auto& swapA = mSwapHistory[0];
// Was there a happy queue & dequeue time? If so, don't
// consider it stuffed
if (swapA.dequeueDuration < SLOW_THRESHOLD && swapA.queueDuration < SLOW_THRESHOLD) {
return false;
}
for (size_t i = 1; i < mSwapHistory.size(); i++) {
auto& swapB = mSwapHistory[i];
// If there's a multi-frameInterval gap we effectively already dropped a frame,
// so consider the queue healthy.
if (std::abs(swapA.swapCompletedTime - swapB.swapCompletedTime) > frameInterval * 3) {
return false;
}
// Was there a happy queue & dequeue time? If so, don't
// consider it stuffed
if (swapB.dequeueDuration < SLOW_THRESHOLD && swapB.queueDuration < SLOW_THRESHOLD) {
return false;
}
swapA = swapB;
}
// All signs point to a stuffed swap chain
ATRACE_NAME("swap chain stuffed");
return true;
}
void CanvasContext::prepareTree(TreeInfo& info, int64_t* uiFrameInfo, int64_t syncQueued,
RenderNode* target) {
mRenderThread.removeFrameCallback(this);
// If the previous frame was dropped we don't need to hold onto it, so
// just keep using the previous frame's structure instead
if (const auto reason = wasSkipped(mCurrentFrameInfo)) {
// Use the oldest skipped frame in case we skip more than a single frame
if (!mSkippedFrameInfo) {
switch (*reason) {
case SkippedFrameReason::AlreadyDrawn:
case SkippedFrameReason::NoBuffer:
case SkippedFrameReason::NoOutputTarget:
mSkippedFrameInfo.emplace();
mSkippedFrameInfo->vsyncId =
mCurrentFrameInfo->get(FrameInfoIndex::FrameTimelineVsyncId);
mSkippedFrameInfo->startTime =
mCurrentFrameInfo->get(FrameInfoIndex::FrameStartTime);
break;
case SkippedFrameReason::DrawingOff:
case SkippedFrameReason::ContextIsStopped:
case SkippedFrameReason::NothingToDraw:
// Do not report those as skipped frames as there was no frame expected to be
// drawn
break;
}
}
} else {
mCurrentFrameInfo = mJankTracker.startFrame();
mSkippedFrameInfo.reset();
}
mCurrentFrameInfo->importUiThreadInfo(uiFrameInfo);
mCurrentFrameInfo->set(FrameInfoIndex::SyncQueued) = syncQueued;
mCurrentFrameInfo->markSyncStart();
info.damageAccumulator = &mDamageAccumulator;
info.layerUpdateQueue = &mLayerUpdateQueue;
info.damageGenerationId = mDamageId++;
info.out.skippedFrameReason = std::nullopt;
mAnimationContext->startFrame(info.mode);
for (const sp<RenderNode>& node : mRenderNodes) {
// Only the primary target node will be drawn full - all other nodes would get drawn in
// real time mode. In case of a window, the primary node is the window content and the other
// node(s) are non client / filler nodes.
info.mode = (node.get() == target ? TreeInfo::MODE_FULL : TreeInfo::MODE_RT_ONLY);
node->prepareTree(info);
GL_CHECKPOINT(MODERATE);
}
mAnimationContext->runRemainingAnimations(info);
GL_CHECKPOINT(MODERATE);
freePrefetchedLayers();
GL_CHECKPOINT(MODERATE);
mIsDirty = true;
if (CC_UNLIKELY(!hasOutputTarget())) {
info.out.skippedFrameReason = SkippedFrameReason::NoOutputTarget;
mCurrentFrameInfo->setSkippedFrameReason(*info.out.skippedFrameReason);
return;
}
if (CC_LIKELY(mSwapHistory.size() && !info.forceDrawFrame)) {
nsecs_t latestVsync = mRenderThread.timeLord().latestVsync();
SwapHistory& lastSwap = mSwapHistory.back();
nsecs_t vsyncDelta = std::abs(lastSwap.vsyncTime - latestVsync);
// The slight fudge-factor is to deal with cases where
// the vsync was estimated due to being slow handling the signal.
