blob: c260f5fe79d337587011f884b178f0d9b93296f3 [file] [log] [blame]
/*
* Copyright (C) 2010 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "OpenGLRenderer.h"
#include "DeferredDisplayList.h"
#include "GammaFontRenderer.h"
#include "Glop.h"
#include "GlopBuilder.h"
#include "Patch.h"
#include "PathTessellator.h"
#include "Properties.h"
#include "RenderNode.h"
#include "renderstate/MeshState.h"
#include "renderstate/RenderState.h"
#include "ShadowTessellator.h"
#include "SkiaShader.h"
#include "Vector.h"
#include "VertexBuffer.h"
#include "utils/GLUtils.h"
#include "utils/PaintUtils.h"
#include "utils/TraceUtils.h"
#include <stdlib.h>
#include <stdint.h>
#include <sys/types.h>
#include <SkCanvas.h>
#include <SkColor.h>
#include <SkPathOps.h>
#include <SkShader.h>
#include <SkTypeface.h>
#include <utils/Log.h>
#include <utils/StopWatch.h>
#include <private/hwui/DrawGlInfo.h>
#include <ui/Rect.h>
#if DEBUG_DETAILED_EVENTS
#define EVENT_LOGD(...) eventMarkDEBUG(__VA_ARGS__)
#else
#define EVENT_LOGD(...)
#endif
namespace android {
namespace uirenderer {
///////////////////////////////////////////////////////////////////////////////
// Constructors/destructor
///////////////////////////////////////////////////////////////////////////////
OpenGLRenderer::OpenGLRenderer(RenderState& renderState)
: mState(*this)
, mCaches(Caches::getInstance())
, mRenderState(renderState)
, mFrameStarted(false)
, mScissorOptimizationDisabled(false)
, mSuppressTiling(false)
, mFirstFrameAfterResize(true)
, mDirty(false)
, mLightCenter((Vector3){FLT_MIN, FLT_MIN, FLT_MIN})
, mLightRadius(FLT_MIN)
, mAmbientShadowAlpha(0)
, mSpotShadowAlpha(0) {
}
OpenGLRenderer::~OpenGLRenderer() {
// The context has already been destroyed at this point, do not call
// GL APIs. All GL state should be kept in Caches.h
}
void OpenGLRenderer::initProperties() {
char property[PROPERTY_VALUE_MAX];
if (property_get(PROPERTY_DISABLE_SCISSOR_OPTIMIZATION, property, "false")) {
mScissorOptimizationDisabled = !strcasecmp(property, "true");
INIT_LOGD(" Scissor optimization %s",
mScissorOptimizationDisabled ? "disabled" : "enabled");
} else {
INIT_LOGD(" Scissor optimization enabled");
}
}
void OpenGLRenderer::initLight(float lightRadius, uint8_t ambientShadowAlpha,
uint8_t spotShadowAlpha) {
mLightRadius = lightRadius;
mAmbientShadowAlpha = ambientShadowAlpha;
mSpotShadowAlpha = spotShadowAlpha;
}
void OpenGLRenderer::setLightCenter(const Vector3& lightCenter) {
mLightCenter = lightCenter;
}
///////////////////////////////////////////////////////////////////////////////
// Setup
///////////////////////////////////////////////////////////////////////////////
void OpenGLRenderer::onViewportInitialized() {
glDisable(GL_DITHER);
glClearColor(0.0f, 0.0f, 0.0f, 0.0f);
mFirstFrameAfterResize = true;
}
void OpenGLRenderer::setupFrameState(float left, float top,
float right, float bottom, bool opaque) {
mCaches.clearGarbage();
mState.initializeSaveStack(left, top, right, bottom, mLightCenter);
mOpaque = opaque;
mTilingClip.set(left, top, right, bottom);
}
void OpenGLRenderer::startFrame() {
if (mFrameStarted) return;
mFrameStarted = true;
mState.setDirtyClip(true);
discardFramebuffer(mTilingClip.left, mTilingClip.top, mTilingClip.right, mTilingClip.bottom);
mRenderState.setViewport(mState.getWidth(), mState.getHeight());
// Functors break the tiling extension in pretty spectacular ways
// This ensures we don't use tiling when a functor is going to be
// invoked during the frame
mSuppressTiling = mCaches.hasRegisteredFunctors()
|| mFirstFrameAfterResize;
mFirstFrameAfterResize = false;
startTilingCurrentClip(true);
debugOverdraw(true, true);
clear(mTilingClip.left, mTilingClip.top,
mTilingClip.right, mTilingClip.bottom, mOpaque);
}
void OpenGLRenderer::prepareDirty(float left, float top,
float right, float bottom, bool opaque) {
setupFrameState(left, top, right, bottom, opaque);
// Layer renderers will start the frame immediately
// The framebuffer renderer will first defer the display list
// for each layer and wait until the first drawing command
// to start the frame
if (currentSnapshot()->fbo == 0) {
mRenderState.blend().syncEnabled();
updateLayers();
} else {
startFrame();
}
}
void OpenGLRenderer::discardFramebuffer(float left, float top, float right, float bottom) {
// If we know that we are going to redraw the entire framebuffer,
// perform a discard to let the driver know we don't need to preserve
// the back buffer for this frame.
if (mCaches.extensions().hasDiscardFramebuffer() &&
left <= 0.0f && top <= 0.0f && right >= mState.getWidth() && bottom >= mState.getHeight()) {
const bool isFbo = getTargetFbo() == 0;
const GLenum attachments[] = {
isFbo ? (const GLenum) GL_COLOR_EXT : (const GLenum) GL_COLOR_ATTACHMENT0,
isFbo ? (const GLenum) GL_STENCIL_EXT : (const GLenum) GL_STENCIL_ATTACHMENT };
glDiscardFramebufferEXT(GL_FRAMEBUFFER, 1, attachments);
}
}
void OpenGLRenderer::clear(float left, float top, float right, float bottom, bool opaque) {
if (!opaque) {
mRenderState.scissor().setEnabled(true);
mRenderState.scissor().set(left, getViewportHeight() - bottom, right - left, bottom - top);
glClear(GL_COLOR_BUFFER_BIT);
mDirty = true;
return;
}
mRenderState.scissor().reset();
}
void OpenGLRenderer::startTilingCurrentClip(bool opaque, bool expand) {
if (!mSuppressTiling) {
const Snapshot* snapshot = currentSnapshot();
const Rect* clip = &mTilingClip;
if (snapshot->flags & Snapshot::kFlagFboTarget) {
clip = &(snapshot->layer->clipRect);
}
startTiling(*clip, getViewportHeight(), opaque, expand);
}
}
void OpenGLRenderer::startTiling(const Rect& clip, int windowHeight, bool opaque, bool expand) {
if (!mSuppressTiling) {
if(expand) {
// Expand the startTiling region by 1
int leftNotZero = (clip.left > 0) ? 1 : 0;
int topNotZero = (windowHeight - clip.bottom > 0) ? 1 : 0;
mCaches.startTiling(
clip.left - leftNotZero,
windowHeight - clip.bottom - topNotZero,
clip.right - clip.left + leftNotZero + 1,
clip.bottom - clip.top + topNotZero + 1,
opaque);
} else {
mCaches.startTiling(clip.left, windowHeight - clip.bottom,
clip.right - clip.left, clip.bottom - clip.top, opaque);
}
}
}
void OpenGLRenderer::endTiling() {
if (!mSuppressTiling) mCaches.endTiling();
}
bool OpenGLRenderer::finish() {
renderOverdraw();
endTiling();
mTempPaths.clear();
// When finish() is invoked on FBO 0 we've reached the end
// of the current frame
if (getTargetFbo() == 0) {
mCaches.pathCache.trim();
mCaches.tessellationCache.trim();
}
if (!suppressErrorChecks()) {
#if DEBUG_OPENGL
GLUtils::dumpGLErrors();
#endif
#if DEBUG_MEMORY_USAGE
mCaches.dumpMemoryUsage();
#else
if (Properties::debugLevel & kDebugMemory) {
mCaches.dumpMemoryUsage();
}
#endif
}
mFrameStarted = false;
return reportAndClearDirty();
}
void OpenGLRenderer::resumeAfterLayer() {
mRenderState.setViewport(getViewportWidth(), getViewportHeight());
mRenderState.bindFramebuffer(currentSnapshot()->fbo);
debugOverdraw(true, false);
mRenderState.scissor().reset();
dirtyClip();
}
void OpenGLRenderer::callDrawGLFunction(Functor* functor, Rect& dirty) {
if (mState.currentlyIgnored()) return;
Rect clip(mState.currentClipRect());
clip.snapToPixelBoundaries();
// Since we don't know what the functor will draw, let's dirty
// the entire clip region
if (hasLayer()) {
dirtyLayerUnchecked(clip, getRegion());
}
DrawGlInfo info;
info.clipLeft = clip.left;
info.clipTop = clip.top;
info.clipRight = clip.right;
info.clipBottom = clip.bottom;
info.isLayer = hasLayer();
info.width = getViewportWidth();
info.height = getViewportHeight();
currentTransform()->copyTo(&info.transform[0]);
bool prevDirtyClip = mState.getDirtyClip();
// setup GL state for functor
if (mState.getDirtyClip()) {
setStencilFromClip(); // can issue draws, so must precede enableScissor()/interrupt()
}
if (mRenderState.scissor().setEnabled(true) || prevDirtyClip) {
setScissorFromClip();
}
mRenderState.invokeFunctor(functor, DrawGlInfo::kModeDraw, &info);
// Scissor may have been modified, reset dirty clip
dirtyClip();
mDirty = true;
}
///////////////////////////////////////////////////////////////////////////////
// Debug
///////////////////////////////////////////////////////////////////////////////
void OpenGLRenderer::eventMarkDEBUG(const char* fmt, ...) const {
#if DEBUG_DETAILED_EVENTS
const int BUFFER_SIZE = 256;
va_list ap;
char buf[BUFFER_SIZE];
va_start(ap, fmt);
vsnprintf(buf, BUFFER_SIZE, fmt, ap);
va_end(ap);
eventMark(buf);
#endif
}
void OpenGLRenderer::eventMark(const char* name) const {
mCaches.eventMark(0, name);
}
void OpenGLRenderer::startMark(const char* name) const {
mCaches.startMark(0, name);
}
void OpenGLRenderer::endMark() const {
mCaches.endMark();
}
void OpenGLRenderer::debugOverdraw(bool enable, bool clear) {
mRenderState.debugOverdraw(enable, clear);
}
void OpenGLRenderer::renderOverdraw() {
if (Properties::debugOverdraw && getTargetFbo() == 0) {
const Rect* clip = &mTilingClip;
mRenderState.scissor().setEnabled(true);
mRenderState.scissor().set(clip->left,
mState.firstSnapshot()->getViewportHeight() - clip->bottom,
clip->right - clip->left,
clip->bottom - clip->top);
// 1x overdraw
mRenderState.stencil().enableDebugTest(2);
drawColor(mCaches.getOverdrawColor(1), SkXfermode::kSrcOver_Mode);
// 2x overdraw
mRenderState.stencil().enableDebugTest(3);
drawColor(mCaches.getOverdrawColor(2), SkXfermode::kSrcOver_Mode);
// 3x overdraw
mRenderState.stencil().enableDebugTest(4);
drawColor(mCaches.getOverdrawColor(3), SkXfermode::kSrcOver_Mode);
// 4x overdraw and higher
mRenderState.stencil().enableDebugTest(4, true);
drawColor(mCaches.getOverdrawColor(4), SkXfermode::kSrcOver_Mode);
mRenderState.stencil().disable();
}
}
///////////////////////////////////////////////////////////////////////////////
// Layers
///////////////////////////////////////////////////////////////////////////////
bool OpenGLRenderer::updateLayer(Layer* layer, bool inFrame) {
if (layer->deferredUpdateScheduled && layer->renderer
&& layer->renderNode.get() && layer->renderNode->isRenderable()) {
if (inFrame) {
endTiling();
debugOverdraw(false, false);
}
if (CC_UNLIKELY(inFrame || Properties::drawDeferDisabled)) {
layer->render(*this);
} else {
layer->defer(*this);
}
if (inFrame) {
resumeAfterLayer();
startTilingCurrentClip();
}
layer->debugDrawUpdate = Properties::debugLayersUpdates;
layer->hasDrawnSinceUpdate = false;
return true;
}
return false;
}
void OpenGLRenderer::updateLayers() {
// If draw deferring is enabled this method will simply defer
// the display list of each individual layer. The layers remain
// in the layer updates list which will be cleared by flushLayers().
int count = mLayerUpdates.size();
if (count > 0) {
if (CC_UNLIKELY(Properties::drawDeferDisabled)) {
startMark("Layer Updates");
} else {
startMark("Defer Layer Updates");
}
// Note: it is very important to update the layers in order
for (int i = 0; i < count; i++) {
Layer* layer = mLayerUpdates.itemAt(i).get();
updateLayer(layer, false);
}
if (CC_UNLIKELY(Properties::drawDeferDisabled)) {
mLayerUpdates.clear();
mRenderState.bindFramebuffer(getTargetFbo());
}
endMark();
}
}
void OpenGLRenderer::flushLayers() {
int count = mLayerUpdates.size();
if (count > 0) {
startMark("Apply Layer Updates");
// Note: it is very important to update the layers in order
for (int i = 0; i < count; i++) {
mLayerUpdates.itemAt(i)->flush();
}
mLayerUpdates.clear();
mRenderState.bindFramebuffer(getTargetFbo());
endMark();
}
}
void OpenGLRenderer::pushLayerUpdate(Layer* layer) {
if (layer) {
// Make sure we don't introduce duplicates.
