blob: e18b4a9d242018e60e2af74ef3b01c4095394110 [file] [log] [blame]
/*
* Copyright 2019 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "aassetstreamadaptor.h"
#include <android/asset_manager.h>
#include <android/bitmap.h>
#include <android/data_space.h>
#include <android/imagedecoder.h>
#include <MimeType.h>
#include <android/rect.h>
#include <hwui/ImageDecoder.h>
#include <log/log.h>
#include <SkAndroidCodec.h>
#include <SkAlphaType.h>
#include <SkCodec.h>
#include <SkCodecAnimation.h>
#include <SkColorSpace.h>
#include <SkColorType.h>
#include <SkImageInfo.h>
#include <SkRect.h>
#include <SkRefCnt.h>
#include <SkSize.h>
#include <SkStream.h>
#include <utils/Color.h>
#include <fcntl.h>
#include <limits>
#include <optional>
#include <sys/stat.h>
#include <sys/types.h>
#include <unistd.h>
using namespace android;
int ResultToErrorCode(SkCodec::Result result) {
switch (result) {
case SkCodec::kIncompleteInput:
return ANDROID_IMAGE_DECODER_INCOMPLETE;
case SkCodec::kErrorInInput:
return ANDROID_IMAGE_DECODER_ERROR;
case SkCodec::kInvalidInput:
return ANDROID_IMAGE_DECODER_INVALID_INPUT;
case SkCodec::kCouldNotRewind:
return ANDROID_IMAGE_DECODER_SEEK_ERROR;
case SkCodec::kUnimplemented:
return ANDROID_IMAGE_DECODER_UNSUPPORTED_FORMAT;
case SkCodec::kInvalidConversion:
return ANDROID_IMAGE_DECODER_INVALID_CONVERSION;
case SkCodec::kInvalidParameters:
return ANDROID_IMAGE_DECODER_BAD_PARAMETER;
case SkCodec::kSuccess:
return ANDROID_IMAGE_DECODER_SUCCESS;
case SkCodec::kInvalidScale:
return ANDROID_IMAGE_DECODER_INVALID_SCALE;
case SkCodec::kInternalError:
return ANDROID_IMAGE_DECODER_INTERNAL_ERROR;
}
}
const char* AImageDecoder_resultToString(int result) {
switch (result) {
case ANDROID_IMAGE_DECODER_SUCCESS:
return "ANDROID_IMAGE_DECODER_SUCCESS";
case ANDROID_IMAGE_DECODER_INCOMPLETE:
return "ANDROID_IMAGE_DECODER_INCOMPLETE";
case ANDROID_IMAGE_DECODER_ERROR:
return "ANDROID_IMAGE_DECODER_ERROR";
case ANDROID_IMAGE_DECODER_INVALID_CONVERSION:
return "ANDROID_IMAGE_DECODER_INVALID_CONVERSION";
case ANDROID_IMAGE_DECODER_INVALID_SCALE:
return "ANDROID_IMAGE_DECODER_INVALID_SCALE";
case ANDROID_IMAGE_DECODER_BAD_PARAMETER:
return "ANDROID_IMAGE_DECODER_BAD_PARAMETER";
case ANDROID_IMAGE_DECODER_INVALID_INPUT:
return "ANDROID_IMAGE_DECODER_INVALID_INPUT";
case ANDROID_IMAGE_DECODER_SEEK_ERROR:
return "ANDROID_IMAGE_DECODER_SEEK_ERROR";
case ANDROID_IMAGE_DECODER_INTERNAL_ERROR:
return "ANDROID_IMAGE_DECODER_INTERNAL_ERROR";
case ANDROID_IMAGE_DECODER_UNSUPPORTED_FORMAT:
return "ANDROID_IMAGE_DECODER_UNSUPPORTED_FORMAT";
case ANDROID_IMAGE_DECODER_FINISHED:
return "ANDROID_IMAGE_DECODER_FINISHED";
case ANDROID_IMAGE_DECODER_INVALID_STATE:
return "ANDROID_IMAGE_DECODER_INVALID_STATE";
default:
return nullptr;
}
}
static int createFromStream(std::unique_ptr<SkStreamRewindable> stream, AImageDecoder** outDecoder) {
SkCodec::Result result;
auto codec = SkCodec::MakeFromStream(std::move(stream), &result, nullptr,
SkCodec::SelectionPolicy::kPreferAnimation);
// These may be swapped due to the SkEncodedOrigin, but we're just checking
// them to make sure they fit in int32_t.