// See the logic in TimeLord#computeFrameTimeNanos or in
// Choreographer.java for details on when this happens
if (vsyncDelta < 2_ms) {
// Already drew for this vsync pulse, UI draw request missed
// the deadline for RT animations
info.out.skippedFrameReason = SkippedFrameReason::AlreadyDrawn;
}
} else {
info.out.skippedFrameReason = std::nullopt;
}
// TODO: Do we need to abort out if the backdrop is added but not ready? Should that even
// be an allowable combination?
if (mRenderNodes.size() > 2 && !mRenderNodes[1]->isRenderable()) {
info.out.skippedFrameReason = SkippedFrameReason::NothingToDraw;
}
if (!info.out.skippedFrameReason) {
int err = mNativeSurface->reserveNext();
if (err != OK) {
info.out.skippedFrameReason = SkippedFrameReason::NoBuffer;
mCurrentFrameInfo->setSkippedFrameReason(*info.out.skippedFrameReason);
ALOGW("reserveNext failed, error = %d (%s)", err, strerror(-err));
if (err != TIMED_OUT) {
// A timed out surface can still recover, but assume others are permanently dead.
setSurface(nullptr);
return;
}
}
} else {
mCurrentFrameInfo->setSkippedFrameReason(*info.out.skippedFrameReason);
}
bool postedFrameCallback = false;
if (info.out.hasAnimations || info.out.skippedFrameReason) {
if (CC_UNLIKELY(!Properties::enableRTAnimations)) {
info.out.requiresUiRedraw = true;
}
if (!info.out.requiresUiRedraw) {
// If animationsNeedsRedraw is set don't bother posting for an RT anim
// as we will just end up fighting the UI thread.
mRenderThread.postFrameCallback(this);
postedFrameCallback = true;
}
}
if (!postedFrameCallback &&
info.out.animatedImageDelay != TreeInfo::Out::kNoAnimatedImageDelay) {
// Subtract the time of one frame so it can be displayed on time.
const nsecs_t kFrameTime = mRenderThread.timeLord().frameIntervalNanos();
if (info.out.animatedImageDelay <= kFrameTime) {
mRenderThread.postFrameCallback(this);
} else {
const auto delay = info.out.animatedImageDelay - kFrameTime;
int genId = mGenerationID;
mRenderThread.queue().postDelayed(delay, [this, genId]() {
if (mGenerationID == genId) {
mRenderThread.postFrameCallback(this);
}
});
}
}
}
void CanvasContext::stopDrawing() {
mRenderThread.removeFrameCallback(this);
mAnimationContext->pauseAnimators();
mGenerationID++;
}
void CanvasContext::notifyFramePending() {
ATRACE_CALL();
mRenderThread.pushBackFrameCallback(this);
sendLoadResetHint();
}
Frame CanvasContext::getFrame() {
if (mHardwareBuffer != nullptr) {
return {mBufferParams.getLogicalWidth(), mBufferParams.getLogicalHeight(), 0};
} else {
return mRenderPipeline->getFrame();
}
}
void CanvasContext::draw(bool solelyTextureViewUpdates) {
if (auto grContext = getGrContext()) {
if (grContext->abandoned()) {
if (grContext->isDeviceLost()) {
LOG_ALWAYS_FATAL("Lost GPU device unexpectedly");
return;
}
LOG_ALWAYS_FATAL("GrContext is abandoned at start of CanvasContext::draw");
return;
}
}
SkRect dirty;
mDamageAccumulator.finish(&dirty);
// reset syncDelayDuration each time we draw
nsecs_t syncDelayDuration = mSyncDelayDuration;
nsecs_t idleDuration = mIdleDuration;
mSyncDelayDuration = 0;
mIdleDuration = 0;
const auto skippedFrameReason = [&]() -> std::optional<SkippedFrameReason> {
if (!Properties::isDrawingEnabled()) {
return SkippedFrameReason::DrawingOff;
}
if (dirty.isEmpty() && Properties::skipEmptyFrames && !surfaceRequiresRedraw()) {
return SkippedFrameReason::NothingToDraw;
}
return std::nullopt;
}();
if (skippedFrameReason) {
mCurrentFrameInfo->setSkippedFrameReason(*skippedFrameReason);
if (auto grContext = getGrContext()) {
// Submit to ensure that any texture uploads complete and Skia can
// free its staging buffers.