// SortedVector would do this automatically but we need to respect
// the insertion order. The linear search is not an issue since
// this list is usually very short (typically one item, at most a few)
for (int i = mLayerUpdates.size() - 1; i >= 0; i--) {
if (mLayerUpdates.itemAt(i) == layer) {
return;
}
}
mLayerUpdates.push_back(layer);
}
}
void OpenGLRenderer::cancelLayerUpdate(Layer* layer) {
if (layer) {
for (int i = mLayerUpdates.size() - 1; i >= 0; i--) {
if (mLayerUpdates.itemAt(i) == layer) {
mLayerUpdates.removeAt(i);
break;
}
}
}
}
void OpenGLRenderer::flushLayerUpdates() {
ATRACE_NAME("Update HW Layers");
mRenderState.blend().syncEnabled();
updateLayers();
flushLayers();
// Wait for all the layer updates to be executed
glFinish();
}
void OpenGLRenderer::markLayersAsBuildLayers() {
for (size_t i = 0; i < mLayerUpdates.size(); i++) {
mLayerUpdates[i]->wasBuildLayered = true;
}
}
///////////////////////////////////////////////////////////////////////////////
// State management
///////////////////////////////////////////////////////////////////////////////
void OpenGLRenderer::onSnapshotRestored(const Snapshot& removed, const Snapshot& restored) {
bool restoreViewport = removed.flags & Snapshot::kFlagIsFboLayer;
bool restoreClip = removed.flags & Snapshot::kFlagClipSet;
bool restoreLayer = removed.flags & Snapshot::kFlagIsLayer;
if (restoreViewport) {
mRenderState.setViewport(getViewportWidth(), getViewportHeight());
}
if (restoreClip) {
dirtyClip();
}
if (restoreLayer) {
endMark(); // Savelayer
ATRACE_END(); // SaveLayer
startMark("ComposeLayer");
composeLayer(removed, restored);
endMark();
}
}
///////////////////////////////////////////////////////////////////////////////
// Layers
///////////////////////////////////////////////////////////////////////////////
int OpenGLRenderer::saveLayer(float left, float top, float right, float bottom,
const SkPaint* paint, int flags, const SkPath* convexMask) {
// force matrix/clip isolation for layer
flags |= SkCanvas::kClip_SaveFlag | SkCanvas::kMatrix_SaveFlag;
const int count = mState.saveSnapshot(flags);
if (!mState.currentlyIgnored()) {
createLayer(left, top, right, bottom, paint, flags, convexMask);
}
return count;
}
void OpenGLRenderer::calculateLayerBoundsAndClip(Rect& bounds, Rect& clip, bool fboLayer) {
const Rect untransformedBounds(bounds);
currentTransform()->mapRect(bounds);
// Layers only make sense if they are in the framebuffer's bounds
if (bounds.intersect(mState.currentClipRect())) {
// We cannot work with sub-pixels in this case
bounds.snapToPixelBoundaries();
// When the layer is not an FBO, we may use glCopyTexImage so we
// need to make sure the layer does not extend outside the bounds
// of the framebuffer
const Snapshot& previous = *(currentSnapshot()->previous);
Rect previousViewport(0, 0, previous.getViewportWidth(), previous.getViewportHeight());
if (!bounds.intersect(previousViewport)) {
bounds.setEmpty();
} else if (fboLayer) {
clip.set(bounds);
mat4 inverse;
inverse.loadInverse(*currentTransform());
inverse.mapRect(clip);
clip.snapToPixelBoundaries();
if (clip.intersect(untransformedBounds)) {
clip.translate(-untransformedBounds.left, -untransformedBounds.top);
bounds.set(untransformedBounds);
} else {
clip.setEmpty();
}
}
} else {
bounds.setEmpty();
}
}
void OpenGLRenderer::updateSnapshotIgnoreForLayer(const Rect& bounds, const Rect& clip,
bool fboLayer, int alpha) {
if (bounds.isEmpty() || bounds.getWidth() > mCaches.maxTextureSize ||
bounds.getHeight() > mCaches.maxTextureSize ||
(fboLayer && clip.isEmpty())) {
writableSnapshot()->empty = fboLayer;
} else {
writableSnapshot()->invisible = writableSnapshot()->invisible || (alpha <= 0 && fboLayer);
}
}
int OpenGLRenderer::saveLayerDeferred(float left, float top, float right, float bottom,
const SkPaint* paint, int flags) {
const int count = mState.saveSnapshot(flags);
if (!mState.currentlyIgnored() && (flags & SkCanvas::kClipToLayer_SaveFlag)) {
// initialize the snapshot as though it almost represents an FBO layer so deferred draw
// operations will be able to store and restore the current clip and transform info, and
// quick rejection will be correct (for display lists)
Rect bounds(left, top, right, bottom);
Rect clip;
calculateLayerBoundsAndClip(bounds, clip, true);
updateSnapshotIgnoreForLayer(bounds, clip, true, getAlphaDirect(paint));
if (!mState.currentlyIgnored()) {
writableSnapshot()->resetTransform(-bounds.left, -bounds.top, 0.0f);
writableSnapshot()->resetClip(clip.left, clip.top, clip.right, clip.bottom);
writableSnapshot()->initializeViewport(bounds.getWidth(), bounds.getHeight());
writableSnapshot()->roundRectClipState = nullptr;
}
}
return count;
}
/**
* Layers are viewed by Skia are slightly different than layers in image editing
* programs (for instance.) When a layer is created, previously created layers
* and the frame buffer still receive every drawing command. For instance, if a
* layer is created and a shape intersecting the bounds of the layers and the
* framebuffer is draw, the shape will be drawn on both (unless the layer was
* created with the SkCanvas::kClipToLayer_SaveFlag flag.)
*
* A way to implement layers is to create an FBO for each layer, backed by an RGBA
* texture. Unfortunately, this is inefficient as it requires every primitive to
* be drawn n + 1 times, where n is the number of active layers. In practice this
* means, for every primitive:
* - Switch active frame buffer
* - Change viewport, clip and projection matrix
* - Issue the drawing
*
* Switching rendering target n + 1 times per drawn primitive is extremely costly.
* To avoid this, layers are implemented in a different way here, at least in the
* general case. FBOs are used, as an optimization, when the "clip to layer" flag
* is set. When this flag is set we can redirect all drawing operations into a
* single FBO.
*
* This implementation relies on the frame buffer being at least RGBA 8888. When
* a layer is created, only a texture is created, not an FBO. The content of the
* frame buffer contained within the layer's bounds is copied into this texture
* using glCopyTexImage2D(). The layer's region is then cleared(1) in the frame
* buffer and drawing continues as normal. This technique therefore treats the
* frame buffer as a scratch buffer for the layers.
*
* To compose the layers back onto the frame buffer, each layer texture
* (containing the original frame buffer data) is drawn as a simple quad over
* the frame buffer. The trick is that the quad is set as the composition
* destination in the blending equation, and the frame buffer becomes the source
* of the composition.
*
* Drawing layers with an alpha value requires an extra step before composition.
* An empty quad is drawn over the layer's region in the frame buffer. This quad
* is drawn with the rgba color (0,0,0,alpha). The alpha value offered by the
* quad is used to multiply the colors in the frame buffer. This is achieved by
* changing the GL blend functions for the GL_FUNC_ADD blend equation to
* GL_ZERO, GL_SRC_ALPHA.
*
* Because glCopyTexImage2D() can be slow, an alternative implementation might
* be use to draw a single clipped layer. The implementation described above
* is correct in every case.
*
* (1) The frame buffer is actually not cleared right away. To allow the GPU
* to potentially optimize series of calls to glCopyTexImage2D, the frame
* buffer is left untouched until the first drawing operation. Only when
* something actually gets drawn are the layers regions cleared.
*/
bool OpenGLRenderer::createLayer(float left, float top, float right, float bottom,
const SkPaint* paint, int flags, const SkPath* convexMask) {
LAYER_LOGD("Requesting layer %.2fx%.2f", right - left, bottom - top);
LAYER_LOGD("Layer cache size = %d", mCaches.layerCache.getSize());
const bool fboLayer = flags & SkCanvas::kClipToLayer_SaveFlag;
// Window coordinates of the layer
Rect clip;
Rect bounds(left, top, right, bottom);
calculateLayerBoundsAndClip(bounds, clip, fboLayer);
updateSnapshotIgnoreForLayer(bounds, clip, fboLayer, getAlphaDirect(paint));
// Bail out if we won't draw in this snapshot
if (mState.currentlyIgnored()) {
return false;
}
mCaches.textureState().activateTexture(0);
Layer* layer = mCaches.layerCache.get(mRenderState, bounds.getWidth(), bounds.getHeight());
if (!layer) {
return false;
}
layer->setPaint(paint);
layer->layer.set(bounds);
layer->texCoords.set(0.0f, bounds.getHeight() / float(layer->getHeight()),
bounds.getWidth() / float(layer->getWidth()), 0.0f);
layer->setBlend(true);
layer->setDirty(false);
layer->setConvexMask(convexMask); // note: the mask must be cleared before returning to the cache
// Save the layer in the snapshot
writableSnapshot()->flags |= Snapshot::kFlagIsLayer;
writableSnapshot()->layer = layer;
ATRACE_FORMAT_BEGIN("%ssaveLayer %ux%u",
fboLayer ? "" : "unclipped ",
layer->getWidth(), layer->getHeight());
startMark("SaveLayer");
if (fboLayer) {
return createFboLayer(layer, bounds, clip);
} else {
// Copy the framebuffer into the layer
layer->bindTexture();
if (!bounds.isEmpty()) {
if (layer->isEmpty()) {
// Workaround for some GL drivers. When reading pixels lying outside
// of the window we should get undefined values for those pixels.
// Unfortunately some drivers will turn the entire target texture black
// when reading outside of the window.