auto dimensions = codec->dimensions();
auto androidCodec = SkAndroidCodec::MakeFromCodec(std::move(codec));
if (!androidCodec) {
return ResultToErrorCode(result);
}
// AImageDecoderHeaderInfo_getWidth/Height return an int32_t. Ensure that
// the conversion is safe.
if (dimensions.width() > std::numeric_limits<int32_t>::max() ||
dimensions.height() > std::numeric_limits<int32_t>::max()) {
return ANDROID_IMAGE_DECODER_INVALID_INPUT;
}
*outDecoder = reinterpret_cast<AImageDecoder*>(new ImageDecoder(std::move(androidCodec)));
return ANDROID_IMAGE_DECODER_SUCCESS;
}
int AImageDecoder_createFromAAsset(AAsset* asset, AImageDecoder** outDecoder) {
if (!asset || !outDecoder) {
return ANDROID_IMAGE_DECODER_BAD_PARAMETER;
}
*outDecoder = nullptr;
#ifdef __ANDROID__
auto stream = std::make_unique<AAssetStreamAdaptor>(asset);
return createFromStream(std::move(stream), outDecoder);
#else
return ANDROID_IMAGE_DECODER_INTERNAL_ERROR;
#endif
}
static bool isSeekable(int descriptor) {
return ::lseek64(descriptor, 0, SEEK_CUR) != -1;
}
int AImageDecoder_createFromFd(int fd, AImageDecoder** outDecoder) {
if (fd <= 0 || !outDecoder) {
return ANDROID_IMAGE_DECODER_BAD_PARAMETER;
}
struct stat fdStat;
if (fstat(fd, &fdStat) == -1) {
return ANDROID_IMAGE_DECODER_BAD_PARAMETER;
}
if (!isSeekable(fd)) {
return ANDROID_IMAGE_DECODER_BAD_PARAMETER;
}
// SkFILEStream will close its descriptor. Duplicate it so the client will
// still be responsible for closing the original.
int dupDescriptor = fcntl(fd, F_DUPFD_CLOEXEC, 0);
FILE* file = fdopen(dupDescriptor, "r");
if (!file) {
close(dupDescriptor);
return ANDROID_IMAGE_DECODER_BAD_PARAMETER;
}
auto stream = std::unique_ptr<SkStreamRewindable>(new SkFILEStream(file));
return createFromStream(std::move(stream), outDecoder);
}
int AImageDecoder_createFromBuffer(const void* buffer, size_t length,
AImageDecoder** outDecoder) {
if (!buffer || !length || !outDecoder) {
return ANDROID_IMAGE_DECODER_BAD_PARAMETER;
}
*outDecoder = nullptr;
// The client is expected to keep the buffer alive as long as the
// AImageDecoder, so we do not need to copy the buffer.
auto stream = std::unique_ptr<SkStreamRewindable>(
new SkMemoryStream(buffer, length, false /* copyData */));
return createFromStream(std::move(stream), outDecoder);
}
static ImageDecoder* toDecoder(AImageDecoder* d) {
return reinterpret_cast<ImageDecoder*>(d);
}
static const ImageDecoder* toDecoder(const AImageDecoder* d) {
return reinterpret_cast<const ImageDecoder*>(d);
}
// Note: This differs from the version in android_bitmap.cpp in that this
// version returns kGray_8_SkColorType for ANDROID_BITMAP_FORMAT_A_8. SkCodec
// allows decoding single channel images to gray, which Android then treats
// as A_8/ALPHA_8.
