| /* |
| * Copyright (C) 2010 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include <math.h> |
| #include <stdlib.h> |
| #include <string.h> |
| |
| #include <utils/Log.h> |
| |
| #include <SkMatrix.h> |
| |
| #include "Matrix.h" |
| |
| namespace android { |
| namespace uirenderer { |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| // Defines |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| static const float EPSILON = 0.0000001f; |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| // Matrix |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| const Matrix4& Matrix4::identity() { |
| static Matrix4 sIdentity; |
| return sIdentity; |
| } |
| |
| void Matrix4::loadIdentity() { |
| data[kScaleX] = 1.0f; |
| data[kSkewY] = 0.0f; |
| data[2] = 0.0f; |
| data[kPerspective0] = 0.0f; |
| |
| data[kSkewX] = 0.0f; |
| data[kScaleY] = 1.0f; |
| data[6] = 0.0f; |
| data[kPerspective1] = 0.0f; |
| |
| data[8] = 0.0f; |
| data[9] = 0.0f; |
| data[kScaleZ] = 1.0f; |
| data[11] = 0.0f; |
| |
| data[kTranslateX] = 0.0f; |
| data[kTranslateY] = 0.0f; |
| data[kTranslateZ] = 0.0f; |
| data[kPerspective2] = 1.0f; |
| |
| mType = kTypeIdentity | kTypeRectToRect; |
| } |
| |
| static bool isZero(float f) { |
| return fabs(f) <= EPSILON; |
| } |
| |
| uint8_t Matrix4::getType() const { |
| if (mType & kTypeUnknown) { |
| mType = kTypeIdentity; |
| |
| if (data[kPerspective0] != 0.0f || data[kPerspective1] != 0.0f || |
| data[kPerspective2] != 1.0f) { |
| mType |= kTypePerspective; |
| } |
| |
| if (data[kTranslateX] != 0.0f || data[kTranslateY] != 0.0f) { |
| mType |= kTypeTranslate; |
| } |
| |
| float m00 = data[kScaleX]; |
| float m01 = data[kSkewX]; |
| float m10 = data[kSkewY]; |
| float m11 = data[kScaleY]; |
| float m32 = data[kTranslateZ]; |
| |
| if (m01 != 0.0f || m10 != 0.0f || m32 != 0.0f) { |
| mType |= kTypeAffine; |
| } |
| |
| if (m00 != 1.0f || m11 != 1.0f) { |
| mType |= kTypeScale; |
| } |
| |
| // The following section determines whether the matrix will preserve |
| // rectangles. For instance, a rectangle transformed by a pure |
| // translation matrix will result in a rectangle. A rectangle |
| // transformed by a 45 degrees rotation matrix is not a rectangle. |
| // If the matrix has a perspective component then we already know |
| // it doesn't preserve rectangles. |
| if (!(mType & kTypePerspective)) { |
| if ((isZero(m00) && isZero(m11) && !isZero(m01) && !isZero(m10)) || |
| (isZero(m01) && isZero(m10) && !isZero(m00) && !isZero(m11))) { |
| mType |= kTypeRectToRect; |
| } |
| } |
| } |
| return mType; |
| } |
| |
| uint8_t Matrix4::getGeometryType() const { |
| return getType() & sGeometryMask; |
| } |
| |
| bool Matrix4::rectToRect() const { |
| return getType() & kTypeRectToRect; |
| } |
| |
| bool Matrix4::positiveScale() const { |
| return (data[kScaleX] > 0.0f && data[kScaleY] > 0.0f); |
| } |
| |
| bool Matrix4::changesBounds() const { |
| return getType() & (kTypeScale | kTypeAffine | kTypePerspective); |
| } |
| |