grContext->flushAndSubmit();
}
// Notify the callbacks, even if there's nothing to draw so they aren't waiting
// indefinitely
waitOnFences();
for (auto& func : mFrameCommitCallbacks) {
std::invoke(func, false /* didProduceBuffer */);
}
mFrameCommitCallbacks.clear();
return;
}
ScopedActiveContext activeContext(this);
mCurrentFrameInfo->set(FrameInfoIndex::FrameInterval) =
mRenderThread.timeLord().frameIntervalNanos();
mCurrentFrameInfo->markIssueDrawCommandsStart();
Frame frame = getFrame();
SkRect windowDirty = computeDirtyRect(frame, &dirty);
ATRACE_FORMAT("Drawing " RECT_STRING, SK_RECT_ARGS(dirty));
IRenderPipeline::DrawResult drawResult;
{
// FrameInfoVisualizer accesses the frame events, which cannot be mutated mid-draw
// or it can lead to memory corruption.
// This lock is overly broad, but it's the quickest fix since this mutex is otherwise
// not visible to IRenderPipeline much less FrameInfoVisualizer. And since this is
// the thread we're primarily concerned about being responsive, this being too broad
// shouldn't pose a performance issue.
std::scoped_lock lock(mFrameMetricsReporterMutex);
drawResult = mRenderPipeline->draw(frame, windowDirty, dirty, mLightGeometry,
&mLayerUpdateQueue, mContentDrawBounds, mOpaque,
mLightInfo, mRenderNodes, &(profiler()), mBufferParams);
}
uint64_t frameCompleteNr = getFrameNumber();
waitOnFences();
if (mNativeSurface) {
// TODO(b/165985262): measure performance impact
const auto vsyncId = mCurrentFrameInfo->get(FrameInfoIndex::FrameTimelineVsyncId);
if (vsyncId != UiFrameInfoBuilder::INVALID_VSYNC_ID) {
const auto inputEventId =
static_cast<int32_t>(mCurrentFrameInfo->get(FrameInfoIndex::InputEventId));
const ANativeWindowFrameTimelineInfo ftl = {
.frameNumber = frameCompleteNr,
.frameTimelineVsyncId = vsyncId,
.inputEventId = inputEventId,
.startTimeNanos = mCurrentFrameInfo->get(FrameInfoIndex::FrameStartTime),
.useForRefreshRateSelection = solelyTextureViewUpdates,
.skippedFrameVsyncId = mSkippedFrameInfo ? mSkippedFrameInfo->vsyncId
: UiFrameInfoBuilder::INVALID_VSYNC_ID,
.skippedFrameStartTimeNanos =
mSkippedFrameInfo ? mSkippedFrameInfo->startTime : 0,
};
native_window_set_frame_timeline_info(mNativeSurface->getNativeWindow(), ftl);
}
}
bool requireSwap = false;
bool didDraw = false;
int error = OK;
bool didSwap = mRenderPipeline->swapBuffers(frame, drawResult, windowDirty, mCurrentFrameInfo,
&requireSwap);
mCurrentFrameInfo->set(FrameInfoIndex::CommandSubmissionCompleted) = std::max(
drawResult.commandSubmissionTime, mCurrentFrameInfo->get(FrameInfoIndex::SwapBuffers));
mIsDirty = false;
if (requireSwap) {
didDraw = true;
// Handle any swapchain errors
error = mNativeSurface->getAndClearError();
if (error == TIMED_OUT) {
// Try again
mRenderThread.postFrameCallback(this);
// But since this frame didn't happen, we need to mark full damage in the swap
// history
didDraw = false;
} else if (error != OK || !didSwap) {
// Unknown error, abandon the surface
setSurface(nullptr);
didDraw = false;
}
SwapHistory& swap = mSwapHistory.next();
if (didDraw) {
swap.damage = windowDirty;
} else {
float max = static_cast<float>(INT_MAX);
swap.damage = SkRect::MakeWH(max, max);
}
swap.swapCompletedTime = systemTime(SYSTEM_TIME_MONOTONIC);
swap.vsyncTime = mRenderThread.timeLord().latestVsync();
if (didDraw) {
nsecs_t dequeueStart =
ANativeWindow_getLastDequeueStartTime(mNativeSurface->getNativeWindow());
if (dequeueStart < mCurrentFrameInfo->get(FrameInfoIndex::SyncStart)) {
// Ignoring dequeue duration as it happened prior to frame render start
// and thus is not part of the frame.
