blob: c4c81284780e332583a7e8ccfab408e715132578 [file] [log] [blame]
/*
* Copyright (C) 2021 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "perf_hint"
#include <aidl/android/hardware/power/SessionHint.h>
#include <aidl/android/hardware/power/SessionMode.h>
#include <android/WorkDuration.h>
#include <android/os/IHintManager.h>
#include <android/os/IHintSession.h>
#include <android/performance_hint.h>
#include <binder/Binder.h>
#include <binder/IBinder.h>
#include <binder/IServiceManager.h>
#include <inttypes.h>
#include <performance_hint_private.h>
#include <utils/SystemClock.h>
#include <chrono>
#include <utility>
#include <vector>
using namespace android;
using namespace android::os;
using namespace std::chrono_literals;
using AidlSessionHint = aidl::android::hardware::power::SessionHint;
using AidlSessionMode = aidl::android::hardware::power::SessionMode;
struct APerformanceHintSession;
constexpr int64_t SEND_HINT_TIMEOUT = std::chrono::nanoseconds(100ms).count();
struct APerformanceHintManager {
public:
static APerformanceHintManager* getInstance();
APerformanceHintManager(sp<IHintManager> service, int64_t preferredRateNanos);
APerformanceHintManager() = delete;
~APerformanceHintManager() = default;
APerformanceHintSession* createSession(const int32_t* threadIds, size_t size,
int64_t initialTargetWorkDurationNanos);
int64_t getPreferredRateNanos() const;
private:
static APerformanceHintManager* create(sp<IHintManager> iHintManager);
sp<IHintManager> mHintManager;
const sp<IBinder> mToken = sp<BBinder>::make();
const int64_t mPreferredRateNanos;
};
struct APerformanceHintSession {
public:
APerformanceHintSession(sp<IHintManager> hintManager, sp<IHintSession> session,
int64_t preferredRateNanos, int64_t targetDurationNanos);
APerformanceHintSession() = delete;
~APerformanceHintSession();
int updateTargetWorkDuration(int64_t targetDurationNanos);
int reportActualWorkDuration(int64_t actualDurationNanos);
int sendHint(SessionHint hint);
int setThreads(const int32_t* threadIds, size_t size);
int getThreadIds(int32_t* const threadIds, size_t* size);
int setPreferPowerEfficiency(bool enabled);
int reportActualWorkDuration(AWorkDuration* workDuration);
private:
friend struct APerformanceHintManager;
int reportActualWorkDurationInternal(WorkDuration* workDuration);
sp<IHintManager> mHintManager;
sp<IHintSession> mHintSession;
// HAL preferred update rate
const int64_t mPreferredRateNanos;
// Target duration for choosing update rate
int64_t mTargetDurationNanos;
// First target hit timestamp
int64_t mFirstTargetMetTimestamp;
// Last target hit timestamp
int64_t mLastTargetMetTimestamp;
// Last hint reported from sendHint indexed by hint value
std::vector<int64_t> mLastHintSentTimestamp;
// Cached samples
std::vector<WorkDuration> mActualWorkDurations;
};
static IHintManager* gIHintManagerForTesting = nullptr;
static APerformanceHintManager* gHintManagerForTesting = nullptr;
// ===================================== APerformanceHintManager implementation
APerformanceHintManager::APerformanceHintManager(sp<IHintManager> manager,
int64_t preferredRateNanos)
: mHintManager(std::move(manager)), mPreferredRateNanos(preferredRateNanos) {}
APerformanceHintManager* APerformanceHintManager::getInstance() {
if (gHintManagerForTesting) return gHintManagerForTesting;
if (gIHintManagerForTesting) {
APerformanceHintManager* manager = create(gIHintManagerForTesting);
gIHintManagerForTesting = nullptr;
return manager;
}
static APerformanceHintManager* instance = create(nullptr);
return instance;
}
APerformanceHintManager* APerformanceHintManager::create(sp<IHintManager> manager) {
if (!manager) {
manager = interface_cast<IHintManager>(
defaultServiceManager()->checkService(String16("performance_hint")));
}
if (manager == nullptr) {
ALOGE("%s: PerformanceHint service is not ready ", __FUNCTION__);
return nullptr;
}
int64_t preferredRateNanos = -1L;
binder::Status ret = manager->getHintSessionPreferredRate(&preferredRateNanos);
if (!ret.isOk()) {
ALOGE("%s: PerformanceHint cannot get preferred rate. %s", __FUNCTION__,
ret.exceptionMessage().c_str());
return nullptr;
}
if (preferredRateNanos <= 0) {
preferredRateNanos = -1L;
}
