blob: 1f959469fb5604730eca4c8f4fca42a11f95a33f [file] [log] [blame]
/*
* Copyright (C) 2010 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "SkiaShader.h"
#include "Caches.h"
#include "Extensions.h"
#include "Layer.h"
#include "Matrix.h"
#include "Texture.h"
#include <SkMatrix.h>
#include <utils/Log.h>
namespace android {
namespace uirenderer {
///////////////////////////////////////////////////////////////////////////////
// Support
///////////////////////////////////////////////////////////////////////////////
static const GLenum gTileModes[] = {
GL_CLAMP_TO_EDGE, // == SkShader::kClamp_TileMode
GL_REPEAT, // == SkShader::kRepeat_Mode
GL_MIRRORED_REPEAT // == SkShader::kMirror_TileMode
};
/**
* This function does not work for n == 0.
*/
static inline bool isPowerOfTwo(unsigned int n) {
return !(n & (n - 1));
}
static inline void bindUniformColor(int slot, FloatColor color) {
glUniform4fv(slot, 1, reinterpret_cast<const float*>(&color));
}
static inline void bindTexture(Caches* caches, Texture* texture, GLenum wrapS, GLenum wrapT) {
caches->textureState().bindTexture(texture->id);
texture->setWrapST(wrapS, wrapT);
}
/**
* Compute the matrix to transform to screen space.
* @param screenSpace Output param for the computed matrix.
* @param unitMatrix The unit matrix for gradient shaders, as returned by SkShader::asAGradient,
* or identity.
* @param localMatrix Local matrix, as returned by SkShader::getLocalMatrix().
* @param modelViewMatrix Model view matrix, as supplied by the OpenGLRenderer.
*/
static void computeScreenSpaceMatrix(mat4& screenSpace, const SkMatrix& unitMatrix,
const SkMatrix& localMatrix, const mat4& modelViewMatrix) {
mat4 shaderMatrix;
// uses implicit construction
shaderMatrix.loadInverse(localMatrix);
// again, uses implicit construction
screenSpace.loadMultiply(unitMatrix, shaderMatrix);
screenSpace.multiply(modelViewMatrix);
}
///////////////////////////////////////////////////////////////////////////////
// gradient shader matrix helpers
///////////////////////////////////////////////////////////////////////////////
static void toLinearUnitMatrix(const SkPoint pts[2], SkMatrix* matrix) {
SkVector vec = pts[1] - pts[0];
const float mag = vec.length();
const float inv = mag ? 1.0f / mag : 0;
vec.scale(inv);
matrix->setSinCos(-vec.fY, vec.fX, pts[0].fX, pts[0].fY);
matrix->postTranslate(-pts[0].fX, -pts[0].fY);
matrix->postScale(inv, inv);
}
static void toCircularUnitMatrix(const float x, const float y, const float radius,
SkMatrix* matrix) {
const float inv = 1.0f / radius;
matrix->setTranslate(-x, -y);
matrix->postScale(inv, inv);
}
static void toSweepUnitMatrix(const float x, const float y, SkMatrix* matrix) {
matrix->setTranslate(-x, -y);
}
///////////////////////////////////////////////////////////////////////////////
// Common gradient code
///////////////////////////////////////////////////////////////////////////////
static bool isSimpleGradient(const SkShader::GradientInfo& gradInfo) {
return gradInfo.fColorCount == 2 && gradInfo.fTileMode == SkShader::kClamp_TileMode;
}
///////////////////////////////////////////////////////////////////////////////
// Store / apply
///////////////////////////////////////////////////////////////////////////////
bool tryStoreGradient(Caches& caches, const SkShader& shader, const Matrix4 modelViewMatrix,
GLuint* textureUnit, ProgramDescription* description,
SkiaShaderData::GradientShaderData* outData) {
SkShader::GradientInfo gradInfo;
gradInfo.fColorCount = 0;
gradInfo.fColors = nullptr;
gradInfo.fColorOffsets = nullptr;
SkMatrix unitMatrix;
switch (shader.asAGradient(&gradInfo)) {
case SkShader::kLinear_GradientType:
description->gradientType = ProgramDescription::kGradientLinear;
toLinearUnitMatrix(gradInfo.fPoint, &unitMatrix);
break;
case SkShader::kRadial_GradientType:
description->gradientType = ProgramDescription::kGradientCircular;
toCircularUnitMatrix(gradInfo.fPoint[0].fX, gradInfo.fPoint[0].fY,
gradInfo.fRadius[0], &unitMatrix);
break;
case SkShader::kSweep_GradientType:
description->gradientType = ProgramDescription::kGradientSweep;
toSweepUnitMatrix(gradInfo.fPoint[0].fX, gradInfo.fPoint[0].fY, &unitMatrix);
break;
default:
// Do nothing. This shader is unsupported.