swap.dequeueDuration = 0;
} else {
swap.dequeueDuration =
ANativeWindow_getLastDequeueDuration(mNativeSurface->getNativeWindow());
}
swap.queueDuration =
ANativeWindow_getLastQueueDuration(mNativeSurface->getNativeWindow());
} else {
swap.dequeueDuration = 0;
swap.queueDuration = 0;
}
mCurrentFrameInfo->set(FrameInfoIndex::DequeueBufferDuration) = swap.dequeueDuration;
mCurrentFrameInfo->set(FrameInfoIndex::QueueBufferDuration) = swap.queueDuration;
mHaveNewSurface = false;
mFrameNumber = 0;
} else {
mCurrentFrameInfo->set(FrameInfoIndex::DequeueBufferDuration) = 0;
mCurrentFrameInfo->set(FrameInfoIndex::QueueBufferDuration) = 0;
}
mCurrentFrameInfo->markSwapBuffersCompleted();
#if LOG_FRAMETIME_MMA
float thisFrame = mCurrentFrameInfo->duration(FrameInfoIndex::IssueDrawCommandsStart,
FrameInfoIndex::FrameCompleted) /
NANOS_PER_MILLIS_F;
if (sFrameCount) {
sBenchMma = ((9 * sBenchMma) + thisFrame) / 10;
} else {
sBenchMma = thisFrame;
}
if (++sFrameCount == 10) {
sFrameCount = 1;
ALOGD("Average frame time: %.4f", sBenchMma);
}
#endif
if (didSwap) {
for (auto& func : mFrameCommitCallbacks) {
std::invoke(func, true /* didProduceBuffer */);
}
mFrameCommitCallbacks.clear();
}
if (requireSwap) {
if (mExpectSurfaceStats) {
reportMetricsWithPresentTime();
{ // acquire lock
std::lock_guard lock(mLast4FrameMetricsInfosMutex);
FrameMetricsInfo& next = mLast4FrameMetricsInfos.next();
next.frameInfo = mCurrentFrameInfo;
next.frameNumber = frameCompleteNr;
next.surfaceId = mSurfaceControlGenerationId;
} // release lock
} else {
mCurrentFrameInfo->markFrameCompleted();
mCurrentFrameInfo->set(FrameInfoIndex::GpuCompleted)
= mCurrentFrameInfo->get(FrameInfoIndex::FrameCompleted);
std::scoped_lock lock(mFrameMetricsReporterMutex);
mJankTracker.finishFrame(*mCurrentFrameInfo, mFrameMetricsReporter, frameCompleteNr,
mSurfaceControlGenerationId);
}
}
int64_t intendedVsync = mCurrentFrameInfo->get(FrameInfoIndex::IntendedVsync);
int64_t frameDeadline = mCurrentFrameInfo->get(FrameInfoIndex::FrameDeadline);
int64_t dequeueBufferDuration = mCurrentFrameInfo->get(FrameInfoIndex::DequeueBufferDuration);
mHintSessionWrapper->updateTargetWorkDuration(frameDeadline - intendedVsync);
if (didDraw) {
int64_t frameStartTime = mCurrentFrameInfo->get(FrameInfoIndex::FrameStartTime);
int64_t frameDuration = systemTime(SYSTEM_TIME_MONOTONIC) - frameStartTime;
int64_t actualDuration = frameDuration -
(std::min(syncDelayDuration, mLastDequeueBufferDuration)) -
dequeueBufferDuration - idleDuration;
mHintSessionWrapper->reportActualWorkDuration(actualDuration);
}
mLastDequeueBufferDuration = dequeueBufferDuration;
mRenderThread.cacheManager().onFrameCompleted();
return;
}
void CanvasContext::reportMetricsWithPresentTime() {
{ // acquire lock
std::scoped_lock lock(mFrameMetricsReporterMutex);
if (mFrameMetricsReporter == nullptr) {
return;
}
} // release lock
if (mNativeSurface == nullptr) {
return;
}
ATRACE_CALL();
FrameInfo* forthBehind;
int64_t frameNumber;
int32_t surfaceControlId;
{ // acquire lock
std::scoped_lock lock(mLast4FrameMetricsInfosMutex);
if (mLast4FrameMetricsInfos.size() != mLast4FrameMetricsInfos.capacity()) {
// Not enough frames yet
return;
}
auto frameMetricsInfo = mLast4FrameMetricsInfos.front();
forthBehind = frameMetricsInfo.frameInfo;
frameNumber = frameMetricsInfo.frameNumber;
surfaceControlId = frameMetricsInfo.surfaceId;
} // release lock
nsecs_t presentTime = 0;
native_window_get_frame_timestamps(