return new APerformanceHintManager(std::move(manager), preferredRateNanos);
}
APerformanceHintSession* APerformanceHintManager::createSession(
const int32_t* threadIds, size_t size, int64_t initialTargetWorkDurationNanos) {
std::vector<int32_t> tids(threadIds, threadIds + size);
sp<IHintSession> session;
binder::Status ret =
mHintManager->createHintSession(mToken, tids, initialTargetWorkDurationNanos, &session);
if (!ret.isOk() || !session) {
return nullptr;
}
return new APerformanceHintSession(mHintManager, std::move(session), mPreferredRateNanos,
initialTargetWorkDurationNanos);
}
int64_t APerformanceHintManager::getPreferredRateNanos() const {
return mPreferredRateNanos;
}
// ===================================== APerformanceHintSession implementation
APerformanceHintSession::APerformanceHintSession(sp<IHintManager> hintManager,
sp<IHintSession> session,
int64_t preferredRateNanos,
int64_t targetDurationNanos)
: mHintManager(hintManager),
mHintSession(std::move(session)),
mPreferredRateNanos(preferredRateNanos),
mTargetDurationNanos(targetDurationNanos),
mFirstTargetMetTimestamp(0),
mLastTargetMetTimestamp(0) {
const std::vector<AidlSessionHint> sessionHintRange{ndk::enum_range<AidlSessionHint>().begin(),
ndk::enum_range<AidlSessionHint>().end()};
mLastHintSentTimestamp = std::vector<int64_t>(sessionHintRange.size(), 0);
}
APerformanceHintSession::~APerformanceHintSession() {
binder::Status ret = mHintSession->close();
if (!ret.isOk()) {
ALOGE("%s: HintSession close failed: %s", __FUNCTION__, ret.exceptionMessage().c_str());
}
}
int APerformanceHintSession::updateTargetWorkDuration(int64_t targetDurationNanos) {
if (targetDurationNanos <= 0) {
ALOGE("%s: targetDurationNanos must be positive", __FUNCTION__);
return EINVAL;
}
binder::Status ret = mHintSession->updateTargetWorkDuration(targetDurationNanos);
if (!ret.isOk()) {
ALOGE("%s: HintSession updateTargetWorkDuration failed: %s", __FUNCTION__,
ret.exceptionMessage().c_str());
return EPIPE;
}
mTargetDurationNanos = targetDurationNanos;
/**
* Most of the workload is target_duration dependent, so now clear the cached samples
* as they are most likely obsolete.
*/
mActualWorkDurations.clear();
mFirstTargetMetTimestamp = 0;
mLastTargetMetTimestamp = 0;
return 0;
}
int APerformanceHintSession::reportActualWorkDuration(int64_t actualDurationNanos) {
if (actualDurationNanos <= 0) {
ALOGE("%s: actualDurationNanos must be positive", __FUNCTION__);
return EINVAL;
}
WorkDuration workDuration(0, actualDurationNanos, actualDurationNanos, 0);
return reportActualWorkDurationInternal(&workDuration);
}
int APerformanceHintSession::sendHint(SessionHint hint) {
if (hint < 0 || hint >= static_cast<int32_t>(mLastHintSentTimestamp.size())) {
ALOGE("%s: invalid session hint %d", __FUNCTION__, hint);
return EINVAL;
}
int64_t now = elapsedRealtimeNano();
// Limit sendHint to a pre-detemined rate for safety
if (now < (mLastHintSentTimestamp[hint] + SEND_HINT_TIMEOUT)) {
return 0;
}
binder::Status ret = mHintSession->sendHint(hint);
if (!ret.isOk()) {
ALOGE("%s: HintSession sendHint failed: %s", __FUNCTION__, ret.exceptionMessage().c_str());
return EPIPE;
}
mLastHintSentTimestamp[hint] = now;
return 0;
}
int APerformanceHintSession::setThreads(const int32_t* threadIds, size_t size) {
if (size == 0) {
ALOGE("%s: the list of thread ids must not be empty.", __FUNCTION__);
return EINVAL;
}
std::vector<int32_t> tids(threadIds, threadIds + size);
binder::Status ret = mHintManager->setHintSessionThreads(mHintSession, tids);
if (!ret.isOk()) {
ALOGE("%s: failed: %s", __FUNCTION__, ret.exceptionMessage().c_str());
if (ret.exceptionCode() == binder::Status::Exception::EX_ILLEGAL_ARGUMENT) {
return EINVAL;
} else if (ret.exceptionCode() == binder::Status::Exception::EX_SECURITY) {
return EPERM;
}
return EPIPE;
}
return 0;
}
int APerformanceHintSession::getThreadIds(int32_t* const threadIds, size_t* size) {
std::vector<int32_t> tids;
binder::Status ret = mHintManager->getHintSessionThreadIds(mHintSession, &tids);
if (!ret.isOk()) {
ALOGE("%s: failed: %s", __FUNCTION__, ret.exceptionMessage().c_str());
return EPIPE;
}
// When threadIds is nullptr, this is the first call to determine the size
// of the thread ids list.