return false;
}
description->hasGradient = true;
description->isSimpleGradient = isSimpleGradient(gradInfo);
computeScreenSpaceMatrix(outData->screenSpace, unitMatrix,
shader.getLocalMatrix(), modelViewMatrix);
// re-query shader to get full color / offset data
std::unique_ptr<SkColor[]> colorStorage(new SkColor[gradInfo.fColorCount]);
std::unique_ptr<SkScalar[]> colorOffsets(new SkScalar[gradInfo.fColorCount]);
gradInfo.fColors = &colorStorage[0];
gradInfo.fColorOffsets = &colorOffsets[0];
shader.asAGradient(&gradInfo);
if (CC_UNLIKELY(!isSimpleGradient(gradInfo))) {
outData->gradientSampler = (*textureUnit)++;
#ifndef SK_SCALAR_IS_FLOAT
#error Need to convert gradInfo.fColorOffsets to float!
#endif
outData->gradientTexture = caches.gradientCache.get(
gradInfo.fColors, gradInfo.fColorOffsets, gradInfo.fColorCount);
outData->wrapST = gTileModes[gradInfo.fTileMode];
} else {
outData->gradientSampler = 0;
outData->gradientTexture = nullptr;
outData->startColor.set(gradInfo.fColors[0]);
outData->endColor.set(gradInfo.fColors[1]);
}
outData->ditherSampler = (*textureUnit)++;
return true;
}
void applyGradient(Caches& caches, const SkiaShaderData::GradientShaderData& data) {
if (CC_UNLIKELY(data.gradientTexture)) {
caches.textureState().activateTexture(data.gradientSampler);
bindTexture(&caches, data.gradientTexture, data.wrapST, data.wrapST);
glUniform1i(caches.program().getUniform("gradientSampler"), data.gradientSampler);
} else {
bindUniformColor(caches.program().getUniform("startColor"), data.startColor);
bindUniformColor(caches.program().getUniform("endColor"), data.endColor);
}
// TODO: remove sampler slot incrementing from dither.setupProgram,
// since this assignment of slots is done at store, not apply time
GLuint ditherSampler = data.ditherSampler;
caches.dither.setupProgram(caches.program(), &ditherSampler);
glUniformMatrix4fv(caches.program().getUniform("screenSpace"), 1,
GL_FALSE, &data.screenSpace.data[0]);
}
bool tryStoreBitmap(Caches& caches, const SkShader& shader, const Matrix4& modelViewMatrix,
GLuint* textureUnit, ProgramDescription* description,
SkiaShaderData::BitmapShaderData* outData) {
SkBitmap bitmap;
SkShader::TileMode xy[2];
if (shader.asABitmap(&bitmap, nullptr, xy) != SkShader::kDefault_BitmapType) {
return false;
}
/*
* Bypass the AssetAtlas, since those textures:
* 1) require UV mapping, which isn't implemented in matrix computation below
* 2) can't handle REPEAT simply
* 3) are safe to upload here (outside of sync stage), since they're static
*/
outData->bitmapTexture = caches.textureCache.getAndBypassAtlas(&bitmap);
if (!outData->bitmapTexture) return false;
outData->bitmapSampler = (*textureUnit)++;
const float width = outData->bitmapTexture->width;
const float height = outData->bitmapTexture->height;
description->hasBitmap = true;
if (!caches.extensions().hasNPot()
&& (!isPowerOfTwo(width) || !isPowerOfTwo(height))
&& (xy[0] != SkShader::kClamp_TileMode || xy[1] != SkShader::kClamp_TileMode)) {
description->isBitmapNpot = true;
description->bitmapWrapS = gTileModes[xy[0]];
description->bitmapWrapT = gTileModes[xy[1]];
outData->wrapS = GL_CLAMP_TO_EDGE;
outData->wrapT = GL_CLAMP_TO_EDGE;
} else {