mNativeSurface->getNativeWindow(), frameNumber, nullptr /*outRequestedPresentTime*/,
nullptr /*outAcquireTime*/, nullptr /*outLatchTime*/,
nullptr /*outFirstRefreshStartTime*/, nullptr /*outLastRefreshStartTime*/,
nullptr /*outGpuCompositionDoneTime*/, &presentTime, nullptr /*outDequeueReadyTime*/,
nullptr /*outReleaseTime*/);
forthBehind->set(FrameInfoIndex::DisplayPresentTime) = presentTime;
{ // acquire lock
std::scoped_lock lock(mFrameMetricsReporterMutex);
if (mFrameMetricsReporter != nullptr) {
mFrameMetricsReporter->reportFrameMetrics(forthBehind->data(), true /*hasPresentTime*/,
frameNumber, surfaceControlId);
}
} // release lock
}
void CanvasContext::addFrameMetricsObserver(FrameMetricsObserver* observer) {
std::scoped_lock lock(mFrameMetricsReporterMutex);
if (mFrameMetricsReporter.get() == nullptr) {
mFrameMetricsReporter.reset(new FrameMetricsReporter());
}
// We want to make sure we aren't reporting frames that have already been queued by the
// BufferQueueProducer on the rendner thread but are still pending the callback to report their
// their frame metrics.
uint64_t nextFrameNumber = getFrameNumber();
observer->reportMetricsFrom(nextFrameNumber, mSurfaceControlGenerationId);
mFrameMetricsReporter->addObserver(observer);
}
void CanvasContext::removeFrameMetricsObserver(FrameMetricsObserver* observer) {
std::scoped_lock lock(mFrameMetricsReporterMutex);
if (mFrameMetricsReporter.get() != nullptr) {
mFrameMetricsReporter->removeObserver(observer);
if (!mFrameMetricsReporter->hasObservers()) {
mFrameMetricsReporter.reset(nullptr);
}
}
}
FrameInfo* CanvasContext::getFrameInfoFromLast4(uint64_t frameNumber, uint32_t surfaceControlId) {
std::scoped_lock lock(mLast4FrameMetricsInfosMutex);
for (size_t i = 0; i < mLast4FrameMetricsInfos.size(); i++) {
if (mLast4FrameMetricsInfos[i].frameNumber == frameNumber &&
mLast4FrameMetricsInfos[i].surfaceId == surfaceControlId) {
return mLast4FrameMetricsInfos[i].frameInfo;
}
}
return nullptr;
}
void CanvasContext::onSurfaceStatsAvailable(void* context, int32_t surfaceControlId,
ASurfaceControlStats* stats) {
auto* instance = static_cast<CanvasContext*>(context);
const ASurfaceControlFunctions& functions =
instance->mRenderThread.getASurfaceControlFunctions();
nsecs_t gpuCompleteTime = functions.getAcquireTimeFunc(stats);
if (gpuCompleteTime == Fence::SIGNAL_TIME_PENDING) {
gpuCompleteTime = -1;
}
uint64_t frameNumber = functions.getFrameNumberFunc(stats);
FrameInfo* frameInfo = instance->getFrameInfoFromLast4(frameNumber, surfaceControlId);
if (frameInfo != nullptr) {
std::scoped_lock lock(instance->mFrameMetricsReporterMutex);
frameInfo->set(FrameInfoIndex::FrameCompleted) = std::max(gpuCompleteTime,
frameInfo->get(FrameInfoIndex::SwapBuffersCompleted));
frameInfo->set(FrameInfoIndex::GpuCompleted) = std::max(
gpuCompleteTime, frameInfo->get(FrameInfoIndex::CommandSubmissionCompleted));
instance->mJankTracker.finishFrame(*frameInfo, instance->mFrameMetricsReporter, frameNumber,
surfaceControlId);
}
}
// Called by choreographer to do an RT-driven animation
void CanvasContext::doFrame() {
if (!mRenderPipeline->isSurfaceReady()) return;
mIdleDuration =
systemTime(SYSTEM_TIME_MONOTONIC) - mRenderThread.timeLord().computeFrameTimeNanos();
prepareAndDraw(nullptr);
}
SkISize CanvasContext::getNextFrameSize() const {
static constexpr SkISize defaultFrameSize = {INT32_MAX, INT32_MAX};
if (mNativeSurface == nullptr) {
return defaultFrameSize;
}
ANativeWindow* anw = mNativeSurface->getNativeWindow();