static SkColorType getColorType(AndroidBitmapFormat format) {
switch (format) {
case ANDROID_BITMAP_FORMAT_RGBA_8888:
return kN32_SkColorType;
case ANDROID_BITMAP_FORMAT_RGB_565:
return kRGB_565_SkColorType;
case ANDROID_BITMAP_FORMAT_RGBA_4444:
return kARGB_4444_SkColorType;
case ANDROID_BITMAP_FORMAT_A_8:
return kGray_8_SkColorType;
case ANDROID_BITMAP_FORMAT_RGBA_F16:
return kRGBA_F16_SkColorType;
case ANDROID_BITMAP_FORMAT_RGBA_1010102:
return kRGBA_1010102_SkColorType;
default:
return kUnknown_SkColorType;
}
}
int AImageDecoder_setAndroidBitmapFormat(AImageDecoder* decoder, int32_t format) {
if (!decoder || format < ANDROID_BITMAP_FORMAT_NONE ||
format > ANDROID_BITMAP_FORMAT_RGBA_1010102) {
return ANDROID_IMAGE_DECODER_BAD_PARAMETER;
}
auto* imageDecoder = toDecoder(decoder);
if (imageDecoder->currentFrame() != 0) {
return ANDROID_IMAGE_DECODER_INVALID_STATE;
}
return imageDecoder->setOutColorType(getColorType((AndroidBitmapFormat) format))
? ANDROID_IMAGE_DECODER_SUCCESS : ANDROID_IMAGE_DECODER_INVALID_CONVERSION;
}
int AImageDecoder_setDataSpace(AImageDecoder* decoder, int32_t dataspace) {
sk_sp<SkColorSpace> cs = uirenderer::DataSpaceToColorSpace((android_dataspace)dataspace);
// 0 is ADATASPACE_UNKNOWN. We need an explicit request for an ADataSpace.
if (!decoder || !dataspace || !cs) {
return ANDROID_IMAGE_DECODER_BAD_PARAMETER;
}
ImageDecoder* imageDecoder = toDecoder(decoder);
if (imageDecoder->currentFrame() != 0) {
return ANDROID_IMAGE_DECODER_INVALID_STATE;
}
imageDecoder->setOutColorSpace(std::move(cs));
return ANDROID_IMAGE_DECODER_SUCCESS;
}
const AImageDecoderHeaderInfo* AImageDecoder_getHeaderInfo(const AImageDecoder* decoder) {
return reinterpret_cast<const AImageDecoderHeaderInfo*>(decoder);
}
static const ImageDecoder* toDecoder(const AImageDecoderHeaderInfo* info) {
return reinterpret_cast<const ImageDecoder*>(info);
}
int32_t AImageDecoderHeaderInfo_getWidth(const AImageDecoderHeaderInfo* info) {
if (!info) {
return 0;
}
return toDecoder(info)->width();
}
int32_t AImageDecoderHeaderInfo_getHeight(const AImageDecoderHeaderInfo* info) {
if (!info) {
return 0;
}
return toDecoder(info)->height();
}
const char* AImageDecoderHeaderInfo_getMimeType(const AImageDecoderHeaderInfo* info) {
if (!info) {
return nullptr;
}
return getMimeType(toDecoder(info)->mCodec->getEncodedFormat());
}
int32_t AImageDecoderHeaderInfo_getDataSpace(const AImageDecoderHeaderInfo* info) {
if (!info) {
return ANDROID_IMAGE_DECODER_BAD_PARAMETER;
}
// Note: This recomputes the color type because it's possible the client has
// changed the output color type, so we cannot rely on it. Alternatively,
// we could store the ADataSpace in the ImageDecoder.