outData->wrapS = gTileModes[xy[0]];
outData->wrapT = gTileModes[xy[1]];
}
computeScreenSpaceMatrix(outData->textureTransform, SkMatrix::I(), shader.getLocalMatrix(),
modelViewMatrix);
outData->textureDimension[0] = 1.0f / width;
outData->textureDimension[1] = 1.0f / height;
return true;
}
void applyBitmap(Caches& caches, const SkiaShaderData::BitmapShaderData& data) {
caches.textureState().activateTexture(data.bitmapSampler);
bindTexture(&caches, data.bitmapTexture, data.wrapS, data.wrapT);
data.bitmapTexture->setFilter(GL_LINEAR);
glUniform1i(caches.program().getUniform("bitmapSampler"), data.bitmapSampler);
glUniformMatrix4fv(caches.program().getUniform("textureTransform"), 1, GL_FALSE,
&data.textureTransform.data[0]);
glUniform2fv(caches.program().getUniform("textureDimension"), 1, &data.textureDimension[0]);
}
SkiaShaderType getComposeSubType(const SkShader& shader) {
// First check for a gradient shader.
switch (shader.asAGradient(nullptr)) {
case SkShader::kNone_GradientType:
// Not a gradient shader. Fall through to check for other types.
break;
case SkShader::kLinear_GradientType:
case SkShader::kRadial_GradientType:
case SkShader::kSweep_GradientType:
return kGradient_SkiaShaderType;
default:
// This is a Skia gradient that has no SkiaShader equivalent. Return None to skip.
return kNone_SkiaShaderType;
}
// The shader is not a gradient. Check for a bitmap shader.
if (shader.asABitmap(nullptr, nullptr, nullptr) == SkShader::kDefault_BitmapType) {
return kBitmap_SkiaShaderType;
}
return kNone_SkiaShaderType;
}
void storeCompose(Caches& caches, const SkShader& bitmapShader, const SkShader& gradientShader,
const Matrix4& modelViewMatrix, GLuint* textureUnit,
ProgramDescription* description, SkiaShaderData* outData) {
LOG_ALWAYS_FATAL_IF(!tryStoreBitmap(caches, bitmapShader, modelViewMatrix,
textureUnit, description, &outData->bitmapData),
"failed storing bitmap shader data");
LOG_ALWAYS_FATAL_IF(!tryStoreGradient(caches, gradientShader, modelViewMatrix,
textureUnit, description, &outData->gradientData),
"failing storing gradient shader data");
}
bool tryStoreCompose(Caches& caches, const SkShader& shader, const Matrix4& modelViewMatrix,
GLuint* textureUnit, ProgramDescription* description,
SkiaShaderData* outData) {
SkShader::ComposeRec rec;
if (!shader.asACompose(&rec)) return false;
const SkiaShaderType shaderAType = getComposeSubType(*rec.fShaderA);
const SkiaShaderType shaderBType = getComposeSubType(*rec.fShaderB);
// check that type enum values are the 2 flags that compose the kCompose value
if ((shaderAType & shaderBType) != 0) return false;
if ((shaderAType | shaderBType) != kCompose_SkiaShaderType) return false;
mat4 transform;
computeScreenSpaceMatrix(transform, SkMatrix::I(), shader.getLocalMatrix(), modelViewMatrix);
if (shaderAType == kBitmap_SkiaShaderType) {
description->isBitmapFirst = true;
storeCompose(caches, *rec.fShaderA, *rec.fShaderB,
transform, textureUnit, description, outData);
} else {
description->isBitmapFirst = false;
storeCompose(caches, *rec.fShaderB, *rec.fShaderA,
transform, textureUnit, description, outData);
}
if (!SkXfermode::AsMode(rec.fMode, &description->shadersMode)) {
// TODO: Support other modes.