SkISize size;
size.fWidth = ANativeWindow_getWidth(anw);
size.fHeight = ANativeWindow_getHeight(anw);
mRenderThread.cacheManager().notifyNextFrameSize(size.fWidth, size.fHeight);
return size;
}
const SkM44& CanvasContext::getPixelSnapMatrix() const {
return mRenderPipeline->getPixelSnapMatrix();
}
void CanvasContext::prepareAndDraw(RenderNode* node) {
int64_t vsyncId = mRenderThread.timeLord().lastVsyncId();
ATRACE_FORMAT("%s %" PRId64, __func__, vsyncId);
nsecs_t vsync = mRenderThread.timeLord().computeFrameTimeNanos();
int64_t frameDeadline = mRenderThread.timeLord().lastFrameDeadline();
int64_t frameInterval = mRenderThread.timeLord().frameIntervalNanos();
int64_t frameInfo[UI_THREAD_FRAME_INFO_SIZE];
UiFrameInfoBuilder(frameInfo)
.addFlag(FrameInfoFlags::RTAnimation)
.setVsync(vsync, vsync, vsyncId, frameDeadline, frameInterval);
TreeInfo info(TreeInfo::MODE_RT_ONLY, *this);
prepareTree(info, frameInfo, systemTime(SYSTEM_TIME_MONOTONIC), node);
if (!info.out.skippedFrameReason) {
draw(info.out.solelyTextureViewUpdates);
} else {
// wait on fences so tasks don't overlap next frame
waitOnFences();
}
}
void CanvasContext::markLayerInUse(RenderNode* node) {
if (mPrefetchedLayers.erase(node)) {
node->decStrong(nullptr);
}
}
void CanvasContext::freePrefetchedLayers() {
if (mPrefetchedLayers.size()) {
for (auto& node : mPrefetchedLayers) {
ALOGW("Incorrectly called buildLayer on View: %s, destroying layer...",
node->getName());
node->destroyLayers();
node->decStrong(nullptr);
}
mPrefetchedLayers.clear();
}
}
void CanvasContext::buildLayer(RenderNode* node) {
ATRACE_CALL();
if (!mRenderPipeline->isContextReady()) return;
// buildLayer() will leave the tree in an unknown state, so we must stop drawing
stopDrawing();
ScopedActiveContext activeContext(this);
TreeInfo info(TreeInfo::MODE_FULL, *this);
info.damageAccumulator = &mDamageAccumulator;
info.layerUpdateQueue = &mLayerUpdateQueue;
info.runAnimations = false;
node->prepareTree(info);
SkRect ignore;
mDamageAccumulator.finish(&ignore);
// Tickle the GENERIC property on node to mark it as dirty for damaging
// purposes when the frame is actually drawn
node->setPropertyFieldsDirty(RenderNode::GENERIC);
mRenderPipeline->renderLayers(mLightGeometry, &mLayerUpdateQueue, mOpaque, mLightInfo);
node->incStrong(nullptr);
mPrefetchedLayers.insert(node);
}
void CanvasContext::destroyHardwareResources() {
stopDrawing();
if (mRenderPipeline->isContextReady()) {
freePrefetchedLayers();
for (const sp<RenderNode>& node : mRenderNodes) {
node->destroyHardwareResources();
}
mRenderPipeline->onDestroyHardwareResources();
}
}
void CanvasContext::onContextDestroyed() {
destroyHardwareResources();
}
DeferredLayerUpdater* CanvasContext::createTextureLayer() {
return mRenderPipeline->createTextureLayer();
}
void CanvasContext::dumpFrames(int fd) {
mJankTracker.dumpStats(fd);
mJankTracker.dumpFrames(fd);
}
void CanvasContext::resetFrameStats() {
mJankTracker.reset();
}
void CanvasContext::setName(const std::string&& name) {
mJankTracker.setDescription(JankTrackerType::Window, std::move(name));
}
void CanvasContext::waitOnFences() {
if (mFrameFences.size()) {
ATRACE_CALL();
for (auto& fence : mFrameFences) {
fence.get();
}
mFrameFences.clear();
}
}
void CanvasContext::enqueueFrameWork(std::function<void()>&& func) {
mFrameFences.push_back(CommonPool::async(std::move(func)));
}
uint64_t CanvasContext::getFrameNumber() {
// mFrameNumber is reset to 0 when the surface changes or we swap buffers