const ImageDecoder* imageDecoder = toDecoder(info);
SkColorType colorType = imageDecoder->mCodec->computeOutputColorType(kN32_SkColorType);
sk_sp<SkColorSpace> colorSpace = imageDecoder->getDefaultColorSpace();
return uirenderer::ColorSpaceToADataSpace(colorSpace.get(), colorType);
}
// FIXME: Share with getFormat in android_bitmap.cpp?
static AndroidBitmapFormat getFormat(SkColorType colorType) {
switch (colorType) {
case kN32_SkColorType:
return ANDROID_BITMAP_FORMAT_RGBA_8888;
case kRGB_565_SkColorType:
return ANDROID_BITMAP_FORMAT_RGB_565;
case kARGB_4444_SkColorType:
return ANDROID_BITMAP_FORMAT_RGBA_4444;
case kAlpha_8_SkColorType:
return ANDROID_BITMAP_FORMAT_A_8;
case kRGBA_F16_SkColorType:
return ANDROID_BITMAP_FORMAT_RGBA_F16;
case kRGBA_1010102_SkColorType:
return ANDROID_BITMAP_FORMAT_RGBA_1010102;
default:
return ANDROID_BITMAP_FORMAT_NONE;
}
}
int32_t AImageDecoderHeaderInfo_getAndroidBitmapFormat(const AImageDecoderHeaderInfo* info) {
if (!info) {
return ANDROID_BITMAP_FORMAT_NONE;
}
return getFormat(toDecoder(info)->mCodec->computeOutputColorType(kN32_SkColorType));
}
int AImageDecoderHeaderInfo_getAlphaFlags(const AImageDecoderHeaderInfo* info) {
if (!info) {
return ANDROID_IMAGE_DECODER_BAD_PARAMETER;
}
switch (toDecoder(info)->mCodec->getInfo().alphaType()) {
case kUnknown_SkAlphaType:
LOG_ALWAYS_FATAL("Invalid alpha type");
return ANDROID_IMAGE_DECODER_INTERNAL_ERROR;
case kUnpremul_SkAlphaType:
// fall through. premul is the default.
case kPremul_SkAlphaType:
return ANDROID_BITMAP_FLAGS_ALPHA_PREMUL;
case kOpaque_SkAlphaType:
return ANDROID_BITMAP_FLAGS_ALPHA_OPAQUE;
}
}
int AImageDecoder_setUnpremultipliedRequired(AImageDecoder* decoder, bool required) {
if (!decoder) {
return ANDROID_IMAGE_DECODER_BAD_PARAMETER;
}
auto* imageDecoder = toDecoder(decoder);
if (imageDecoder->currentFrame() != 0) {
return ANDROID_IMAGE_DECODER_INVALID_STATE;
}
return imageDecoder->setUnpremultipliedRequired(required)
? ANDROID_IMAGE_DECODER_SUCCESS : ANDROID_IMAGE_DECODER_INVALID_CONVERSION;
}
int AImageDecoder_setTargetSize(AImageDecoder* decoder, int32_t width, int32_t height) {
if (!decoder) {
return ANDROID_IMAGE_DECODER_BAD_PARAMETER;
}
auto* imageDecoder = toDecoder(decoder);
if (imageDecoder->currentFrame() != 0) {
return ANDROID_IMAGE_DECODER_INVALID_STATE;
}
return imageDecoder->setTargetSize(width, height)
? ANDROID_IMAGE_DECODER_SUCCESS : ANDROID_IMAGE_DECODER_INVALID_SCALE;
}
int AImageDecoder_computeSampledSize(const AImageDecoder* decoder, int sampleSize,
int32_t* width, int32_t* height) {
if (!decoder || !width || !height || sampleSize < 1) {
return ANDROID_IMAGE_DECODER_BAD_PARAMETER;
}
SkISize size = toDecoder(decoder)->getSampledDimensions(sampleSize);
*width = size.width();
*height = size.height();
return ANDROID_IMAGE_DECODER_SUCCESS;