| bool Matrix4::isPureTranslate() const { |
| // NOTE: temporary hack to workaround ignoreTransform behavior with Z values |
| // TODO: separate this into isPure2dTranslate vs isPure3dTranslate |
| return getGeometryType() <= kTypeTranslate && (data[kTranslateZ] == 0.0f); |
| } |
| |
| bool Matrix4::isSimple() const { |
| return getGeometryType() <= (kTypeScale | kTypeTranslate) && (data[kTranslateZ] == 0.0f); |
| } |
| |
| bool Matrix4::isIdentity() const { |
| return getGeometryType() == kTypeIdentity; |
| } |
| |
| bool Matrix4::isPerspective() const { |
| return getType() & kTypePerspective; |
| } |
| |
| void Matrix4::load(const float* v) { |
| memcpy(data, v, sizeof(data)); |
| mType = kTypeUnknown; |
| } |
| |
| void Matrix4::load(const SkMatrix& v) { |
| memset(data, 0, sizeof(data)); |
| |
| data[kScaleX] = v[SkMatrix::kMScaleX]; |
| data[kSkewX] = v[SkMatrix::kMSkewX]; |
| data[kTranslateX] = v[SkMatrix::kMTransX]; |
| |
| data[kSkewY] = v[SkMatrix::kMSkewY]; |
| data[kScaleY] = v[SkMatrix::kMScaleY]; |
| data[kTranslateY] = v[SkMatrix::kMTransY]; |
| |
| data[kPerspective0] = v[SkMatrix::kMPersp0]; |
| data[kPerspective1] = v[SkMatrix::kMPersp1]; |
| data[kPerspective2] = v[SkMatrix::kMPersp2]; |
| |
| data[kScaleZ] = 1.0f; |
| |
| // NOTE: The flags are compatible between SkMatrix and this class. |
| // However, SkMatrix::getType() does not return the flag |
| // kRectStaysRect. The return value is masked with 0xF |
| // so we need the extra rectStaysRect() check |
| mType = v.getType(); |
| if (v.rectStaysRect()) { |
| mType |= kTypeRectToRect; |
| } |
| } |
| |
| void Matrix4::copyTo(SkMatrix& v) const { |
| v.reset(); |
| |
| v.set(SkMatrix::kMScaleX, data[kScaleX]); |
| v.set(SkMatrix::kMSkewX, data[kSkewX]); |
| v.set(SkMatrix::kMTransX, data[kTranslateX]); |
| |
| v.set(SkMatrix::kMSkewY, data[kSkewY]); |
| v.set(SkMatrix::kMScaleY, data[kScaleY]); |
| v.set(SkMatrix::kMTransY, data[kTranslateY]); |
| |
| v.set(SkMatrix::kMPersp0, data[kPerspective0]); |
| v.set(SkMatrix::kMPersp1, data[kPerspective1]); |
| v.set(SkMatrix::kMPersp2, data[kPerspective2]); |
| } |
| |
| void Matrix4::loadInverse(const Matrix4& v) { |
| // Fast case for common translation matrices |
| if (v.isPureTranslate()) { |
| // Reset the matrix |
| // Unnamed fields are never written to except by |
| // loadIdentity(), they don't need to be reset |
| data[kScaleX] = 1.0f; |
| data[kSkewX] = 0.0f; |
| |
| data[kScaleY] = 1.0f; |
| data[kSkewY] = 0.0f; |
| |
| data[kScaleZ] = 1.0f; |
| |
| data[kPerspective0] = 0.0f; |
| data[kPerspective1] = 0.0f; |
| data[kPerspective2] = 1.0f; |
| |
| // No need to deal with kTranslateZ because isPureTranslate() |
| // only returns true when the kTranslateZ component is 0 |
| data[kTranslateX] = -v.data[kTranslateX]; |
| data[kTranslateY] = -v.data[kTranslateY]; |
| data[kTranslateZ] = 0.0f; |
| |
| // A "pure translate" matrix can be identity or translation |
| mType = v.getType(); |
| return; |
| } |
| |