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, layer->getWidth(), layer->getHeight(),
0, GL_RGBA, GL_UNSIGNED_BYTE, nullptr);
layer->setEmpty(false);
}
glCopyTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0,
bounds.left, getViewportHeight() - bounds.bottom,
bounds.getWidth(), bounds.getHeight());
// Enqueue the buffer coordinates to clear the corresponding region later
mLayers.push_back(Rect(bounds));
}
}
return true;
}
bool OpenGLRenderer::createFboLayer(Layer* layer, Rect& bounds, Rect& clip) {
layer->clipRect.set(clip);
layer->setFbo(mCaches.fboCache.get());
writableSnapshot()->region = &writableSnapshot()->layer->region;
writableSnapshot()->flags |= Snapshot::kFlagFboTarget | Snapshot::kFlagIsFboLayer;
writableSnapshot()->fbo = layer->getFbo();
writableSnapshot()->resetTransform(-bounds.left, -bounds.top, 0.0f);
writableSnapshot()->resetClip(clip.left, clip.top, clip.right, clip.bottom);
writableSnapshot()->initializeViewport(bounds.getWidth(), bounds.getHeight());
writableSnapshot()->roundRectClipState = nullptr;
endTiling();
debugOverdraw(false, false);
// Bind texture to FBO
mRenderState.bindFramebuffer(layer->getFbo());
layer->bindTexture();
// Initialize the texture if needed
if (layer->isEmpty()) {
layer->allocateTexture();
layer->setEmpty(false);
}
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D,
layer->getTextureId(), 0);
// Expand the startTiling region by 1
startTilingCurrentClip(true, true);
// Clear the FBO, expand the clear region by 1 to get nice bilinear filtering
mRenderState.scissor().setEnabled(true);
mRenderState.scissor().set(clip.left - 1.0f, bounds.getHeight() - clip.bottom - 1.0f,
clip.getWidth() + 2.0f, clip.getHeight() + 2.0f);
glClear(GL_COLOR_BUFFER_BIT);
dirtyClip();
// Change the ortho projection
mRenderState.setViewport(bounds.getWidth(), bounds.getHeight());
return true;
}
/**
* Read the documentation of createLayer() before doing anything in this method.
*/
void OpenGLRenderer::composeLayer(const Snapshot& removed, const Snapshot& restored) {
if (!removed.layer) {
ALOGE("Attempting to compose a layer that does not exist");
return;
}
Layer* layer = removed.layer;
const Rect& rect = layer->layer;
const bool fboLayer = removed.flags & Snapshot::kFlagIsFboLayer;
bool clipRequired = false;
mState.calculateQuickRejectForScissor(rect.left, rect.top, rect.right, rect.bottom,
&clipRequired, nullptr, false); // safely ignore return, should never be rejected
mRenderState.scissor().setEnabled(mScissorOptimizationDisabled || clipRequired);
if (fboLayer) {
endTiling();
// Detach the texture from the FBO
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, 0, 0);
layer->removeFbo(false);
// Unbind current FBO and restore previous one
mRenderState.bindFramebuffer(restored.fbo);
debugOverdraw(true, false);
startTilingCurrentClip();
}
if (!fboLayer && layer->getAlpha() < 255) {
SkPaint layerPaint;
layerPaint.setAlpha(layer->getAlpha());
layerPaint.setXfermodeMode(SkXfermode::kDstIn_Mode);
layerPaint.setColorFilter(layer->getColorFilter());
drawColorRect(rect.left, rect.top, rect.right, rect.bottom, &layerPaint, true);
// Required below, composeLayerRect() will divide by 255
layer->setAlpha(255);
}
mRenderState.meshState().unbindMeshBuffer();
mCaches.textureState().activateTexture(0);
// When the layer is stored in an FBO, we can save a bit of fillrate by
// drawing only the dirty region
if (fboLayer) {
dirtyLayer(rect.left, rect.top, rect.right, rect.bottom, *restored.transform);
composeLayerRegion(layer, rect);
} else if (!rect.isEmpty()) {
dirtyLayer(rect.left, rect.top, rect.right, rect.bottom);
save(0);
// the layer contains screen buffer content that shouldn't be alpha modulated
// (and any necessary alpha modulation was handled drawing into the layer)
writableSnapshot()->alpha = 1.0f;
composeLayerRectSwapped(layer, rect);
restore();
}
dirtyClip();
// Failing to add the layer to the cache should happen only if the layer is too large
layer->setConvexMask(nullptr);
if (!mCaches.layerCache.put(layer)) {
LAYER_LOGD("Deleting layer");
layer->decStrong(nullptr);
}
}
void OpenGLRenderer::drawTextureLayer(Layer* layer, const Rect& rect) {
const bool tryToSnap = !layer->getForceFilter()
&& layer->getWidth() == (uint32_t) rect.getWidth()
&& layer->getHeight() == (uint32_t) rect.getHeight();
Glop glop;
GlopBuilder(mRenderState, mCaches, &glop)
.setRoundRectClipState(currentSnapshot()->roundRectClipState)
.setMeshTexturedUvQuad(nullptr, Rect(0, 1, 1, 0)) // TODO: simplify with VBO
.setFillTextureLayer(*layer, getLayerAlpha(layer))
.setTransform(*currentSnapshot(), TransformFlags::None)
.setModelViewMapUnitToRectOptionalSnap(tryToSnap, rect)
.build();
renderGlop(glop);
}
void OpenGLRenderer::composeLayerRectSwapped(Layer* layer, const Rect& rect) {
Glop glop;
GlopBuilder(mRenderState, mCaches, &glop)
.setRoundRectClipState(currentSnapshot()->roundRectClipState)
.setMeshTexturedUvQuad(nullptr, layer->texCoords)
.setFillLayer(layer->getTexture(), layer->getColorFilter(),
getLayerAlpha(layer), layer->getMode(), Blend::ModeOrderSwap::Swap)
.setTransform(*currentSnapshot(), TransformFlags::MeshIgnoresCanvasTransform)
.setModelViewMapUnitToRect(rect)
.build();
renderGlop(glop);
}
void OpenGLRenderer::composeLayerRect(Layer* layer, const Rect& rect) {
if (layer->isTextureLayer()) {
EVENT_LOGD("composeTextureLayerRect");
drawTextureLayer(layer, rect);
} else {
EVENT_LOGD("composeHardwareLayerRect");
const bool tryToSnap = layer->getWidth() == static_cast<uint32_t>(rect.getWidth())
&& layer->getHeight() == static_cast<uint32_t>(rect.getHeight());
Glop glop;
GlopBuilder(mRenderState, mCaches, &glop)
.setRoundRectClipState(currentSnapshot()->roundRectClipState)
.setMeshTexturedUvQuad(nullptr, layer->texCoords)
.setFillLayer(layer->getTexture(), layer->getColorFilter(), getLayerAlpha(layer), layer->getMode(), Blend::ModeOrderSwap::NoSwap)
.setTransform(*currentSnapshot(), TransformFlags::None)
.setModelViewMapUnitToRectOptionalSnap(tryToSnap, rect)
.build();
renderGlop(glop);
}
}
/**
* Issues the command X, and if we're composing a save layer to the fbo or drawing a newly updated
* hardware layer with overdraw debug on, draws again to the stencil only, so that these draw
* operations are correctly counted twice for overdraw. NOTE: assumes composeLayerRegion only used
* by saveLayer's restore
*/
#define DRAW_DOUBLE_STENCIL_IF(COND, DRAW_COMMAND) { \
DRAW_COMMAND; \
if (CC_UNLIKELY(Properties::debugOverdraw && getTargetFbo() == 0 && COND)) { \
glColorMask(GL_FALSE, GL_FALSE, GL_FALSE, GL_FALSE); \
DRAW_COMMAND; \
glColorMask(GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE); \
} \
}
#define DRAW_DOUBLE_STENCIL(DRAW_COMMAND) DRAW_DOUBLE_STENCIL_IF(true, DRAW_COMMAND)
// This class is purely for inspection. It inherits from SkShader, but Skia does not know how to
// use it. The OpenGLRenderer will look at it to find its Layer and whether it is opaque.
class LayerShader : public SkShader {
public:
LayerShader(Layer* layer, const SkMatrix* localMatrix)
: INHERITED(localMatrix)
, mLayer(layer) {
}
virtual bool asACustomShader(void** data) const override {
if (data) {
*data = static_cast<void*>(mLayer);
}
return true;
}
virtual bool isOpaque() const override {
return !mLayer->isBlend();
}
protected:
virtual void shadeSpan(int x, int y, SkPMColor[], int count) {
LOG_ALWAYS_FATAL("LayerShader should never be drawn with raster backend.");
}
virtual void flatten(SkWriteBuffer&) const override {
LOG_ALWAYS_FATAL("LayerShader should never be flattened.");
}
virtual Factory getFactory() const override {
LOG_ALWAYS_FATAL("LayerShader should never be created from a stream.");
return nullptr;
}
private:
// Unowned.
Layer* mLayer;
typedef SkShader INHERITED;
};
void OpenGLRenderer::composeLayerRegion(Layer* layer, const Rect& rect) {
if (CC_UNLIKELY(layer->region.isEmpty())) return; // nothing to draw
if (layer->getConvexMask()) {
save(SkCanvas::kClip_SaveFlag | SkCanvas::kMatrix_SaveFlag);
// clip to the area of the layer the mask can be larger
clipRect(rect.left, rect.top, rect.right, rect.bottom, SkRegion::kIntersect_Op);
SkPaint paint;
paint.setAntiAlias(true);
paint.setColor(SkColorSetARGB(int(getLayerAlpha(layer) * 255), 0, 0, 0));
// create LayerShader to map SaveLayer content into subsequent draw
SkMatrix shaderMatrix;
shaderMatrix.setTranslate(rect.left, rect.bottom);
shaderMatrix.preScale(1, -1);
LayerShader layerShader(layer, &shaderMatrix);
paint.setShader(&layerShader);
// Since the drawing primitive is defined in local drawing space,
// we don't need to modify the draw matrix
const SkPath* maskPath = layer->getConvexMask();
DRAW_DOUBLE_STENCIL(drawConvexPath(*maskPath, &paint));
paint.setShader(nullptr);
restore();
return;
}
if (layer->region.isRect()) {
layer->setRegionAsRect();
DRAW_DOUBLE_STENCIL(composeLayerRect(layer, layer->regionRect));
layer->region.clear();
return;
}
EVENT_LOGD("composeLayerRegion");
// standard Region based draw
size_t count;
const android::Rect* rects;
Region safeRegion;
if (CC_LIKELY(hasRectToRectTransform())) {
rects = layer->region.getArray(&count);
} else {
safeRegion = Region::createTJunctionFreeRegion(layer->region);
rects = safeRegion.getArray(&count);
}
const float texX = 1.0f / float(layer->getWidth());
const float texY = 1.0f / float(layer->getHeight());
const float height = rect.getHeight();
TextureVertex quadVertices[count * 4];
TextureVertex* mesh = &quadVertices[0];
for (size_t i = 0; i < count; i++) {
const android::Rect* r = &rects[i];
const float u1 = r->left * texX;
const float v1 = (height - r->top) * texY;
const float u2 = r->right * texX;
const float v2 = (height - r->bottom) * texY;
// TODO: Reject quads outside of the clip
TextureVertex::set(mesh++, r->left, r->top, u1, v1);
TextureVertex::set(mesh++, r->right, r->top, u2, v1);
TextureVertex::set(mesh++, r->left, r->bottom, u1, v2);
TextureVertex::set(mesh++, r->right, r->bottom, u2, v2);
}
Rect modelRect = Rect(rect.getWidth(), rect.getHeight());
Glop glop;
GlopBuilder(mRenderState, mCaches, &glop)
.setRoundRectClipState(currentSnapshot()->roundRectClipState)
.setMeshTexturedIndexedQuads(&quadVertices[0], count * 6)
.setFillLayer(layer->getTexture(), layer->getColorFilter(), getLayerAlpha(layer), layer->getMode(), Blend::ModeOrderSwap::NoSwap)
.setTransform(*currentSnapshot(), TransformFlags::None)
.setModelViewOffsetRectSnap(rect.left, rect.top, modelRect)
.build();
DRAW_DOUBLE_STENCIL_IF(!layer->hasDrawnSinceUpdate, renderGlop(glop));
#if DEBUG_LAYERS_AS_REGIONS
drawRegionRectsDebug(layer->region);
#endif
layer->region.clear();
}
#if DEBUG_LAYERS_AS_REGIONS
void OpenGLRenderer::drawRegionRectsDebug(const Region& region) {
size_t count;
const android::Rect* rects = region.getArray(&count);
uint32_t colors[] = {
0x7fff0000, 0x7f00ff00,
0x7f0000ff, 0x7fff00ff,
};
int offset = 0;
int32_t top = rects[0].top;
for (size_t i = 0; i < count; i++) {
if (top != rects[i].top) {
offset ^= 0x2;
top = rects[i].top;
}
SkPaint paint;
paint.setColor(colors[offset + (i & 0x1)]);
Rect r(rects[i].left, rects[i].top, rects[i].right, rects[i].bottom);
drawColorRect(r.left, r.top, r.right, r.bottom, paint);