if (threadIds == nullptr) {
*size = tids.size();
return 0;
}
// Second call to return the actual list of thread ids.
*size = tids.size();
for (size_t i = 0; i < *size; ++i) {
threadIds[i] = tids[i];
}
return 0;
}
int APerformanceHintSession::setPreferPowerEfficiency(bool enabled) {
binder::Status ret =
mHintSession->setMode(static_cast<int32_t>(AidlSessionMode::POWER_EFFICIENCY), enabled);
if (!ret.isOk()) {
ALOGE("%s: HintSession setPreferPowerEfficiency failed: %s", __FUNCTION__,
ret.exceptionMessage().c_str());
return EPIPE;
}
return OK;
}
int APerformanceHintSession::reportActualWorkDuration(AWorkDuration* aWorkDuration) {
WorkDuration* workDuration = static_cast<WorkDuration*>(aWorkDuration);
if (workDuration->workPeriodStartTimestampNanos <= 0) {
ALOGE("%s: workPeriodStartTimestampNanos must be positive", __FUNCTION__);
return EINVAL;
}
if (workDuration->actualTotalDurationNanos <= 0) {
ALOGE("%s: actualDurationNanos must be positive", __FUNCTION__);
return EINVAL;
}
if (workDuration->actualCpuDurationNanos <= 0) {
ALOGE("%s: cpuDurationNanos must be positive", __FUNCTION__);
return EINVAL;
}
if (workDuration->actualGpuDurationNanos < 0) {
ALOGE("%s: gpuDurationNanos must be non negative", __FUNCTION__);
return EINVAL;
}
return reportActualWorkDurationInternal(workDuration);
}
int APerformanceHintSession::reportActualWorkDurationInternal(WorkDuration* workDuration) {
int64_t actualTotalDurationNanos = workDuration->actualTotalDurationNanos;
int64_t now = uptimeNanos();
workDuration->timestampNanos = now;
mActualWorkDurations.push_back(std::move(*workDuration));
if (actualTotalDurationNanos >= mTargetDurationNanos) {
// Reset timestamps if we are equal or over the target.
mFirstTargetMetTimestamp = 0;
} else {
// Set mFirstTargetMetTimestamp for first time meeting target.
if (!mFirstTargetMetTimestamp || !mLastTargetMetTimestamp ||
(now - mLastTargetMetTimestamp > 2 * mPreferredRateNanos)) {
mFirstTargetMetTimestamp = now;
}
/**
* Rate limit the change if the update is over mPreferredRateNanos since first
* meeting target and less than mPreferredRateNanos since last meeting target.
*/
if (now - mFirstTargetMetTimestamp > mPreferredRateNanos &&
now - mLastTargetMetTimestamp <= mPreferredRateNanos) {
return 0;
}
mLastTargetMetTimestamp = now;
}
binder::Status ret = mHintSession->reportActualWorkDuration2(mActualWorkDurations);
if (!ret.isOk()) {
ALOGE("%s: HintSession reportActualWorkDuration failed: %s", __FUNCTION__,
ret.exceptionMessage().c_str());
mFirstTargetMetTimestamp = 0;
mLastTargetMetTimestamp = 0;
return ret.exceptionCode() == binder::Status::EX_ILLEGAL_ARGUMENT ? EINVAL : EPIPE;
}
mActualWorkDurations.clear();
return 0;
}
// ===================================== C API
APerformanceHintManager* APerformanceHint_getManager() {
return APerformanceHintManager::getInstance();
}
APerformanceHintSession* APerformanceHint_createSession(APerformanceHintManager* manager,
const int32_t* threadIds, size_t size,
int64_t initialTargetWorkDurationNanos) {
return manager->createSession(threadIds, size, initialTargetWorkDurationNanos);
}
int64_t APerformanceHint_getPreferredUpdateRateNanos(APerformanceHintManager* manager) {
return manager->getPreferredRateNanos();
}
int APerformanceHint_updateTargetWorkDuration(APerformanceHintSession* session,
int64_t targetDurationNanos) {
return session->updateTargetWorkDuration(targetDurationNanos);
}
int APerformanceHint_reportActualWorkDuration(APerformanceHintSession* session,