}
int AImageDecoder_setCrop(AImageDecoder* decoder, ARect crop) {
if (!decoder) {
return ANDROID_IMAGE_DECODER_BAD_PARAMETER;
}
auto* imageDecoder = toDecoder(decoder);
if (imageDecoder->currentFrame() != 0) {
return ANDROID_IMAGE_DECODER_INVALID_STATE;
}
SkIRect cropIRect;
cropIRect.setLTRB(crop.left, crop.top, crop.right, crop.bottom);
SkIRect* cropPtr = cropIRect == SkIRect::MakeEmpty() ? nullptr : &cropIRect;
return imageDecoder->setCropRect(cropPtr)
? ANDROID_IMAGE_DECODER_SUCCESS : ANDROID_IMAGE_DECODER_BAD_PARAMETER;
}
size_t AImageDecoder_getMinimumStride(AImageDecoder* decoder) {
if (!decoder) {
return 0;
}
SkImageInfo info = toDecoder(decoder)->getOutputInfo();
return info.minRowBytes();
}
int AImageDecoder_decodeImage(AImageDecoder* decoder,
void* pixels, size_t stride,
size_t size) {
if (!decoder || !pixels || !stride) {
return ANDROID_IMAGE_DECODER_BAD_PARAMETER;
}
ImageDecoder* imageDecoder = toDecoder(decoder);
SkImageInfo info = imageDecoder->getOutputInfo();
size_t minSize = info.computeByteSize(stride);
if (SkImageInfo::ByteSizeOverflowed(minSize) || size < minSize || !info.validRowBytes(stride)) {
return ANDROID_IMAGE_DECODER_BAD_PARAMETER;
}
if (imageDecoder->finished()) {
return ANDROID_IMAGE_DECODER_FINISHED;
}
return ResultToErrorCode(imageDecoder->decode(pixels, stride));
}
void AImageDecoder_delete(AImageDecoder* decoder) {
delete toDecoder(decoder);
}
bool AImageDecoder_isAnimated(AImageDecoder* decoder) {
if (!decoder) return false;
ImageDecoder* imageDecoder = toDecoder(decoder);
return imageDecoder->isAnimated();
}
int32_t AImageDecoder_getRepeatCount(AImageDecoder* decoder) {
if (!decoder) return ANDROID_IMAGE_DECODER_BAD_PARAMETER;
ImageDecoder* imageDecoder = toDecoder(decoder);
const int count = imageDecoder->mCodec->codec()->getRepetitionCount();
// Skia should not report anything out of range, but defensively treat
// negative and too big as INFINITE.
if (count == SkCodec::kRepetitionCountInfinite || count < 0
|| count > std::numeric_limits<int32_t>::max()) {
return ANDROID_IMAGE_DECODER_INFINITE;
}
return count;
}
int AImageDecoder_advanceFrame(AImageDecoder* decoder) {
if (!decoder) return ANDROID_IMAGE_DECODER_BAD_PARAMETER;
ImageDecoder* imageDecoder = toDecoder(decoder);
if (!imageDecoder->isAnimated()) {
return ANDROID_IMAGE_DECODER_BAD_PARAMETER;
}
const auto colorType = imageDecoder->getOutputInfo().colorType();
switch (colorType) {
case kN32_SkColorType:
case kRGBA_F16_SkColorType:
break;
default:
return ANDROID_IMAGE_DECODER_INVALID_STATE;
}
if (imageDecoder->advanceFrame()) {
return ANDROID_IMAGE_DECODER_SUCCESS;
}
if (imageDecoder->finished()) {
return ANDROID_IMAGE_DECODER_FINISHED;
}
return ANDROID_IMAGE_DECODER_INCOMPLETE;
}
int AImageDecoder_rewind(AImageDecoder* decoder) {