| double scale = 1.0 / (v.data[kScaleX] * ((double)v.data[kScaleY] * v.data[kPerspective2] - |
| (double)v.data[kTranslateY] * v.data[kPerspective1]) + |
| v.data[kSkewX] * ((double)v.data[kTranslateY] * v.data[kPerspective0] - |
| (double)v.data[kSkewY] * v.data[kPerspective2]) + |
| v.data[kTranslateX] * ((double)v.data[kSkewY] * v.data[kPerspective1] - |
| (double)v.data[kScaleY] * v.data[kPerspective0])); |
| |
| data[kScaleX] = (v.data[kScaleY] * v.data[kPerspective2] - |
| v.data[kTranslateY] * v.data[kPerspective1]) * |
| scale; |
| data[kSkewX] = |
| (v.data[kTranslateX] * v.data[kPerspective1] - v.data[kSkewX] * v.data[kPerspective2]) * |
| scale; |
| data[kTranslateX] = |
| (v.data[kSkewX] * v.data[kTranslateY] - v.data[kTranslateX] * v.data[kScaleY]) * scale; |
| |
| data[kSkewY] = |
| (v.data[kTranslateY] * v.data[kPerspective0] - v.data[kSkewY] * v.data[kPerspective2]) * |
| scale; |
| data[kScaleY] = (v.data[kScaleX] * v.data[kPerspective2] - |
| v.data[kTranslateX] * v.data[kPerspective0]) * |
| scale; |
| data[kTranslateY] = |
| (v.data[kTranslateX] * v.data[kSkewY] - v.data[kScaleX] * v.data[kTranslateY]) * scale; |
| |
| data[kPerspective0] = |
| (v.data[kSkewY] * v.data[kPerspective1] - v.data[kScaleY] * v.data[kPerspective0]) * |
| scale; |
| data[kPerspective1] = |
| (v.data[kSkewX] * v.data[kPerspective0] - v.data[kScaleX] * v.data[kPerspective1]) * |
| scale; |
| data[kPerspective2] = |
| (v.data[kScaleX] * v.data[kScaleY] - v.data[kSkewX] * v.data[kSkewY]) * scale; |
| |
| mType = kTypeUnknown; |
| } |
| |
| void Matrix4::copyTo(float* v) const { |
| memcpy(v, data, sizeof(data)); |
| } |
| |
| float Matrix4::getTranslateX() const { |
| return data[kTranslateX]; |
| } |
| |
| float Matrix4::getTranslateY() const { |
| return data[kTranslateY]; |
| } |
| |
| void Matrix4::multiply(float v) { |
| for (int i = 0; i < 16; i++) { |
| data[i] *= v; |
| } |
| mType = kTypeUnknown; |
| } |
| |
| void Matrix4::loadTranslate(float x, float y, float z) { |
| loadIdentity(); |
| |
| data[kTranslateX] = x; |
| data[kTranslateY] = y; |
| data[kTranslateZ] = z; |
| |
| mType = kTypeTranslate | kTypeRectToRect; |
| } |
| |
| void Matrix4::loadScale(float sx, float sy, float sz) { |
| loadIdentity(); |
| |
| data[kScaleX] = sx; |
| data[kScaleY] = sy; |
| data[kScaleZ] = sz; |
| |
| mType = kTypeScale | kTypeRectToRect; |
| } |
| |
| void Matrix4::loadSkew(float sx, float sy) { |
| loadIdentity(); |
| |
| data[kScaleX] = 1.0f; |
| data[kSkewX] = sx; |
| data[kTranslateX] = 0.0f; |
| |
| data[kSkewY] = sy; |
| data[kScaleY] = 1.0f; |
| data[kTranslateY] = 0.0f; |
| |
| data[kPerspective0] = 0.0f; |
| data[kPerspective1] = 0.0f; |
| data[kPerspective2] = 1.0f; |
| |
| mType = kTypeUnknown; |
| } |
| |
| void Matrix4::loadRotate(float angle) { |
| angle *= float(M_PI / 180.0f); |
| float c = cosf(angle); |
| float s = sinf(angle); |
| |
| loadIdentity(); |
| |
| data[kScaleX] = c; |
| data[kSkewX] = -s; |
| |
| data[kSkewY] = s; |
| data[kScaleY] = c; |
| |
| mType = kTypeUnknown; |
