blob: 7be71eec4f7602a2ff864680d5d9b39d978a20be [file] [log] [blame]
/*
* Copyright (C) 2015 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "JankTracker.h"
#include <errno.h>
#include <inttypes.h>
#include <sys/mman.h>
#include <algorithm>
#include <cmath>
#include <cstdio>
#include <limits>
#include <cutils/ashmem.h>
#include <log/log.h>
#include "Properties.h"
#include "utils/TimeUtils.h"
namespace android {
namespace uirenderer {
static const char* JANK_TYPE_NAMES[] = {
"Missed Vsync",
"High input latency",
"Slow UI thread",
"Slow bitmap uploads",
"Slow issue draw commands",
};
struct Comparison {
FrameInfoIndex start;
FrameInfoIndex end;
};
static const Comparison COMPARISONS[] = {
{FrameInfoIndex::IntendedVsync, FrameInfoIndex::Vsync},
{FrameInfoIndex::OldestInputEvent, FrameInfoIndex::Vsync},
{FrameInfoIndex::Vsync, FrameInfoIndex::SyncStart},
{FrameInfoIndex::SyncStart, FrameInfoIndex::IssueDrawCommandsStart},
{FrameInfoIndex::IssueDrawCommandsStart, FrameInfoIndex::FrameCompleted},
};
// If the event exceeds 10 seconds throw it away, this isn't a jank event
// it's an ANR and will be handled as such
static const int64_t IGNORE_EXCEEDING = seconds_to_nanoseconds(10);
/*
* We don't track direct-drawing via Surface:lockHardwareCanvas()
* for now
*
* TODO: kSurfaceCanvas can negatively impact other drawing by using up
* time on the RenderThread, figure out how to attribute that as a jank-causer
*/
static const int64_t EXEMPT_FRAMES_FLAGS = FrameInfoFlags::SurfaceCanvas;
// The bucketing algorithm controls so to speak
// If a frame is <= to this it goes in bucket 0
static const uint32_t kBucketMinThreshold = 5;
// If a frame is > this, start counting in increments of 2ms
static const uint32_t kBucket2msIntervals = 32;
// If a frame is > this, start counting in increments of 4ms
static const uint32_t kBucket4msIntervals = 48;
// For testing purposes to try and eliminate test infra overhead we will
// consider any unknown delay of frame start as part of the test infrastructure
// and filter it out of the frame profile data
static FrameInfoIndex sFrameStart = FrameInfoIndex::IntendedVsync;
// The interval of the slow frame histogram
static const uint32_t kSlowFrameBucketIntervalMs = 50;
// The start point of the slow frame bucket in ms
static const uint32_t kSlowFrameBucketStartMs = 150;
// This will be called every frame, performance sensitive
// Uses bit twiddling to avoid branching while achieving the packing desired
static uint32_t frameCountIndexForFrameTime(nsecs_t frameTime) {
uint32_t index = static_cast<uint32_t>(ns2ms(frameTime));
// If index > kBucketMinThreshold mask will be 0xFFFFFFFF as a result
// of negating 1 (twos compliment, yaay) else mask will be 0
uint32_t mask = -(index > kBucketMinThreshold);
// If index > threshold, this will essentially perform:
// amountAboveThreshold = index - threshold;
// index = threshold + (amountAboveThreshold / 2)
// However if index is <= this will do nothing. It will underflow, do
// a right shift by 0 (no-op), then overflow back to the original value
index = ((index - kBucket4msIntervals) >> (index > kBucket4msIntervals))
+ kBucket4msIntervals;
index = ((index - kBucket2msIntervals) >> (index > kBucket2msIntervals))
+ kBucket2msIntervals;
// If index was < minThreshold at the start of all this it's going to
// be a pretty garbage value right now. However, mask is 0 so we'll end
// up with the desired result of 0.
index = (index - kBucketMinThreshold) & mask;
return index;
}
// Only called when dumping stats, less performance sensitive
int32_t JankTracker::frameTimeForFrameCountIndex(uint32_t index) {
index = index + kBucketMinThreshold;
if (index > kBucket2msIntervals) {
index += (index - kBucket2msIntervals);
}
if (index > kBucket4msIntervals) {
// This works because it was already doubled by the above if
// 1 is added to shift slightly more towards the middle of the bucket
index += (index - kBucket4msIntervals) + 1;
}
return index;
}
int32_t JankTracker::frameTimeForSlowFrameCountIndex(uint32_t index) {
return (index * kSlowFrameBucketIntervalMs) + kSlowFrameBucketStartMs;
}
JankTracker::JankTracker(const DisplayInfo& displayInfo) {
// By default this will use malloc memory. It may be moved later to ashmem
// if there is shared space for it and a request comes in to do that.