int64_t actualDurationNanos) {
return session->reportActualWorkDuration(actualDurationNanos);
}
void APerformanceHint_closeSession(APerformanceHintSession* session) {
delete session;
}
int APerformanceHint_sendHint(void* session, SessionHint hint) {
return reinterpret_cast<APerformanceHintSession*>(session)->sendHint(hint);
}
int APerformanceHint_setThreads(APerformanceHintSession* session, const pid_t* threadIds,
size_t size) {
if (session == nullptr) {
return EINVAL;
}
return session->setThreads(threadIds, size);
}
int APerformanceHint_getThreadIds(void* aPerformanceHintSession, int32_t* const threadIds,
size_t* const size) {
if (aPerformanceHintSession == nullptr) {
return EINVAL;
}
return static_cast<APerformanceHintSession*>(aPerformanceHintSession)
->getThreadIds(threadIds, size);
}
int APerformanceHint_setPreferPowerEfficiency(APerformanceHintSession* session, bool enabled) {
return session->setPreferPowerEfficiency(enabled);
}
int APerformanceHint_reportActualWorkDuration2(APerformanceHintSession* session,
AWorkDuration* workDuration) {
if (session == nullptr || workDuration == nullptr) {
ALOGE("Invalid value: (session %p, workDuration %p)", session, workDuration);
return EINVAL;
}
return session->reportActualWorkDuration(workDuration);
}
AWorkDuration* AWorkDuration_create() {
WorkDuration* workDuration = new WorkDuration();
return static_cast<AWorkDuration*>(workDuration);
}
void AWorkDuration_release(AWorkDuration* aWorkDuration) {
if (aWorkDuration == nullptr) {
ALOGE("%s: aWorkDuration is nullptr", __FUNCTION__);
}
delete aWorkDuration;
}
void AWorkDuration_setWorkPeriodStartTimestampNanos(AWorkDuration* aWorkDuration,
int64_t workPeriodStartTimestampNanos) {
if (aWorkDuration == nullptr || workPeriodStartTimestampNanos <= 0) {
ALOGE("%s: Invalid value. (AWorkDuration: %p, workPeriodStartTimestampNanos: %" PRIi64 ")",
__FUNCTION__, aWorkDuration, workPeriodStartTimestampNanos);
}
static_cast<WorkDuration*>(aWorkDuration)->workPeriodStartTimestampNanos =
workPeriodStartTimestampNanos;
}
void AWorkDuration_setActualTotalDurationNanos(AWorkDuration* aWorkDuration,
int64_t actualTotalDurationNanos) {
if (aWorkDuration == nullptr || actualTotalDurationNanos <= 0) {
ALOGE("%s: Invalid value. (AWorkDuration: %p, actualTotalDurationNanos: %" PRIi64 ")",
__FUNCTION__, aWorkDuration, actualTotalDurationNanos);
}
static_cast<WorkDuration*>(aWorkDuration)->actualTotalDurationNanos = actualTotalDurationNanos;
}
void AWorkDuration_setActualCpuDurationNanos(AWorkDuration* aWorkDuration,
int64_t actualCpuDurationNanos) {
if (aWorkDuration == nullptr || actualCpuDurationNanos <= 0) {
ALOGE("%s: Invalid value. (AWorkDuration: %p, actualCpuDurationNanos: %" PRIi64 ")",
__FUNCTION__, aWorkDuration, actualCpuDurationNanos);
}
static_cast<WorkDuration*>(aWorkDuration)->actualCpuDurationNanos = actualCpuDurationNanos;
}
void AWorkDuration_setActualGpuDurationNanos(AWorkDuration* aWorkDuration,
int64_t actualGpuDurationNanos) {
if (aWorkDuration == nullptr || actualGpuDurationNanos < 0) {
ALOGE("%s: Invalid value. (AWorkDuration: %p, actualGpuDurationNanos: %" PRIi64 ")",
__FUNCTION__, aWorkDuration, actualGpuDurationNanos);
}
static_cast<WorkDuration*>(aWorkDuration)->actualGpuDurationNanos = actualGpuDurationNanos;
}
void APerformanceHint_setIHintManagerForTesting(void* iManager) {
delete gHintManagerForTesting;
gHintManagerForTesting = nullptr;
gIHintManagerForTesting = static_cast<IHintManager*>(iManager);
}