| } |
| |
| void Matrix4::loadRotate(float angle, float x, float y, float z) { |
| data[kPerspective0] = 0.0f; |
| data[kPerspective1] = 0.0f; |
| data[11] = 0.0f; |
| data[kTranslateX] = 0.0f; |
| data[kTranslateY] = 0.0f; |
| data[kTranslateZ] = 0.0f; |
| data[kPerspective2] = 1.0f; |
| |
| angle *= float(M_PI / 180.0f); |
| float c = cosf(angle); |
| float s = sinf(angle); |
| |
| const float length = sqrtf(x * x + y * y + z * z); |
| float recipLen = 1.0f / length; |
| x *= recipLen; |
| y *= recipLen; |
| z *= recipLen; |
| |
| const float nc = 1.0f - c; |
| const float xy = x * y; |
| const float yz = y * z; |
| const float zx = z * x; |
| const float xs = x * s; |
| const float ys = y * s; |
| const float zs = z * s; |
| |
| data[kScaleX] = x * x * nc + c; |
| data[kSkewX] = xy * nc - zs; |
| data[8] = zx * nc + ys; |
| data[kSkewY] = xy * nc + zs; |
| data[kScaleY] = y * y * nc + c; |
| data[9] = yz * nc - xs; |
| data[2] = zx * nc - ys; |
| data[6] = yz * nc + xs; |
| data[kScaleZ] = z * z * nc + c; |
| |
| mType = kTypeUnknown; |
| } |
| |
| void Matrix4::loadMultiply(const Matrix4& u, const Matrix4& v) { |
| for (int i = 0; i < 4; i++) { |
| float x = 0; |
| float y = 0; |
| float z = 0; |
| float w = 0; |
| |
| for (int j = 0; j < 4; j++) { |
| const float e = v.get(i, j); |
| x += u.get(j, 0) * e; |
| y += u.get(j, 1) * e; |
| z += u.get(j, 2) * e; |
| w += u.get(j, 3) * e; |
| } |
| |
| set(i, 0, x); |
| set(i, 1, y); |
| set(i, 2, z); |
| set(i, 3, w); |
| } |
| |
| mType = kTypeUnknown; |
| } |
| |
| void Matrix4::loadOrtho(float left, float right, float bottom, float top, float near, float far) { |
| loadIdentity(); |
| |
| data[kScaleX] = 2.0f / (right - left); |
| data[kScaleY] = 2.0f / (top - bottom); |
| data[kScaleZ] = -2.0f / (far - near); |
| data[kTranslateX] = -(right + left) / (right - left); |
| data[kTranslateY] = -(top + bottom) / (top - bottom); |
| data[kTranslateZ] = -(far + near) / (far - near); |
| |
| mType = kTypeTranslate | kTypeScale | kTypeRectToRect; |
| } |
| |
| float Matrix4::mapZ(const Vector3& orig) const { |
| // duplicates logic for mapPoint3d's z coordinate |
| return orig.x * data[2] + orig.y * data[6] + orig.z * data[kScaleZ] + data[kTranslateZ]; |
| } |
| |
| void Matrix4::mapPoint3d(Vector3& vec) const { |
| // TODO: optimize simple case |
| const Vector3 orig(vec); |
| vec.x = orig.x * data[kScaleX] + orig.y * data[kSkewX] + orig.z * data[8] + data[kTranslateX]; |
| vec.y = orig.x * data[kSkewY] + orig.y * data[kScaleY] + orig.z * data[9] + data[kTranslateY]; |
| vec.z = orig.x * data[2] + orig.y * data[6] + orig.z * data[kScaleZ] + data[kTranslateZ]; |
| } |
| |
| #define MUL_ADD_STORE(a, b, c) ((a) = (a) * (b) + (c)) |
| |
| void Matrix4::mapPoint(float& x, float& y) const { |
| if (isSimple()) { |
| MUL_ADD_STORE(x, data[kScaleX], data[kTranslateX]); |
| MUL_ADD_STORE(y, data[kScaleY], data[kTranslateY]); |
| return; |
| } |
| |
| float dx = x * data[kScaleX] + y * data[kSkewX] + data[kTranslateX]; |