}
}
#endif
void OpenGLRenderer::drawRegionRects(const SkRegion& region, const SkPaint& paint, bool dirty) {
Vector<float> rects;
SkRegion::Iterator it(region);
while (!it.done()) {
const SkIRect& r = it.rect();
rects.push(r.fLeft);
rects.push(r.fTop);
rects.push(r.fRight);
rects.push(r.fBottom);
it.next();
}
drawColorRects(rects.array(), rects.size(), &paint, true, dirty, false);
}
void OpenGLRenderer::dirtyLayer(const float left, const float top,
const float right, const float bottom, const Matrix4& transform) {
if (hasLayer()) {
Rect bounds(left, top, right, bottom);
transform.mapRect(bounds);
dirtyLayerUnchecked(bounds, getRegion());
}
}
void OpenGLRenderer::dirtyLayer(const float left, const float top,
const float right, const float bottom) {
if (hasLayer()) {
Rect bounds(left, top, right, bottom);
dirtyLayerUnchecked(bounds, getRegion());
}
}
void OpenGLRenderer::dirtyLayerUnchecked(Rect& bounds, Region* region) {
if (CC_LIKELY(!bounds.isEmpty() && bounds.intersect(mState.currentClipRect()))) {
bounds.snapToPixelBoundaries();
android::Rect dirty(bounds.left, bounds.top, bounds.right, bounds.bottom);
if (!dirty.isEmpty()) {
region->orSelf(dirty);
}
}
}
void OpenGLRenderer::clearLayerRegions() {
const size_t quadCount = mLayers.size();
if (quadCount == 0) return;
if (!mState.currentlyIgnored()) {
EVENT_LOGD("clearLayerRegions");
// Doing several glScissor/glClear here can negatively impact
// GPUs with a tiler architecture, instead we draw quads with
// the Clear blending mode
// The list contains bounds that have already been clipped
// against their initial clip rect, and the current clip
// is likely different so we need to disable clipping here
bool scissorChanged = mRenderState.scissor().setEnabled(false);
Vertex mesh[quadCount * 4];
Vertex* vertex = mesh;
for (uint32_t i = 0; i < quadCount; i++) {
const Rect& bounds = mLayers[i];
Vertex::set(vertex++, bounds.left, bounds.top);
Vertex::set(vertex++, bounds.right, bounds.top);
Vertex::set(vertex++, bounds.left, bounds.bottom);
Vertex::set(vertex++, bounds.right, bounds.bottom);
}
// We must clear the list of dirty rects before we
// call clearLayerRegions() in renderGlop to prevent
// stencil setup from doing the same thing again
mLayers.clear();
const int transformFlags = TransformFlags::MeshIgnoresCanvasTransform;
Glop glop;
GlopBuilder(mRenderState, mCaches, &glop)
.setRoundRectClipState(nullptr) // clear ignores clip state
.setMeshIndexedQuads(&mesh[0], quadCount)
.setFillClear()
.setTransform(*currentSnapshot(), transformFlags)
.setModelViewOffsetRect(0, 0, Rect(currentSnapshot()->getClipRect()))
.build();
renderGlop(glop, GlopRenderType::LayerClear);
if (scissorChanged) mRenderState.scissor().setEnabled(true);
} else {
mLayers.clear();
}
}
///////////////////////////////////////////////////////////////////////////////
// State Deferral
///////////////////////////////////////////////////////////////////////////////
bool OpenGLRenderer::storeDisplayState(DeferredDisplayState& state, int stateDeferFlags) {
const Rect& currentClip = mState.currentClipRect();
const mat4* currentMatrix = currentTransform();
if (stateDeferFlags & kStateDeferFlag_Draw) {
// state has bounds initialized in local coordinates
if (!state.mBounds.isEmpty()) {
currentMatrix->mapRect(state.mBounds);
Rect clippedBounds(state.mBounds);
// NOTE: if we ever want to use this clipping info to drive whether the scissor
// is used, it should more closely duplicate the quickReject logic (in how it uses
// snapToPixelBoundaries)
if (!clippedBounds.intersect(currentClip)) {
// quick rejected
return true;
}
state.mClipSideFlags = kClipSide_None;
if (!currentClip.contains(state.mBounds)) {
int& flags = state.mClipSideFlags;
// op partially clipped, so record which sides are clipped for clip-aware merging
if (currentClip.left > state.mBounds.left) flags |= kClipSide_Left;
if (currentClip.top > state.mBounds.top) flags |= kClipSide_Top;
if (currentClip.right < state.mBounds.right) flags |= kClipSide_Right;
if (currentClip.bottom < state.mBounds.bottom) flags |= kClipSide_Bottom;
}
state.mBounds.set(clippedBounds);
} else {
// Empty bounds implies size unknown. Label op as conservatively clipped to disable
// overdraw avoidance (since we don't know what it overlaps)
state.mClipSideFlags = kClipSide_ConservativeFull;
state.mBounds.set(currentClip);
}
}
state.mClipValid = (stateDeferFlags & kStateDeferFlag_Clip);
if (state.mClipValid) {
state.mClip.set(currentClip);
}
// Transform and alpha always deferred, since they are used by state operations
// (Note: saveLayer/restore use colorFilter and alpha, so we just save restore everything)
state.mMatrix.load(*currentMatrix);
state.mAlpha = currentSnapshot()->alpha;
// always store/restore, since these are just pointers
state.mRoundRectClipState = currentSnapshot()->roundRectClipState;
state.mProjectionPathMask = currentSnapshot()->projectionPathMask;
return false;
}
void OpenGLRenderer::restoreDisplayState(const DeferredDisplayState& state, bool skipClipRestore) {
setMatrix(state.mMatrix);
writableSnapshot()->alpha = state.mAlpha;
writableSnapshot()->roundRectClipState = state.mRoundRectClipState;
writableSnapshot()->projectionPathMask = state.mProjectionPathMask;
if (state.mClipValid && !skipClipRestore) {
writableSnapshot()->setClip(state.mClip.left, state.mClip.top,
state.mClip.right, state.mClip.bottom);
dirtyClip();
}
}
/**
* Merged multidraw (such as in drawText and drawBitmaps rely on the fact that no clipping is done
* in the draw path. Instead, clipping is done ahead of time - either as a single clip rect (when at
* least one op is clipped), or disabled entirely (because no merged op is clipped)
*
* This method should be called when restoreDisplayState() won't be restoring the clip
*/
void OpenGLRenderer::setupMergedMultiDraw(const Rect* clipRect) {
if (clipRect != nullptr) {
writableSnapshot()->setClip(clipRect->left, clipRect->top, clipRect->right, clipRect->bottom);
} else {
writableSnapshot()->setClip(0, 0, mState.getWidth(), mState.getHeight());
}
dirtyClip();
bool enableScissor = (clipRect != nullptr) || mScissorOptimizationDisabled;
mRenderState.scissor().setEnabled(enableScissor);
}
///////////////////////////////////////////////////////////////////////////////
// Clipping
///////////////////////////////////////////////////////////////////////////////
void OpenGLRenderer::setScissorFromClip() {
Rect clip(mState.currentClipRect());
clip.snapToPixelBoundaries();
if (mRenderState.scissor().set(clip.left, getViewportHeight() - clip.bottom,
clip.getWidth(), clip.getHeight())) {
mState.setDirtyClip(false);
}
}
void OpenGLRenderer::ensureStencilBuffer() {
// Thanks to the mismatch between EGL and OpenGL ES FBO we
// cannot attach a stencil buffer to fbo0 dynamically. Let's
// just hope we have one when hasLayer() returns false.
if (hasLayer()) {
attachStencilBufferToLayer(currentSnapshot()->layer);
}
}
void OpenGLRenderer::attachStencilBufferToLayer(Layer* layer) {
// The layer's FBO is already bound when we reach this stage
if (!layer->getStencilRenderBuffer()) {
// GL_QCOM_tiled_rendering doesn't like it if a renderbuffer
// is attached after we initiated tiling. We must turn it off,
// attach the new render buffer then turn tiling back on
endTiling();
RenderBuffer* buffer = mCaches.renderBufferCache.get(
Stencil::getLayerStencilFormat(),
layer->getWidth(), layer->getHeight());
layer->setStencilRenderBuffer(buffer);
startTiling(layer->clipRect, layer->layer.getHeight());
}
}
static void handlePoint(std::vector<Vertex>& rectangleVertices, const Matrix4& transform,
float x, float y) {
Vertex v;
v.x = x;
v.y = y;
transform.mapPoint(v.x, v.y);
rectangleVertices.push_back(v);
}
static void handlePointNoTransform(std::vector<Vertex>& rectangleVertices, float x, float y) {
Vertex v;
v.x = x;
v.y = y;
rectangleVertices.push_back(v);
}
void OpenGLRenderer::drawRectangleList(const RectangleList& rectangleList) {
int quadCount = rectangleList.getTransformedRectanglesCount();
std::vector<Vertex> rectangleVertices(quadCount * 4);
Rect scissorBox = rectangleList.calculateBounds();
scissorBox.snapToPixelBoundaries();
for (int i = 0; i < quadCount; ++i) {
const TransformedRectangle& tr(rectangleList.getTransformedRectangle(i));
const Matrix4& transform = tr.getTransform();
Rect bounds = tr.getBounds();
if (transform.rectToRect()) {
transform.mapRect(bounds);
if (!bounds.intersect(scissorBox)) {
bounds.setEmpty();
} else {
handlePointNoTransform(rectangleVertices, bounds.left, bounds.top);
handlePointNoTransform(rectangleVertices, bounds.right, bounds.top);
handlePointNoTransform(rectangleVertices, bounds.left, bounds.bottom);
handlePointNoTransform(rectangleVertices, bounds.right, bounds.bottom);
}
} else {
handlePoint(rectangleVertices, transform, bounds.left, bounds.top);
handlePoint(rectangleVertices, transform, bounds.right, bounds.top);
handlePoint(rectangleVertices, transform, bounds.left, bounds.bottom);
handlePoint(rectangleVertices, transform, bounds.right, bounds.bottom);
}
}
mRenderState.scissor().set(scissorBox.left, getViewportHeight() - scissorBox.bottom,
scissorBox.getWidth(), scissorBox.getHeight());
const int transformFlags = TransformFlags::MeshIgnoresCanvasTransform;
Glop glop;
Vertex* vertices = &rectangleVertices[0];
GlopBuilder(mRenderState, mCaches, &glop)
.setRoundRectClipState(currentSnapshot()->roundRectClipState)
.setMeshIndexedQuads(vertices, rectangleVertices.size() / 4)
.setFillBlack()
.setTransform(*currentSnapshot(), transformFlags)
.setModelViewOffsetRect(0, 0, scissorBox)
.build();
renderGlop(glop);
}
void OpenGLRenderer::setStencilFromClip() {
if (!Properties::debugOverdraw) {
if (!currentSnapshot()->clipIsSimple()) {
int incrementThreshold;
EVENT_LOGD("setStencilFromClip - enabling");
// NOTE: The order here is important, we must set dirtyClip to false
// before any draw call to avoid calling back into this method
mState.setDirtyClip(false);
ensureStencilBuffer();
const ClipArea& clipArea = currentSnapshot()->getClipArea();
bool isRectangleList = clipArea.isRectangleList();
if (isRectangleList) {
incrementThreshold = clipArea.getRectangleList().getTransformedRectanglesCount();
} else {
incrementThreshold = 0;
}
mRenderState.stencil().enableWrite(incrementThreshold);
// Clean and update the stencil, but first make sure we restrict drawing
// to the region's bounds
bool resetScissor = mRenderState.scissor().setEnabled(true);
if (resetScissor) {
// The scissor was not set so we now need to update it
setScissorFromClip();
}
mRenderState.stencil().clear();
// stash and disable the outline clip state, since stencil doesn't account for outline
bool storedSkipOutlineClip = mSkipOutlineClip;
mSkipOutlineClip = true;
SkPaint paint;
paint.setColor(SK_ColorBLACK);
paint.setXfermodeMode(SkXfermode::kSrc_Mode);
if (isRectangleList) {
drawRectangleList(clipArea.getRectangleList());
} else {
// NOTE: We could use the region contour path to generate a smaller mesh
// Since we are using the stencil we could use the red book path
// drawing technique. It might increase bandwidth usage though.