if (mFrameNumber == 0 && mNativeSurface.get()) {
mFrameNumber = ANativeWindow_getNextFrameId(mNativeSurface->getNativeWindow());
}
return mFrameNumber;
}
bool CanvasContext::surfaceRequiresRedraw() {
if (!mNativeSurface) return false;
if (mHaveNewSurface) return true;
ANativeWindow* anw = mNativeSurface->getNativeWindow();
const int width = ANativeWindow_getWidth(anw);
const int height = ANativeWindow_getHeight(anw);
return width != mLastFrameWidth || height != mLastFrameHeight;
}
SkRect CanvasContext::computeDirtyRect(const Frame& frame, SkRect* dirty) {
if (frame.width() != mLastFrameWidth || frame.height() != mLastFrameHeight) {
// can't rely on prior content of window if viewport size changes
dirty->setEmpty();
mLastFrameWidth = frame.width();
mLastFrameHeight = frame.height();
} else if (mHaveNewSurface || frame.bufferAge() == 0) {
// New surface needs a full draw
dirty->setEmpty();
} else {
if (!dirty->isEmpty() && !dirty->intersect(SkRect::MakeIWH(frame.width(), frame.height()))) {
ALOGW("Dirty " RECT_STRING " doesn't intersect with 0 0 %d %d ?", SK_RECT_ARGS(*dirty),
frame.width(), frame.height());
dirty->setEmpty();
}
profiler().unionDirty(dirty);
}
if (dirty->isEmpty()) {
dirty->setIWH(frame.width(), frame.height());
}
// At this point dirty is the area of the window to update. However,
// the area of the frame we need to repaint is potentially different, so
// stash the screen area for later
SkRect windowDirty(*dirty);
// If the buffer age is 0 we do a full-screen repaint (handled above)
// If the buffer age is 1 the buffer contents are the same as they were
// last frame so there's nothing to union() against
// Therefore we only care about the > 1 case.
if (frame.bufferAge() > 1) {
if (frame.bufferAge() > (int)mSwapHistory.size()) {
// We don't have enough history to handle this old of a buffer
// Just do a full-draw
dirty->setIWH(frame.width(), frame.height());
} else {
// At this point we haven't yet added the latest frame
// to the damage history (happens below)
// So we need to damage
for (int i = mSwapHistory.size() - 1;
i > ((int)mSwapHistory.size()) - frame.bufferAge(); i--) {
dirty->join(mSwapHistory[i].damage);
}
}
}
return windowDirty;
}
CanvasContext* CanvasContext::getActiveContext() {
return ScopedActiveContext::getActiveContext();
}
bool CanvasContext::mergeTransaction(ASurfaceTransaction* transaction, ASurfaceControl* control) {
if (!mASurfaceTransactionCallback) return false;
return std::invoke(mASurfaceTransactionCallback, reinterpret_cast<int64_t>(transaction),
reinterpret_cast<int64_t>(control), getFrameNumber());
}
void CanvasContext::prepareSurfaceControlForWebview() {
if (mPrepareSurfaceControlForWebviewCallback) {
std::invoke(mPrepareSurfaceControlForWebviewCallback);
}
}
void CanvasContext::sendLoadResetHint() {
mHintSessionWrapper->sendLoadResetHint();
}
void CanvasContext::sendLoadIncreaseHint() {
mHintSessionWrapper->sendLoadIncreaseHint();
}
void CanvasContext::setSyncDelayDuration(nsecs_t duration) {
mSyncDelayDuration = duration;
}
void CanvasContext::startHintSession() {
mHintSessionWrapper->init();
}
bool CanvasContext::shouldDither() {
CanvasContext* self = getActiveContext();
if (!self) return false;
return self->mColorMode != ColorMode::Default;
}
void CanvasContext::visitAllRenderNodes(std::function<void(const RenderNode&)> func) const {
for (auto node : mRenderNodes) {
node->visit(func);
}
}
} /* namespace renderthread */
} /* namespace uirenderer */
} /* namespace android */