mData = new ProfileData;
reset();
nsecs_t frameIntervalNanos = static_cast<nsecs_t>(1_s / displayInfo.fps);
#if USE_HWC2
nsecs_t sfOffset = frameIntervalNanos - (displayInfo.presentationDeadline - 1_ms);
nsecs_t offsetDelta = sfOffset - displayInfo.appVsyncOffset;
// There are two different offset cases. If the offsetDelta is positive
// and small, then the intention is to give apps extra time by leveraging
// pipelining between the UI & RT threads. If the offsetDelta is large or
// negative, the intention is to subtract time from the total duration
// in which case we can't afford to wait for dequeueBuffer blockage.
if (offsetDelta <= 4_ms && offsetDelta >= 0) {
// SF will begin composition at VSYNC-app + offsetDelta. If we are triple
// buffered, this is the expected time at which dequeueBuffer will
// return due to the staggering of VSYNC-app & VSYNC-sf.
mDequeueTimeForgiveness = offsetDelta + 4_ms;
}
#endif
setFrameInterval(frameIntervalNanos);
}
JankTracker::~JankTracker() {
freeData();
}
void JankTracker::freeData() {
if (mIsMapped) {
munmap(mData, sizeof(ProfileData));
} else {
delete mData;
}
mIsMapped = false;
mData = nullptr;
}
void JankTracker::rotateStorage() {
// If we are mapped we want to stop using the ashmem backend and switch to malloc
// We are expecting a switchStorageToAshmem call to follow this, but it's not guaranteed
// If we aren't sitting on top of ashmem then just do a reset() as it's functionally
// equivalent do a free, malloc, reset.
if (mIsMapped) {
freeData();
mData = new ProfileData;
}
reset();
}
void JankTracker::switchStorageToAshmem(int ashmemfd) {
int regionSize = ashmem_get_size_region(ashmemfd);
if (regionSize < 0) {
int err = errno;
ALOGW("Failed to get ashmem region size from fd %d, err %d %s", ashmemfd, err, strerror(err));
return;
}
if (regionSize < static_cast<int>(sizeof(ProfileData))) {
ALOGW("Ashmem region is too small! Received %d, required %u",
regionSize, static_cast<unsigned int>(sizeof(ProfileData)));
return;
}
ProfileData* newData = reinterpret_cast<ProfileData*>(
mmap(NULL, sizeof(ProfileData), PROT_READ | PROT_WRITE,
MAP_SHARED, ashmemfd, 0));
if (newData == MAP_FAILED) {
int err = errno;
ALOGW("Failed to move profile data to ashmem fd %d, error = %d",
ashmemfd, err);
return;
}
// The new buffer may have historical data that we want to build on top of
// But let's make sure we don't overflow Just In Case
uint32_t divider = 0;
if (newData->totalFrameCount > (1 << 24)) {
divider = 4;
}
for (size_t i = 0; i < mData->jankTypeCounts.size(); i++) {
newData->jankTypeCounts[i] >>= divider;
newData->jankTypeCounts[i] += mData->jankTypeCounts[i];
}
for (size_t i = 0; i < mData->frameCounts.size(); i++) {
newData->frameCounts[i] >>= divider;
newData->frameCounts[i] += mData->frameCounts[i];
}
newData->jankFrameCount >>= divider;
newData->jankFrameCount += mData->jankFrameCount;
newData->totalFrameCount >>= divider;
newData->totalFrameCount += mData->totalFrameCount;
if (newData->statStartTime > mData->statStartTime
|| newData->statStartTime == 0) {
newData->statStartTime = mData->statStartTime;
}
freeData();
mData = newData;
mIsMapped = true;
}
void JankTracker::setFrameInterval(nsecs_t frameInterval) {
mFrameInterval = frameInterval;
mThresholds[kMissedVsync] = 1;
/*
* Due to interpolation and sample rate differences between the touch
* panel and the display (example, 85hz touch panel driving a 60hz display)
* we call high latency 1.5 * frameinterval
*
* NOTE: Be careful when tuning this! A theoretical 1,000hz touch panel
* on a 60hz display will show kOldestInputEvent - kIntendedVsync of being 15ms
* Thus this must always be larger than frameInterval, or it will fail
*/
mThresholds[kHighInputLatency] = static_cast<int64_t>(1.5 * frameInterval);
// Note that these do not add up to 1. This is intentional. It's to deal
// with variance in values, and should be sort of an upper-bound on what
// is reasonable to expect.
mThresholds[kSlowUI] = static_cast<int64_t>(.5 * frameInterval);
mThresholds[kSlowSync] = static_cast<int64_t>(.2 * frameInterval);
mThresholds[kSlowRT] = static_cast<int64_t>(.75 * frameInterval);
}
void JankTracker::addFrame(const FrameInfo& frame) {
mData->totalFrameCount++;
// Fast-path for jank-free frames
int64_t totalDuration = frame.duration(sFrameStart, FrameInfoIndex::FrameCompleted);
if (mDequeueTimeForgiveness
&& frame[FrameInfoIndex::DequeueBufferDuration] > 500_us) {
nsecs_t expectedDequeueDuration =
mDequeueTimeForgiveness + frame[FrameInfoIndex::Vsync]
- frame[FrameInfoIndex::IssueDrawCommandsStart];
if (expectedDequeueDuration > 0) {
// Forgive only up to the expected amount, but not more than
// the actual time spent blocked.