// The last parameter is important: we are not drawing in the color buffer
// so we don't want to dirty the current layer, if any
drawRegionRects(clipArea.getClipRegion(), paint, false);
}
if (resetScissor) mRenderState.scissor().setEnabled(false);
mSkipOutlineClip = storedSkipOutlineClip;
mRenderState.stencil().enableTest(incrementThreshold);
// Draw the region used to generate the stencil if the appropriate debug
// mode is enabled
// TODO: Implement for rectangle list clip areas
if (Properties::debugStencilClip == StencilClipDebug::ShowRegion
&& !clipArea.isRectangleList()) {
paint.setColor(0x7f0000ff);
paint.setXfermodeMode(SkXfermode::kSrcOver_Mode);
drawRegionRects(currentSnapshot()->getClipRegion(), paint);
}
} else {
EVENT_LOGD("setStencilFromClip - disabling");
mRenderState.stencil().disable();
}
}
}
/**
* Returns false and sets scissor enable based upon bounds if drawing won't be clipped out.
*
* @param paint if not null, the bounds will be expanded to account for stroke depending on paint
* style, and tessellated AA ramp
*/
bool OpenGLRenderer::quickRejectSetupScissor(float left, float top, float right, float bottom,
const SkPaint* paint) {
bool snapOut = paint && paint->isAntiAlias();
if (paint && paint->getStyle() != SkPaint::kFill_Style) {
float outset = paint->getStrokeWidth() * 0.5f;
left -= outset;
top -= outset;
right += outset;
bottom += outset;
}
bool clipRequired = false;
bool roundRectClipRequired = false;
if (mState.calculateQuickRejectForScissor(left, top, right, bottom,
&clipRequired, &roundRectClipRequired, snapOut)) {
return true;
}
// not quick rejected, so enable the scissor if clipRequired
mRenderState.scissor().setEnabled(mScissorOptimizationDisabled || clipRequired);
mSkipOutlineClip = !roundRectClipRequired;
return false;
}
void OpenGLRenderer::debugClip() {
#if DEBUG_CLIP_REGIONS
if (!currentSnapshot()->clipRegion->isEmpty()) {
SkPaint paint;
paint.setColor(0x7f00ff00);
drawRegionRects(*(currentSnapshot()->clipRegion, paint);
}
#endif
}
void OpenGLRenderer::renderGlop(const Glop& glop, GlopRenderType type) {
// TODO: It would be best if we could do this before quickRejectSetupScissor()
// changes the scissor test state
if (type != GlopRenderType::LayerClear) {
// Regular draws need to clear the dirty area on the layer before they start drawing on top
// of it. If this draw *is* a layer clear, it skips the clear step (since it would
// infinitely recurse)
clearLayerRegions();
}
if (mState.getDirtyClip()) {
if (mRenderState.scissor().isEnabled()) {
setScissorFromClip();
}
setStencilFromClip();
}
mRenderState.render(glop);
if (type == GlopRenderType::Standard && !mRenderState.stencil().isWriteEnabled()) {
// TODO: specify more clearly when a draw should dirty the layer.
// is writing to the stencil the only time we should ignore this?
dirtyLayer(glop.bounds.left, glop.bounds.top, glop.bounds.right, glop.bounds.bottom);
mDirty = true;
}
}
///////////////////////////////////////////////////////////////////////////////
// Drawing
///////////////////////////////////////////////////////////////////////////////
void OpenGLRenderer::drawRenderNode(RenderNode* renderNode, Rect& dirty, int32_t replayFlags) {
// All the usual checks and setup operations (quickReject, setupDraw, etc.)
// will be performed by the display list itself
if (renderNode && renderNode->isRenderable()) {
// compute 3d ordering
renderNode->computeOrdering();
if (CC_UNLIKELY(Properties::drawDeferDisabled)) {
startFrame();
ReplayStateStruct replayStruct(*this, dirty, replayFlags);
renderNode->replay(replayStruct, 0);
return;
}
// Don't avoid overdraw when visualizing, since that makes it harder to
// debug where it's coming from, and when the problem occurs.
bool avoidOverdraw = !Properties::debugOverdraw;
DeferredDisplayList deferredList(mState.currentClipRect(), avoidOverdraw);
DeferStateStruct deferStruct(deferredList, *this, replayFlags);
renderNode->defer(deferStruct, 0);
flushLayers();
startFrame();
deferredList.flush(*this, dirty);
} else {
// Even if there is no drawing command(Ex: invisible),
// it still needs startFrame to clear buffer and start tiling.
startFrame();
}
}
/**
* Important note: this method is intended to draw batches of bitmaps and
* will not set the scissor enable or dirty the current layer, if any.
* The caller is responsible for properly dirtying the current layer.
*/
void OpenGLRenderer::drawBitmaps(const SkBitmap* bitmap, AssetAtlas::Entry* entry,
int bitmapCount, TextureVertex* vertices, bool pureTranslate,
const Rect& bounds, const SkPaint* paint) {
Texture* texture = entry ? entry->texture : mCaches.textureCache.get(bitmap);
if (!texture) return;
const AutoTexture autoCleanup(texture);
// TODO: remove layer dirty in multi-draw callers
// TODO: snap doesn't need to touch transform, only texture filter.
bool snap = pureTranslate;
const float x = floorf(bounds.left + 0.5f);
const float y = floorf(bounds.top + 0.5f);
const int textureFillFlags = (bitmap->colorType() == kAlpha_8_SkColorType)
? TextureFillFlags::IsAlphaMaskTexture : TextureFillFlags::None;
const int transformFlags = TransformFlags::MeshIgnoresCanvasTransform;
Glop glop;
GlopBuilder(mRenderState, mCaches, &glop)
.setRoundRectClipState(currentSnapshot()->roundRectClipState)
.setMeshTexturedMesh(vertices, bitmapCount * 6)
.setFillTexturePaint(*texture, textureFillFlags, paint, currentSnapshot()->alpha)
.setTransform(*currentSnapshot(), transformFlags)
.setModelViewOffsetRectOptionalSnap(snap, x, y, Rect(0, 0, bounds.getWidth(), bounds.getHeight()))
.build();
renderGlop(glop, GlopRenderType::Multi);
}
void OpenGLRenderer::drawBitmap(const SkBitmap* bitmap, const SkPaint* paint) {
if (quickRejectSetupScissor(0, 0, bitmap->width(), bitmap->height())) {
return;
}
mCaches.textureState().activateTexture(0);
Texture* texture = getTexture(bitmap);
if (!texture) return;
const AutoTexture autoCleanup(texture);
const int textureFillFlags = (bitmap->colorType() == kAlpha_8_SkColorType)
? TextureFillFlags::IsAlphaMaskTexture : TextureFillFlags::None;
Glop glop;
GlopBuilder(mRenderState, mCaches, &glop)
.setRoundRectClipState(currentSnapshot()->roundRectClipState)
.setMeshTexturedUnitQuad(texture->uvMapper)
.setFillTexturePaint(*texture, textureFillFlags, paint, currentSnapshot()->alpha)
.setTransform(*currentSnapshot(), TransformFlags::None)
.setModelViewMapUnitToRectSnap(Rect(0, 0, texture->width, texture->height))
.build();
renderGlop(glop);
}
void OpenGLRenderer::drawBitmapMesh(const SkBitmap* bitmap, int meshWidth, int meshHeight,
const float* vertices, const int* colors, const SkPaint* paint) {
if (!vertices || mState.currentlyIgnored()) {
return;
}
float left = FLT_MAX;
float top = FLT_MAX;
float right = FLT_MIN;
float bottom = FLT_MIN;
const uint32_t elementCount = meshWidth * meshHeight * 6;
std::unique_ptr<ColorTextureVertex[]> mesh(new ColorTextureVertex[elementCount]);
ColorTextureVertex* vertex = &mesh[0];
std::unique_ptr<int[]> tempColors;
if (!colors) {
uint32_t colorsCount = (meshWidth + 1) * (meshHeight + 1);
tempColors.reset(new int[colorsCount]);
memset(tempColors.get(), 0xff, colorsCount * sizeof(int));
colors = tempColors.get();
}
Texture* texture = mRenderState.assetAtlas().getEntryTexture(bitmap);
const UvMapper& mapper(getMapper(texture));
for (int32_t y = 0; y < meshHeight; y++) {
for (int32_t x = 0; x < meshWidth; x++) {
uint32_t i = (y * (meshWidth + 1) + x) * 2;
float u1 = float(x) / meshWidth;
float u2 = float(x + 1) / meshWidth;
float v1 = float(y) / meshHeight;
float v2 = float(y + 1) / meshHeight;
mapper.map(u1, v1, u2, v2);
int ax = i + (meshWidth + 1) * 2;
int ay = ax + 1;
int bx = i;
int by = bx + 1;
int cx = i + 2;
int cy = cx + 1;
int dx = i + (meshWidth + 1) * 2 + 2;
int dy = dx + 1;
ColorTextureVertex::set(vertex++, vertices[dx], vertices[dy], u2, v2, colors[dx / 2]);
ColorTextureVertex::set(vertex++, vertices[ax], vertices[ay], u1, v2, colors[ax / 2]);
ColorTextureVertex::set(vertex++, vertices[bx], vertices[by], u1, v1, colors[bx / 2]);
ColorTextureVertex::set(vertex++, vertices[dx], vertices[dy], u2, v2, colors[dx / 2]);
ColorTextureVertex::set(vertex++, vertices[bx], vertices[by], u1, v1, colors[bx / 2]);
ColorTextureVertex::set(vertex++, vertices[cx], vertices[cy], u2, v1, colors[cx / 2]);
left = std::min(left, std::min(vertices[ax], std::min(vertices[bx], vertices[cx])));
top = std::min(top, std::min(vertices[ay], std::min(vertices[by], vertices[cy])));
right = std::max(right, std::max(vertices[ax], std::max(vertices[bx], vertices[cx])));
bottom = std::max(bottom, std::max(vertices[ay], std::max(vertices[by], vertices[cy])));
}
}
if (quickRejectSetupScissor(left, top, right, bottom)) {
return;
}
if (!texture) {
texture = mCaches.textureCache.get(bitmap);
if (!texture) {
return;
}
}
const AutoTexture autoCleanup(texture);
/*
* TODO: handle alpha_8 textures correctly by applying paint color, but *not*
* shader in that case to mimic the behavior in SkiaCanvas::drawBitmapMesh.