description->shadersMode = SkXfermode::kSrcOver_Mode;
}
return true;
}
bool tryStoreLayer(Caches& caches, const SkShader& shader, const Matrix4& modelViewMatrix,
GLuint* textureUnit, ProgramDescription* description,
SkiaShaderData::LayerShaderData* outData) {
Layer* layer;
if (!shader.asACustomShader(reinterpret_cast<void**>(&layer))) {
return false;
}
description->hasBitmap = true;
outData->layer = layer;
outData->bitmapSampler = (*textureUnit)++;
const float width = layer->getWidth();
const float height = layer->getHeight();
computeScreenSpaceMatrix(outData->textureTransform, SkMatrix::I(), shader.getLocalMatrix(),
modelViewMatrix);
outData->textureDimension[0] = 1.0f / width;
outData->textureDimension[1] = 1.0f / height;
return true;
}
void applyLayer(Caches& caches, const SkiaShaderData::LayerShaderData& data) {
caches.textureState().activateTexture(data.bitmapSampler);
data.layer->bindTexture();
data.layer->setWrap(GL_CLAMP_TO_EDGE);
data.layer->setFilter(GL_LINEAR);
glUniform1i(caches.program().getUniform("bitmapSampler"), data.bitmapSampler);
glUniformMatrix4fv(caches.program().getUniform("textureTransform"), 1,
GL_FALSE, &data.textureTransform.data[0]);
glUniform2fv(caches.program().getUniform("textureDimension"), 1, &data.textureDimension[0]);
}
void SkiaShader::store(Caches& caches, const SkShader& shader, const Matrix4& modelViewMatrix,
GLuint* textureUnit, ProgramDescription* description,
SkiaShaderData* outData) {
if (tryStoreGradient(caches, shader, modelViewMatrix,
textureUnit, description, &outData->gradientData)) {
outData->skiaShaderType = kGradient_SkiaShaderType;
return;
}
if (tryStoreBitmap(caches, shader, modelViewMatrix,
textureUnit, description, &outData->bitmapData)) {
outData->skiaShaderType = kBitmap_SkiaShaderType;
return;
}
if (tryStoreCompose(caches, shader, modelViewMatrix,
textureUnit, description, outData)) {
outData->skiaShaderType = kCompose_SkiaShaderType;
return;
}
if (tryStoreLayer(caches, shader, modelViewMatrix,
textureUnit, description, &outData->layerData)) {
outData->skiaShaderType = kLayer_SkiaShaderType;
return;
}
// Unknown/unsupported type, so explicitly ignore shader
outData->skiaShaderType = kNone_SkiaShaderType;
}
void SkiaShader::apply(Caches& caches, const SkiaShaderData& data) {
if (!data.skiaShaderType) return;
if (data.skiaShaderType & kGradient_SkiaShaderType) {
applyGradient(caches, data.gradientData);
}
if (data.skiaShaderType & kBitmap_SkiaShaderType) {
applyBitmap(caches, data.bitmapData);
}
if (data.skiaShaderType == kLayer_SkiaShaderType) {
applyLayer(caches, data.layerData);
}
}
}; // namespace uirenderer
}; // namespace android