| float dy = x * data[kSkewY] + y * data[kScaleY] + data[kTranslateY]; |
| float dz = x * data[kPerspective0] + y * data[kPerspective1] + data[kPerspective2]; |
| if (dz) dz = 1.0f / dz; |
| |
| x = dx * dz; |
| y = dy * dz; |
| } |
| |
| /** |
| * Set the contents of the rect to be the bounding rect around each of the corners, mapped by the |
| * matrix. |
| * |
| * NOTE: an empty rect to an arbitrary matrix isn't guaranteed to have an empty output, since that's |
| * important for conservative bounds estimation (e.g. rotate45Matrix.mapRect of Rect(0, 10) should |
| * result in non-empty. |
| */ |
| void Matrix4::mapRect(Rect& r) const { |
| if (isIdentity()) return; |
| |
| if (isSimple()) { |
| MUL_ADD_STORE(r.left, data[kScaleX], data[kTranslateX]); |
| MUL_ADD_STORE(r.right, data[kScaleX], data[kTranslateX]); |
| MUL_ADD_STORE(r.top, data[kScaleY], data[kTranslateY]); |
| MUL_ADD_STORE(r.bottom, data[kScaleY], data[kTranslateY]); |
| |
| if (r.left > r.right) { |
| float x = r.left; |
| r.left = r.right; |
| r.right = x; |
| } |
| |
| if (r.top > r.bottom) { |
| float y = r.top; |
| r.top = r.bottom; |
| r.bottom = y; |
| } |
| |
| return; |
| } |
| |
| float vertices[] = {r.left, r.top, r.right, r.top, r.right, r.bottom, r.left, r.bottom}; |
| |
| float x, y, z; |
| |
| for (int i = 0; i < 8; i += 2) { |
| float px = vertices[i]; |
| float py = vertices[i + 1]; |
| |
| x = px * data[kScaleX] + py * data[kSkewX] + data[kTranslateX]; |
| y = px * data[kSkewY] + py * data[kScaleY] + data[kTranslateY]; |
| z = px * data[kPerspective0] + py * data[kPerspective1] + data[kPerspective2]; |
| if (z) z = 1.0f / z; |
| |
| vertices[i] = x * z; |
| vertices[i + 1] = y * z; |
| } |
| |
| r.left = r.right = vertices[0]; |
| r.top = r.bottom = vertices[1]; |
| |
| for (int i = 2; i < 8; i += 2) { |
| x = vertices[i]; |
| y = vertices[i + 1]; |
| |
| if (x < r.left) |
| r.left = x; |
| else if (x > r.right) |
| r.right = x; |
| if (y < r.top) |
| r.top = y; |
| else if (y > r.bottom) |
| r.bottom = y; |
| } |
| } |
| |
| void Matrix4::decomposeScale(float& sx, float& sy) const { |
| float len; |
| len = data[mat4::kScaleX] * data[mat4::kScaleX] + data[mat4::kSkewX] * data[mat4::kSkewX]; |
| sx = copysignf(sqrtf(len), data[mat4::kScaleX]); |
| len = data[mat4::kScaleY] * data[mat4::kScaleY] + data[mat4::kSkewY] * data[mat4::kSkewY]; |
| sy = copysignf(sqrtf(len), data[mat4::kScaleY]); |
| } |
| |
| void Matrix4::dump(const char* label) const { |
| ALOGD("%s[simple=%d, type=0x%x", label ? label : "Matrix4", isSimple(), getType()); |
| ALOGD(" %f %f %f %f", data[kScaleX], data[kSkewX], data[8], data[kTranslateX]); |
| ALOGD(" %f %f %f %f", data[kSkewY], data[kScaleY], data[9], data[kTranslateY]); |
| ALOGD(" %f %f %f %f", data[2], data[6], data[kScaleZ], data[kTranslateZ]); |
| ALOGD(" %f %f %f %f", data[kPerspective0], data[kPerspective1], data[11], data[kPerspective2]); |
| ALOGD("]"); |
| } |
| |
| } // namespace uirenderer |
| } // namespace android |