*/
const int textureFillFlags = TextureFillFlags::None;
Glop glop;
GlopBuilder(mRenderState, mCaches, &glop)
.setRoundRectClipState(currentSnapshot()->roundRectClipState)
.setMeshColoredTexturedMesh(mesh.get(), elementCount)
.setFillTexturePaint(*texture, textureFillFlags, paint, currentSnapshot()->alpha)
.setTransform(*currentSnapshot(), TransformFlags::None)
.setModelViewOffsetRect(0, 0, Rect(left, top, right, bottom))
.build();
renderGlop(glop);
}
void OpenGLRenderer::drawBitmap(const SkBitmap* bitmap, Rect src, Rect dst, const SkPaint* paint) {
if (quickRejectSetupScissor(dst)) {
return;
}
Texture* texture = getTexture(bitmap);
if (!texture) return;
const AutoTexture autoCleanup(texture);
Rect uv(std::max(0.0f, src.left / texture->width),
std::max(0.0f, src.top / texture->height),
std::min(1.0f, src.right / texture->width),
std::min(1.0f, src.bottom / texture->height));
const int textureFillFlags = (bitmap->colorType() == kAlpha_8_SkColorType)
? TextureFillFlags::IsAlphaMaskTexture : TextureFillFlags::None;
const bool tryToSnap = MathUtils::areEqual(src.getWidth(), dst.getWidth())
&& MathUtils::areEqual(src.getHeight(), dst.getHeight());
Glop glop;
GlopBuilder(mRenderState, mCaches, &glop)
.setRoundRectClipState(currentSnapshot()->roundRectClipState)
.setMeshTexturedUvQuad(texture->uvMapper, uv)
.setFillTexturePaint(*texture, textureFillFlags, paint, currentSnapshot()->alpha)
.setTransform(*currentSnapshot(), TransformFlags::None)
.setModelViewMapUnitToRectOptionalSnap(tryToSnap, dst)
.build();
renderGlop(glop);
}
void OpenGLRenderer::drawPatch(const SkBitmap* bitmap, const Patch* mesh,
AssetAtlas::Entry* entry, float left, float top, float right, float bottom,
const SkPaint* paint) {
if (!mesh || !mesh->verticesCount || quickRejectSetupScissor(left, top, right, bottom)) {
return;
}
Texture* texture = entry ? entry->texture : mCaches.textureCache.get(bitmap);
if (!texture) return;
// 9 patches are built for stretching - always filter
int textureFillFlags = TextureFillFlags::ForceFilter;
if (bitmap->colorType() == kAlpha_8_SkColorType) {
textureFillFlags |= TextureFillFlags::IsAlphaMaskTexture;
}
Glop glop;
GlopBuilder(mRenderState, mCaches, &glop)
.setRoundRectClipState(currentSnapshot()->roundRectClipState)
.setMeshPatchQuads(*mesh)
.setFillTexturePaint(*texture, textureFillFlags, paint, currentSnapshot()->alpha)
.setTransform(*currentSnapshot(), TransformFlags::None)
.setModelViewOffsetRectSnap(left, top, Rect(0, 0, right - left, bottom - top)) // TODO: get minimal bounds from patch
.build();
renderGlop(glop);
}
/**
* Important note: this method is intended to draw batches of 9-patch objects and
* will not set the scissor enable or dirty the current layer, if any.
* The caller is responsible for properly dirtying the current layer.
*/
void OpenGLRenderer::drawPatches(const SkBitmap* bitmap, AssetAtlas::Entry* entry,
TextureVertex* vertices, uint32_t elementCount, const SkPaint* paint) {
mCaches.textureState().activateTexture(0);
Texture* texture = entry ? entry->texture : mCaches.textureCache.get(bitmap);
if (!texture) return;
const AutoTexture autoCleanup(texture);
// TODO: get correct bounds from caller
const int transformFlags = TransformFlags::MeshIgnoresCanvasTransform;
// 9 patches are built for stretching - always filter
int textureFillFlags = TextureFillFlags::ForceFilter;
if (bitmap->colorType() == kAlpha_8_SkColorType) {
textureFillFlags |= TextureFillFlags::IsAlphaMaskTexture;
}
Glop glop;
GlopBuilder(mRenderState, mCaches, &glop)
.setRoundRectClipState(currentSnapshot()->roundRectClipState)
.setMeshTexturedIndexedQuads(vertices, elementCount)
.setFillTexturePaint(*texture, textureFillFlags, paint, currentSnapshot()->alpha)
.setTransform(*currentSnapshot(), transformFlags)
.setModelViewOffsetRect(0, 0, Rect(0, 0, 0, 0))
.build();
renderGlop(glop, GlopRenderType::Multi);
}
void OpenGLRenderer::drawVertexBuffer(float translateX, float translateY,
const VertexBuffer& vertexBuffer, const SkPaint* paint, int displayFlags) {
// not missing call to quickReject/dirtyLayer, always done at a higher level
if (!vertexBuffer.getVertexCount()) {
// no vertices to draw
return;
}
bool shadowInterp = displayFlags & kVertexBuffer_ShadowInterp;
const int transformFlags = TransformFlags::OffsetByFudgeFactor;
Glop glop;
GlopBuilder(mRenderState, mCaches, &glop)
.setRoundRectClipState(currentSnapshot()->roundRectClipState)
.setMeshVertexBuffer(vertexBuffer, shadowInterp)
.setFillPaint(*paint, currentSnapshot()->alpha)
.setTransform(*currentSnapshot(), transformFlags)
.setModelViewOffsetRect(translateX, translateY, vertexBuffer.getBounds())
.build();
renderGlop(glop);
}
/**
* Renders a convex path via tessellation. For AA paths, this function uses a similar approach to
* that of AA lines in the drawLines() function. We expand the convex path by a half pixel in
* screen space in all directions. However, instead of using a fragment shader to compute the
* translucency of the color from its position, we simply use a varying parameter to define how far
* a given pixel is from the edge. For non-AA paths, the expansion and alpha varying are not used.
*
* Doesn't yet support joins, caps, or path effects.
*/
void OpenGLRenderer::drawConvexPath(const SkPath& path, const SkPaint* paint) {
VertexBuffer vertexBuffer;
// TODO: try clipping large paths to viewport
PathTessellator::tessellatePath(path, paint, *currentTransform(), vertexBuffer);
drawVertexBuffer(vertexBuffer, paint);
}
/**
* We create tristrips for the lines much like shape stroke tessellation, using a per-vertex alpha
* and additional geometry for defining an alpha slope perimeter.
*
* Using GL_LINES can be difficult because the rasterization rules for those lines produces some
* unexpected results, and may vary between hardware devices. Previously we used a varying-base
* in-shader alpha region, but found it to be taxing on some GPUs.
*
* TODO: try using a fixed input buffer for non-capped lines as in text rendering. this may reduce
* memory transfer by removing need for degenerate vertices.
*/
void OpenGLRenderer::drawLines(const float* points, int count, const SkPaint* paint) {
if (mState.currentlyIgnored() || count < 4) return;
count &= ~0x3; // round down to nearest four
VertexBuffer buffer;
PathTessellator::tessellateLines(points, count, paint, *currentTransform(), buffer);
const Rect& bounds = buffer.getBounds();
if (quickRejectSetupScissor(bounds.left, bounds.top, bounds.right, bounds.bottom)) {
return;
}
int displayFlags = paint->isAntiAlias() ? 0 : kVertexBuffer_Offset;
drawVertexBuffer(buffer, paint, displayFlags);
}
void OpenGLRenderer::drawPoints(const float* points, int count, const SkPaint* paint) {
if (mState.currentlyIgnored() || count < 2) return;
count &= ~0x1; // round down to nearest two
VertexBuffer buffer;
PathTessellator::tessellatePoints(points, count, paint, *currentTransform(), buffer);
const Rect& bounds = buffer.getBounds();
if (quickRejectSetupScissor(bounds.left, bounds.top, bounds.right, bounds.bottom)) {
return;
}
int displayFlags = paint->isAntiAlias() ? 0 : kVertexBuffer_Offset;
drawVertexBuffer(buffer, paint, displayFlags);
mDirty = true;
}
void OpenGLRenderer::drawColor(int color, SkXfermode::Mode mode) {
// No need to check against the clip, we fill the clip region
if (mState.currentlyIgnored()) return;
Rect clip(mState.currentClipRect());
clip.snapToPixelBoundaries();
SkPaint paint;
paint.setColor(color);
paint.setXfermodeMode(mode);
drawColorRect(clip.left, clip.top, clip.right, clip.bottom, &paint, true);
mDirty = true;
}
void OpenGLRenderer::drawShape(float left, float top, PathTexture* texture,
const SkPaint* paint) {
if (!texture) return;
const AutoTexture autoCleanup(texture);
const float x = left + texture->left - texture->offset;
const float y = top + texture->top - texture->offset;
drawPathTexture(texture, x, y, paint);
mDirty = true;
}
void OpenGLRenderer::drawRoundRect(float left, float top, float right, float bottom,
float rx, float ry, const SkPaint* p) {
if (mState.currentlyIgnored()
|| quickRejectSetupScissor(left, top, right, bottom, p)
|| PaintUtils::paintWillNotDraw(*p)) {
return;
}
if (p->getPathEffect() != nullptr) {
mCaches.textureState().activateTexture(0);
PathTexture* texture = mCaches.pathCache.getRoundRect(
right - left, bottom - top, rx, ry, p);
drawShape(left, top, texture, p);
} else {
const VertexBuffer* vertexBuffer = mCaches.tessellationCache.getRoundRect(
*currentTransform(), *p, right - left, bottom - top, rx, ry);
drawVertexBuffer(left, top, *vertexBuffer, p);
}
}
void OpenGLRenderer::drawCircle(float x, float y, float radius, const SkPaint* p) {
if (mState.currentlyIgnored()
|| quickRejectSetupScissor(x - radius, y - radius, x + radius, y + radius, p)
|| PaintUtils::paintWillNotDraw(*p)) {
return;
}
if (p->getPathEffect() != nullptr) {
mCaches.textureState().activateTexture(0);
PathTexture* texture = mCaches.pathCache.getCircle(radius, p);
drawShape(x - radius, y - radius, texture, p);
return;
}
SkPath path;
if (p->getStyle() == SkPaint::kStrokeAndFill_Style) {
path.addCircle(x, y, radius + p->getStrokeWidth() / 2);
} else {
path.addCircle(x, y, radius);
}
if (CC_UNLIKELY(currentSnapshot()->projectionPathMask != nullptr)) {
// mask ripples with projection mask
SkPath maskPath = *(currentSnapshot()->projectionPathMask->projectionMask);
Matrix4 screenSpaceTransform;
currentSnapshot()->buildScreenSpaceTransform(&screenSpaceTransform);
Matrix4 totalTransform;
totalTransform.loadInverse(screenSpaceTransform);
totalTransform.multiply(currentSnapshot()->projectionPathMask->projectionMaskTransform);
SkMatrix skTotalTransform;
totalTransform.copyTo(skTotalTransform);
maskPath.transform(skTotalTransform);
// Mask the ripple path by the projection mask, now that it's
// in local space. Note that this can create CCW paths.