nsecs_t forgiveAmount = std::min(expectedDequeueDuration,
frame[FrameInfoIndex::DequeueBufferDuration]);
totalDuration -= forgiveAmount;
}
}
uint32_t framebucket = frameCountIndexForFrameTime(totalDuration);
// Keep the fast path as fast as possible.
if (CC_LIKELY(totalDuration < mFrameInterval)) {
mData->frameCounts[framebucket]++;
return;
}
// Only things like Surface.lockHardwareCanvas() are exempt from tracking
if (frame[FrameInfoIndex::Flags] & EXEMPT_FRAMES_FLAGS) {
return;
}
if (framebucket <= mData->frameCounts.size()) {
mData->frameCounts[framebucket]++;
} else {
framebucket = (ns2ms(totalDuration) - kSlowFrameBucketStartMs)
/ kSlowFrameBucketIntervalMs;
framebucket = std::min(framebucket,
static_cast<uint32_t>(mData->slowFrameCounts.size() - 1));
framebucket = std::max(framebucket, 0u);
mData->slowFrameCounts[framebucket]++;
}
mData->jankFrameCount++;
for (int i = 0; i < NUM_BUCKETS; i++) {
int64_t delta = frame.duration(COMPARISONS[i].start, COMPARISONS[i].end);
if (delta >= mThresholds[i] && delta < IGNORE_EXCEEDING) {
mData->jankTypeCounts[i]++;
}
}
}
void JankTracker::dumpData(int fd, const ProfileDataDescription* description, const ProfileData* data) {
if (description) {
switch (description->type) {
case JankTrackerType::Generic:
break;
case JankTrackerType::Package:
dprintf(fd, "\nPackage: %s", description->name.c_str());
break;
case JankTrackerType::Window:
dprintf(fd, "\nWindow: %s", description->name.c_str());
break;
}
}
if (sFrameStart != FrameInfoIndex::IntendedVsync) {
dprintf(fd, "\nNote: Data has been filtered!");
}
dprintf(fd, "\nStats since: %" PRIu64 "ns", data->statStartTime);
dprintf(fd, "\nTotal frames rendered: %u", data->totalFrameCount);
dprintf(fd, "\nJanky frames: %u (%.2f%%)", data->jankFrameCount,
(float) data->jankFrameCount / (float) data->totalFrameCount * 100.0f);
dprintf(fd, "\n50th percentile: %ums", findPercentile(data, 50));
dprintf(fd, "\n90th percentile: %ums", findPercentile(data, 90));
dprintf(fd, "\n95th percentile: %ums", findPercentile(data, 95));
dprintf(fd, "\n99th percentile: %ums", findPercentile(data, 99));
for (int i = 0; i < NUM_BUCKETS; i++) {
dprintf(fd, "\nNumber %s: %u", JANK_TYPE_NAMES[i], data->jankTypeCounts[i]);
}
dprintf(fd, "\nHISTOGRAM:");
for (size_t i = 0; i < data->frameCounts.size(); i++) {
dprintf(fd, " %ums=%u", frameTimeForFrameCountIndex(i),
data->frameCounts[i]);
}
for (size_t i = 0; i < data->slowFrameCounts.size(); i++) {
dprintf(fd, " %ums=%u", frameTimeForSlowFrameCountIndex(i),
data->slowFrameCounts[i]);
}
dprintf(fd, "\n");
}
void JankTracker::reset() {
mData->jankTypeCounts.fill(0);
mData->frameCounts.fill(0);
mData->slowFrameCounts.fill(0);
mData->totalFrameCount = 0;
mData->jankFrameCount = 0;
mData->statStartTime = systemTime(CLOCK_MONOTONIC);
sFrameStart = Properties::filterOutTestOverhead
? FrameInfoIndex::HandleInputStart
: FrameInfoIndex::IntendedVsync;
}
uint32_t JankTracker::findPercentile(const ProfileData* data, int percentile) {
int pos = percentile * data->totalFrameCount / 100;
int remaining = data->totalFrameCount - pos;
for (int i = data->slowFrameCounts.size() - 1; i >= 0; i--) {
remaining -= data->slowFrameCounts[i];
if (remaining <= 0) {
return (i * kSlowFrameBucketIntervalMs) + kSlowFrameBucketStartMs;
}
}
for (int i = data->frameCounts.size() - 1; i >= 0; i--) {
remaining -= data->frameCounts[i];
if (remaining <= 0) {
return frameTimeForFrameCountIndex(i);
}
}
return 0;
}
} /* namespace uirenderer */
} /* namespace android */