if (!decoder) return ANDROID_IMAGE_DECODER_BAD_PARAMETER;
ImageDecoder* imageDecoder = toDecoder(decoder);
if (!imageDecoder->isAnimated()) {
return ANDROID_IMAGE_DECODER_BAD_PARAMETER;
}
return imageDecoder->rewind() ? ANDROID_IMAGE_DECODER_SUCCESS
: ANDROID_IMAGE_DECODER_SEEK_ERROR;
}
AImageDecoderFrameInfo* AImageDecoderFrameInfo_create() {
return reinterpret_cast<AImageDecoderFrameInfo*>(new SkCodec::FrameInfo);
}
static SkCodec::FrameInfo* toFrameInfo(AImageDecoderFrameInfo* info) {
return reinterpret_cast<SkCodec::FrameInfo*>(info);
}
static const SkCodec::FrameInfo* toFrameInfo(const AImageDecoderFrameInfo* info) {
return reinterpret_cast<const SkCodec::FrameInfo*>(info);
}
void AImageDecoderFrameInfo_delete(AImageDecoderFrameInfo* info) {
delete toFrameInfo(info);
}
int AImageDecoder_getFrameInfo(AImageDecoder* decoder,
AImageDecoderFrameInfo* info) {
if (!decoder || !info) {
return ANDROID_IMAGE_DECODER_BAD_PARAMETER;
}
auto* imageDecoder = toDecoder(decoder);
if (imageDecoder->finished()) {
return ANDROID_IMAGE_DECODER_FINISHED;
}
*toFrameInfo(info) = imageDecoder->getCurrentFrameInfo();
return ANDROID_IMAGE_DECODER_SUCCESS;
}
int64_t AImageDecoderFrameInfo_getDuration(const AImageDecoderFrameInfo* info) {
if (!info) return ANDROID_IMAGE_DECODER_BAD_PARAMETER;
return toFrameInfo(info)->fDuration * 1'000'000;
}
ARect AImageDecoderFrameInfo_getFrameRect(const AImageDecoderFrameInfo* info) {
if (!info) {
return { 0, 0, 0, 0};
}
const SkIRect& r = toFrameInfo(info)->fFrameRect;
return { r.left(), r.top(), r.right(), r.bottom() };
}
bool AImageDecoderFrameInfo_hasAlphaWithinBounds(const AImageDecoderFrameInfo* info) {
if (!info) return false;
return toFrameInfo(info)->fHasAlphaWithinBounds;
}
int32_t AImageDecoderFrameInfo_getDisposeOp(const AImageDecoderFrameInfo* info) {
if (!info) return ANDROID_IMAGE_DECODER_BAD_PARAMETER;
static_assert(static_cast<int>(SkCodecAnimation::DisposalMethod::kKeep)
== ANDROID_IMAGE_DECODER_DISPOSE_OP_NONE);
static_assert(static_cast<int>(SkCodecAnimation::DisposalMethod::kRestoreBGColor)
== ANDROID_IMAGE_DECODER_DISPOSE_OP_BACKGROUND);
static_assert(static_cast<int>(SkCodecAnimation::DisposalMethod::kRestorePrevious)
== ANDROID_IMAGE_DECODER_DISPOSE_OP_PREVIOUS);
return static_cast<int>(toFrameInfo(info)->fDisposalMethod);
}
int32_t AImageDecoderFrameInfo_getBlendOp(const AImageDecoderFrameInfo* info) {
if (!info) return ANDROID_IMAGE_DECODER_BAD_PARAMETER;
switch (toFrameInfo(info)->fBlend) {
case SkCodecAnimation::Blend::kSrc:
return ANDROID_IMAGE_DECODER_BLEND_OP_SRC;
case SkCodecAnimation::Blend::kSrcOver:
return ANDROID_IMAGE_DECODER_BLEND_OP_SRC_OVER;
}
}
void AImageDecoder_setInternallyHandleDisposePrevious(AImageDecoder* decoder, bool handle) {
if (decoder) {
toDecoder(decoder)->setHandleRestorePrevious(handle);
}
}