Op(path, maskPath, kIntersect_SkPathOp, &path);
}
drawConvexPath(path, p);
}
void OpenGLRenderer::drawOval(float left, float top, float right, float bottom,
const SkPaint* p) {
if (mState.currentlyIgnored()
|| quickRejectSetupScissor(left, top, right, bottom, p)
|| PaintUtils::paintWillNotDraw(*p)) {
return;
}
if (p->getPathEffect() != nullptr) {
mCaches.textureState().activateTexture(0);
PathTexture* texture = mCaches.pathCache.getOval(right - left, bottom - top, p);
drawShape(left, top, texture, p);
} else {
SkPath path;
SkRect rect = SkRect::MakeLTRB(left, top, right, bottom);
if (p->getStyle() == SkPaint::kStrokeAndFill_Style) {
rect.outset(p->getStrokeWidth() / 2, p->getStrokeWidth() / 2);
}
path.addOval(rect);
drawConvexPath(path, p);
}
}
void OpenGLRenderer::drawArc(float left, float top, float right, float bottom,
float startAngle, float sweepAngle, bool useCenter, const SkPaint* p) {
if (mState.currentlyIgnored()
|| quickRejectSetupScissor(left, top, right, bottom, p)
|| PaintUtils::paintWillNotDraw(*p)) {
return;
}
// TODO: support fills (accounting for concavity if useCenter && sweepAngle > 180)
if (p->getStyle() != SkPaint::kStroke_Style || p->getPathEffect() != nullptr || useCenter) {
mCaches.textureState().activateTexture(0);
PathTexture* texture = mCaches.pathCache.getArc(right - left, bottom - top,
startAngle, sweepAngle, useCenter, p);
drawShape(left, top, texture, p);
return;
}
SkRect rect = SkRect::MakeLTRB(left, top, right, bottom);
if (p->getStyle() == SkPaint::kStrokeAndFill_Style) {
rect.outset(p->getStrokeWidth() / 2, p->getStrokeWidth() / 2);
}
SkPath path;
if (useCenter) {
path.moveTo(rect.centerX(), rect.centerY());
}
path.arcTo(rect, startAngle, sweepAngle, !useCenter);
if (useCenter) {
path.close();
}
drawConvexPath(path, p);
}
// See SkPaintDefaults.h
#define SkPaintDefaults_MiterLimit SkIntToScalar(4)
void OpenGLRenderer::drawRect(float left, float top, float right, float bottom,
const SkPaint* p) {
if (mState.currentlyIgnored()
|| quickRejectSetupScissor(left, top, right, bottom, p)
|| PaintUtils::paintWillNotDraw(*p)) {
return;
}
if (p->getStyle() != SkPaint::kFill_Style) {
// only fill style is supported by drawConvexPath, since others have to handle joins
if (p->getPathEffect() != nullptr || p->getStrokeJoin() != SkPaint::kMiter_Join ||
p->getStrokeMiter() != SkPaintDefaults_MiterLimit) {
mCaches.textureState().activateTexture(0);
PathTexture* texture =
mCaches.pathCache.getRect(right - left, bottom - top, p);
drawShape(left, top, texture, p);
} else {
SkPath path;
SkRect rect = SkRect::MakeLTRB(left, top, right, bottom);
if (p->getStyle() == SkPaint::kStrokeAndFill_Style) {
rect.outset(p->getStrokeWidth() / 2, p->getStrokeWidth() / 2);
}
path.addRect(rect);
drawConvexPath(path, p);
}
} else {
if (p->isAntiAlias() && !currentTransform()->isSimple()) {
SkPath path;
path.addRect(left, top, right, bottom);
drawConvexPath(path, p);
} else {
drawColorRect(left, top, right, bottom, p);
mDirty = true;
}
}
}
void OpenGLRenderer::drawTextShadow(const SkPaint* paint, const char* text,
int bytesCount, int count, const float* positions,
FontRenderer& fontRenderer, int alpha, float x, float y) {
mCaches.textureState().activateTexture(0);
TextShadow textShadow;
if (!getTextShadow(paint, &textShadow)) {
LOG_ALWAYS_FATAL("failed to query shadow attributes");
}
// NOTE: The drop shadow will not perform gamma correction
// if shader-based correction is enabled
mCaches.dropShadowCache.setFontRenderer(fontRenderer);
ShadowTexture* texture = mCaches.dropShadowCache.get(
paint, text, bytesCount, count, textShadow.radius, positions);
// If the drop shadow exceeds the max texture size or couldn't be
// allocated, skip drawing
if (!texture) return;
const AutoTexture autoCleanup(texture);
const float sx = x - texture->left + textShadow.dx;
const float sy = y - texture->top + textShadow.dy;
Glop glop;
GlopBuilder(mRenderState, mCaches, &glop)
.setRoundRectClipState(currentSnapshot()->roundRectClipState)
.setMeshTexturedUnitQuad(nullptr)
.setFillShadowTexturePaint(*texture, textShadow.color, *paint, currentSnapshot()->alpha)
.setTransform(*currentSnapshot(), TransformFlags::None)
.setModelViewMapUnitToRect(Rect(sx, sy, sx + texture->width, sy + texture->height))
.build();
renderGlop(glop);
}
bool OpenGLRenderer::canSkipText(const SkPaint* paint) const {
float alpha = (hasTextShadow(paint) ? 1.0f : paint->getAlpha()) * currentSnapshot()->alpha;
return MathUtils::isZero(alpha)
&& PaintUtils::getXfermode(paint->getXfermode()) == SkXfermode::kSrcOver_Mode;
}
void OpenGLRenderer::drawPosText(const char* text, int bytesCount, int count,
const float* positions, const SkPaint* paint) {
if (text == nullptr || count == 0 || mState.currentlyIgnored() || canSkipText(paint)) {
return;
}
// NOTE: Skia does not support perspective transform on drawPosText yet
if (!currentTransform()->isSimple()) {
return;
}
mRenderState.scissor().setEnabled(true);
float x = 0.0f;
float y = 0.0f;
const bool pureTranslate = currentTransform()->isPureTranslate();
if (pureTranslate) {
x = floorf(x + currentTransform()->getTranslateX() + 0.5f);
y = floorf(y + currentTransform()->getTranslateY() + 0.5f);
}
FontRenderer& fontRenderer = mCaches.fontRenderer->getFontRenderer(paint);
fontRenderer.setFont(paint, SkMatrix::I());
int alpha;
SkXfermode::Mode mode;
getAlphaAndMode(paint, &alpha, &mode);
if (CC_UNLIKELY(hasTextShadow(paint))) {
drawTextShadow(paint, text, bytesCount, count, positions, fontRenderer,
alpha, 0.0f, 0.0f);
}
// Pick the appropriate texture filtering
bool linearFilter = currentTransform()->changesBounds();
if (pureTranslate && !linearFilter) {
linearFilter = fabs(y - (int) y) > 0.0f || fabs(x - (int) x) > 0.0f;
}
fontRenderer.setTextureFiltering(linearFilter);
const Rect& clip(pureTranslate ? writableSnapshot()->getClipRect() : writableSnapshot()->getLocalClip());
Rect bounds(FLT_MAX / 2.0f, FLT_MAX / 2.0f, FLT_MIN / 2.0f, FLT_MIN / 2.0f);
TextDrawFunctor functor(this, x, y, pureTranslate, alpha, mode, paint);
if (fontRenderer.renderPosText(paint, &clip, text, 0, bytesCount, count, x, y,
positions, hasLayer() ? &bounds : nullptr, &functor)) {
dirtyLayer(bounds.left, bounds.top, bounds.right, bounds.bottom, *currentTransform());
mDirty = true;
}
}
bool OpenGLRenderer::findBestFontTransform(const mat4& transform, SkMatrix* outMatrix) const {
if (CC_LIKELY(transform.isPureTranslate())) {
outMatrix->setIdentity();
return false;
} else if (CC_UNLIKELY(transform.isPerspective())) {
outMatrix->setIdentity();
return true;
}
/**
* Input is a non-perspective, scaling transform. Generate a scale-only transform,
* with values rounded to the nearest int.
*/
float sx, sy;
transform.decomposeScale(sx, sy);
outMatrix->setScale(
roundf(std::max(1.0f, sx)),
roundf(std::max(1.0f, sy)));
return true;
}
int OpenGLRenderer::getSaveCount() const {
return mState.getSaveCount();
}
int OpenGLRenderer::save(int flags) {
return mState.save(flags);
}
void OpenGLRenderer::restore() {
mState.restore();
}
void OpenGLRenderer::restoreToCount(int saveCount) {
mState.restoreToCount(saveCount);
}
void OpenGLRenderer::translate(float dx, float dy, float dz) {
mState.translate(dx, dy, dz);
}
void OpenGLRenderer::rotate(float degrees) {
mState.rotate(degrees);
}
void OpenGLRenderer::scale(float sx, float sy) {
mState.scale(sx, sy);
}
void OpenGLRenderer::skew(float sx, float sy) {
mState.skew(sx, sy);
}
void OpenGLRenderer::setMatrix(const Matrix4& matrix) {
mState.setMatrix(matrix);
}
void OpenGLRenderer::setLocalMatrix(const SkMatrix& matrix) {
mState.setMatrix(mBaseTransform);
mState.concatMatrix(matrix);
}
void OpenGLRenderer::concatMatrix(const Matrix4& matrix) {
mState.concatMatrix(matrix);
}
bool OpenGLRenderer::clipRect(float left, float top, float right, float bottom, SkRegion::Op op) {
return mState.clipRect(left, top, right, bottom, op);
}
bool OpenGLRenderer::clipPath(const SkPath* path, SkRegion::Op op) {
return mState.clipPath(path, op);
}
bool OpenGLRenderer::clipRegion(const SkRegion* region, SkRegion::Op op) {
return mState.clipRegion(region, op);
}
void OpenGLRenderer::setClippingOutline(LinearAllocator& allocator, const Outline* outline) {
mState.setClippingOutline(allocator, outline);
}
void OpenGLRenderer::setClippingRoundRect(LinearAllocator& allocator,
const Rect& rect, float radius, bool highPriority) {
mState.setClippingRoundRect(allocator, rect, radius, highPriority);
}
void OpenGLRenderer::setProjectionPathMask(LinearAllocator& allocator, const SkPath* path) {
mState.setProjectionPathMask(allocator, path);
}
void OpenGLRenderer::drawText(const char* text, int bytesCount, int count, float x, float y,
const float* positions, const SkPaint* paint, float totalAdvance, const Rect& bounds,
DrawOpMode drawOpMode) {
if (drawOpMode == DrawOpMode::kImmediate) {
// The checks for corner-case ignorable text and quick rejection is only done for immediate
// drawing as ops from DeferredDisplayList are already filtered for these
if (text == nullptr || count == 0 || mState.currentlyIgnored() || canSkipText(paint) ||
quickRejectSetupScissor(bounds)) {
return;
}
}
const float oldX = x;
const float oldY = y;
const mat4& transform = *currentTransform();
const bool pureTranslate = transform.isPureTranslate();
if (CC_LIKELY(pureTranslate)) {
x = floorf(x + transform.getTranslateX() + 0.5f);
y = floorf(y + transform.getTranslateY() + 0.5f);
}
int alpha;
SkXfermode::Mode mode;
getAlphaAndMode(paint, &alpha, &mode);
FontRenderer& fontRenderer = mCaches.fontRenderer->getFontRenderer(paint);
if (CC_UNLIKELY(hasTextShadow(paint))) {
fontRenderer.setFont(paint, SkMatrix::I());
drawTextShadow(paint, text, bytesCount, count, positions, fontRenderer,
alpha, oldX, oldY);
}
const bool hasActiveLayer = hasLayer();
// We only pass a partial transform to the font renderer. That partial
// matrix defines how glyphs are rasterized. Typically we want glyphs
// to be rasterized at their final size on screen, which means the partial
// matrix needs to take the scale factor into account.
// When a partial matrix is used to transform glyphs during rasterization,
// the mesh is generated with the inverse transform (in the case of scale,
// the mesh is generated at 1.0 / scale for instance.) This allows us to
// apply the full transform matrix at draw time in the vertex shader.
// Applying the full matrix in the shader is the easiest way to handle
// rotation and perspective and allows us to always generated quads in the
// font renderer which greatly simplifies the code, clipping in particular.
SkMatrix fontTransform;
bool linearFilter = findBestFontTransform(transform, &fontTransform)
|| fabs(y - (int) y) > 0.0f
|| fabs(x - (int) x) > 0.0f;
fontRenderer.setFont(paint, fontTransform);
fontRenderer.setTextureFiltering(linearFilter);
// TODO: Implement better clipping for scaled/rotated text
const Rect* clip = !pureTranslate ? nullptr : &mState.currentClipRect();
Rect layerBounds(FLT_MAX / 2.0f, FLT_MAX / 2.0f, FLT_MIN / 2.0f, FLT_MIN / 2.0f);
bool status;
TextDrawFunctor functor(this, x, y, pureTranslate, alpha, mode, paint);
// don't call issuedrawcommand, do it at end of batch
bool forceFinish = (drawOpMode != DrawOpMode::kDefer);
if (CC_UNLIKELY(paint->getTextAlign() != SkPaint::kLeft_Align)) {
SkPaint paintCopy(*paint);
paintCopy.setTextAlign(SkPaint::kLeft_Align);
status = fontRenderer.renderPosText(&paintCopy, clip, text, 0, bytesCount, count, x, y,
positions, hasActiveLayer ? &layerBounds : nullptr, &functor, forceFinish);
} else {
status = fontRenderer.renderPosText(paint, clip, text, 0, bytesCount, count, x, y,
positions, hasActiveLayer ? &layerBounds : nullptr, &functor, forceFinish);
}
if ((status || drawOpMode != DrawOpMode::kImmediate) && hasActiveLayer) {
if (!pureTranslate) {
transform.mapRect(layerBounds);
}
dirtyLayerUnchecked(layerBounds, getRegion());
}
drawTextDecorations(totalAdvance, oldX, oldY, paint);
mDirty = true;
}
void OpenGLRenderer::drawTextOnPath(const char* text, int bytesCount, int count,
const SkPath* path, float hOffset, float vOffset, const SkPaint* paint) {
if (text == nullptr || count == 0 || mState.currentlyIgnored() || canSkipText(paint)) {
return;
}
// TODO: avoid scissor by calculating maximum bounds using path bounds + font metrics
mRenderState.scissor().setEnabled(true);
FontRenderer& fontRenderer = mCaches.fontRenderer->getFontRenderer(paint);
fontRenderer.setFont(paint, SkMatrix::I());
fontRenderer.setTextureFiltering(true);
int alpha;
SkXfermode::Mode mode;
getAlphaAndMode(paint, &alpha, &mode);
TextDrawFunctor functor(this, 0.0f, 0.0f, false, alpha, mode, paint);
const Rect* clip = &writableSnapshot()->getLocalClip();
Rect bounds(FLT_MAX / 2.0f, FLT_MAX / 2.0f, FLT_MIN / 2.0f, FLT_MIN / 2.0f);
if (fontRenderer.renderTextOnPath(paint, clip, text, 0, bytesCount, count, path,
hOffset, vOffset, hasLayer() ? &bounds : nullptr, &functor)) {
dirtyLayer(bounds.left, bounds.top, bounds.right, bounds.bottom, *currentTransform());
mDirty = true;
}
}
void OpenGLRenderer::drawPath(const SkPath* path, const SkPaint* paint) {
if (mState.currentlyIgnored()) return;
mCaches.textureState().activateTexture(0);
PathTexture* texture = mCaches.pathCache.get(path, paint);
if (!texture) return;
const AutoTexture autoCleanup(texture);
const float x = texture->left - texture->offset;
const float y = texture->top - texture->offset;
drawPathTexture(texture, x, y, paint);
mDirty = true;
}
void OpenGLRenderer::drawLayer(Layer* layer, float x, float y) {
if (!layer) {
return;
}
mat4* transform = nullptr;
if (layer->isTextureLayer()) {
transform = &layer->getTransform();
if (!transform->isIdentity()) {
save(SkCanvas::kMatrix_SaveFlag);
concatMatrix(*transform);
}
}
bool clipRequired = false;
const bool rejected = mState.calculateQuickRejectForScissor(
x, y, x + layer->layer.getWidth(), y + layer->layer.getHeight(),
&clipRequired, nullptr, false);
if (rejected) {
if (transform && !transform->isIdentity()) {
restore();
}
return;
}
EVENT_LOGD("drawLayer," RECT_STRING ", clipRequired %d", x, y,
x + layer->layer.getWidth(), y + layer->layer.getHeight(), clipRequired);
updateLayer(layer, true);
mRenderState.scissor().setEnabled(mScissorOptimizationDisabled || clipRequired);
mCaches.textureState().activateTexture(0);
if (CC_LIKELY(!layer->region.isEmpty())) {
if (layer->region.isRect()) {
DRAW_DOUBLE_STENCIL_IF(!layer->hasDrawnSinceUpdate,
composeLayerRect(layer, layer->regionRect));
} else if (layer->mesh) {
Glop glop;
GlopBuilder(mRenderState, mCaches, &glop)
.setRoundRectClipState(currentSnapshot()->roundRectClipState)
.setMeshTexturedIndexedQuads(layer->mesh, layer->meshElementCount)
.setFillLayer(layer->getTexture(), layer->getColorFilter(), getLayerAlpha(layer), layer->getMode(), Blend::ModeOrderSwap::NoSwap)
.setTransform(*currentSnapshot(), TransformFlags::None)
.setModelViewOffsetRectSnap(x, y, Rect(0, 0, layer->layer.getWidth(), layer->layer.getHeight()))
.build();
DRAW_DOUBLE_STENCIL_IF(!layer->hasDrawnSinceUpdate, renderGlop(glop));
#if DEBUG_LAYERS_AS_REGIONS
drawRegionRectsDebug(layer->region);
#endif
}
if (layer->debugDrawUpdate) {
layer->debugDrawUpdate = false;
SkPaint paint;
paint.setColor(0x7f00ff00);
drawColorRect(x, y, x + layer->layer.getWidth(), y + layer->layer.getHeight(), &paint);
}
}
layer->hasDrawnSinceUpdate = true;
if (transform && !transform->isIdentity()) {
restore();
}
mDirty = true;
}
///////////////////////////////////////////////////////////////////////////////
// Draw filters
///////////////////////////////////////////////////////////////////////////////
void OpenGLRenderer::setDrawFilter(SkDrawFilter* filter) {
// We should never get here since we apply the draw filter when stashing
// the paints in the DisplayList.
LOG_ALWAYS_FATAL("OpenGLRenderer does not directly support DrawFilters");
}
///////////////////////////////////////////////////////////////////////////////
// Drawing implementation
///////////////////////////////////////////////////////////////////////////////
Texture* OpenGLRenderer::getTexture(const SkBitmap* bitmap) {
Texture* texture = mRenderState.assetAtlas().getEntryTexture(bitmap);
if (!texture) {
return mCaches.textureCache.get(bitmap);
}
return texture;
}
void OpenGLRenderer::drawPathTexture(PathTexture* texture, float x, float y,
const SkPaint* paint) {
if (quickRejectSetupScissor(x, y, x + texture->width, y + texture->height)) {
return;
}
Glop glop;
GlopBuilder(mRenderState, mCaches, &glop)
.setRoundRectClipState(currentSnapshot()->roundRectClipState)
.setMeshTexturedUnitQuad(nullptr)
.setFillPathTexturePaint(*texture, *paint, currentSnapshot()->alpha)
.setTransform(*currentSnapshot(), TransformFlags::None)
.setModelViewMapUnitToRect(Rect(x, y, x + texture->width, y + texture->height))
.build();
renderGlop(glop);
}
// Same values used by Skia
#define kStdStrikeThru_Offset (-6.0f / 21.0f)
#define kStdUnderline_Offset (1.0f / 9.0f)
#define kStdUnderline_Thickness (1.0f / 18.0f)
void OpenGLRenderer::drawTextDecorations(float underlineWidth, float x, float y,
const SkPaint* paint) {
// Handle underline and strike-through
uint32_t flags = paint->getFlags();
if (flags & (SkPaint::kUnderlineText_Flag | SkPaint::kStrikeThruText_Flag)) {
SkPaint paintCopy(*paint);
if (CC_LIKELY(underlineWidth > 0.0f)) {
const float textSize = paintCopy.getTextSize();
const float strokeWidth = std::max(textSize * kStdUnderline_Thickness, 1.0f);
const float left = x;
float top = 0.0f;
int linesCount = 0;
if (flags & SkPaint::kUnderlineText_Flag) linesCount++;
if (flags & SkPaint::kStrikeThruText_Flag) linesCount++;
const int pointsCount = 4 * linesCount;
float points[pointsCount];
int currentPoint = 0;
if (flags & SkPaint::kUnderlineText_Flag) {
top = y + textSize * kStdUnderline_Offset;
points[currentPoint++] = left;
points[currentPoint++] = top;
points[currentPoint++] = left + underlineWidth;
points[currentPoint++] = top;
}
if (flags & SkPaint::kStrikeThruText_Flag) {
top = y + textSize * kStdStrikeThru_Offset;
points[currentPoint++] = left;
points[currentPoint++] = top;
points[currentPoint++] = left + underlineWidth;
points[currentPoint++] = top;
}
paintCopy.setStrokeWidth(strokeWidth);
drawLines(&points[0], pointsCount, &paintCopy);
}
}
}
void OpenGLRenderer::drawRects(const float* rects, int count, const SkPaint* paint) {
if (mState.currentlyIgnored()) {
return;
}
drawColorRects(rects, count, paint, false, true, true);
}
void OpenGLRenderer::drawShadow(float casterAlpha,
const VertexBuffer* ambientShadowVertexBuffer, const VertexBuffer* spotShadowVertexBuffer) {
if (mState.currentlyIgnored()) return;
// TODO: use quickRejectWithScissor. For now, always force enable scissor.
mRenderState.scissor().setEnabled(true);
SkPaint paint;
paint.setAntiAlias(true); // want to use AlphaVertex
// The caller has made sure casterAlpha > 0.
float ambientShadowAlpha = mAmbientShadowAlpha;
if (CC_UNLIKELY(Properties::overrideAmbientShadowStrength >= 0)) {
ambientShadowAlpha = Properties::overrideAmbientShadowStrength;
}
if (ambientShadowVertexBuffer && ambientShadowAlpha > 0) {
paint.setARGB(casterAlpha * ambientShadowAlpha, 0, 0, 0);
drawVertexBuffer(*ambientShadowVertexBuffer, &paint, kVertexBuffer_ShadowInterp);
}
float spotShadowAlpha = mSpotShadowAlpha;
if (CC_UNLIKELY(Properties::overrideSpotShadowStrength >= 0)) {
spotShadowAlpha = Properties::overrideSpotShadowStrength;
}
if (spotShadowVertexBuffer && spotShadowAlpha > 0) {
paint.setARGB(casterAlpha * spotShadowAlpha, 0, 0, 0);
drawVertexBuffer(*spotShadowVertexBuffer, &paint, kVertexBuffer_ShadowInterp);
}
mDirty=true;
}
void OpenGLRenderer::drawColorRects(const float* rects, int count, const SkPaint* paint,
bool ignoreTransform, bool dirty, bool clip) {
if (count == 0) {
return;
}
float left = FLT_MAX;
float top = FLT_MAX;
float right = FLT_MIN;
float bottom = FLT_MIN;
Vertex mesh[count];
Vertex* vertex = mesh;
for (int index = 0; index < count; index += 4) {
float l = rects[index + 0];
float t = rects[index + 1];
float r = rects[index + 2];
float b = rects[index + 3];
Vertex::set(vertex++, l, t);
Vertex::set(vertex++, r, t);
Vertex::set(vertex++, l, b);
Vertex::set(vertex++, r, b);
left = std::min(left, l);
top = std::min(top, t);
right = std::max(right, r);
bottom = std::max(bottom, b);
}
if (clip && quickRejectSetupScissor(left, top, right, bottom)) {
return;
}
const int transformFlags = ignoreTransform
? TransformFlags::MeshIgnoresCanvasTransform : TransformFlags::None;
Glop glop;
GlopBuilder(mRenderState, mCaches, &glop)
.setRoundRectClipState(currentSnapshot()->roundRectClipState)
.setMeshIndexedQuads(&mesh[0], count / 4)
.setFillPaint(*paint, currentSnapshot()->alpha)
.setTransform(*currentSnapshot(), transformFlags)
.setModelViewOffsetRect(0, 0, Rect(left, top, right, bottom))
.build();
renderGlop(glop);
}
void OpenGLRenderer::drawColorRect(float left, float top, float right, float bottom,
const SkPaint* paint, bool ignoreTransform) {
const int transformFlags = ignoreTransform
? TransformFlags::MeshIgnoresCanvasTransform : TransformFlags::None;
Glop glop;
GlopBuilder(mRenderState, mCaches, &glop)
.setRoundRectClipState(currentSnapshot()->roundRectClipState)
.setMeshUnitQuad()
.setFillPaint(*paint, currentSnapshot()->alpha)
.setTransform(*currentSnapshot(), transformFlags)
.setModelViewMapUnitToRect(Rect(left, top, right, bottom))
.build();
renderGlop(glop);
}
void OpenGLRenderer::getAlphaAndMode(const SkPaint* paint, int* alpha,
SkXfermode::Mode* mode) const {
getAlphaAndModeDirect(paint, alpha, mode);
*alpha *= currentSnapshot()->alpha;
}
float OpenGLRenderer::getLayerAlpha(const Layer* layer) const {
return (layer->getAlpha() / 255.0f) * currentSnapshot()->alpha;
}
}; // namespace uirenderer
}; // namespace android