blob: 959059fede0cb17331cf4114da13b0565852ce8b [file] [log] [blame]
/*
* Copyright (C) 2013 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "Caches.h"
#include "Texture.h"
#include "utils/GLUtils.h"
#include "utils/MathUtils.h"
#include "utils/TraceUtils.h"
#include <utils/Log.h>
#include <math/mat4.h>
#include <SkCanvas.h>
namespace android {
namespace uirenderer {
// Number of bytes used by a texture in the given format
static int bytesPerPixel(GLint glFormat) {
switch (glFormat) {
// The wrapped-texture case, usually means a SurfaceTexture
case 0:
return 0;
case GL_LUMINANCE:
case GL_ALPHA:
return 1;
case GL_SRGB8:
case GL_RGB:
return 3;
case GL_SRGB8_ALPHA8:
case GL_RGBA:
return 4;
case GL_RGBA16F:
return 8;
default:
LOG_ALWAYS_FATAL("UNKNOWN FORMAT 0x%x", glFormat);
}
}
void Texture::setWrapST(GLenum wrapS, GLenum wrapT, bool bindTexture, bool force) {
if (force || wrapS != mWrapS || wrapT != mWrapT) {
mWrapS = wrapS;
mWrapT = wrapT;
if (bindTexture) {
mCaches.textureState().bindTexture(mTarget, mId);
}
glTexParameteri(mTarget, GL_TEXTURE_WRAP_S, wrapS);
glTexParameteri(mTarget, GL_TEXTURE_WRAP_T, wrapT);
}
}
void Texture::setFilterMinMag(GLenum min, GLenum mag, bool bindTexture, bool force) {
if (force || min != mMinFilter || mag != mMagFilter) {
mMinFilter = min;
mMagFilter = mag;
if (bindTexture) {
mCaches.textureState().bindTexture(mTarget, mId);
}
if (mipMap && min == GL_LINEAR) min = GL_LINEAR_MIPMAP_LINEAR;
glTexParameteri(mTarget, GL_TEXTURE_MIN_FILTER, min);
glTexParameteri(mTarget, GL_TEXTURE_MAG_FILTER, mag);
}
}
void Texture::deleteTexture() {
mCaches.textureState().deleteTexture(mId);
mId = 0;
mTarget = GL_NONE;
if (mEglImageHandle != EGL_NO_IMAGE_KHR) {
EGLDisplay eglDisplayHandle = eglGetCurrentDisplay();
eglDestroyImageKHR(eglDisplayHandle, mEglImageHandle);
mEglImageHandle = EGL_NO_IMAGE_KHR;
}
}
bool Texture::updateLayout(uint32_t width, uint32_t height, GLint internalFormat,
GLint format, GLenum target) {
if (mWidth == width
&& mHeight == height
&& mFormat == format
&& mInternalFormat == internalFormat
&& mTarget == target) {
return false;
}
mWidth = width;
mHeight = height;
mFormat = format;
mInternalFormat = internalFormat;
mTarget = target;
notifySizeChanged(mWidth * mHeight * bytesPerPixel(internalFormat));
return true;
}
void Texture::resetCachedParams() {
mWrapS = GL_REPEAT;
mWrapT = GL_REPEAT;
mMinFilter = GL_NEAREST_MIPMAP_LINEAR;
mMagFilter = GL_LINEAR;
}
void Texture::upload(GLint internalFormat, uint32_t width, uint32_t height,
GLenum format, GLenum type, const void* pixels) {
GL_CHECKPOINT(MODERATE);
bool needsAlloc = updateLayout(width, height, internalFormat, format, GL_TEXTURE_2D);
if (!mId) {
glGenTextures(1, &mId);
needsAlloc = true;
resetCachedParams();
}
mCaches.textureState().bindTexture(GL_TEXTURE_2D, mId);
if (needsAlloc) {
glTexImage2D(GL_TEXTURE_2D, 0, internalFormat, mWidth, mHeight, 0,
format, type, pixels);
} else if (pixels) {
glTexSubImage2D(GL_TEXTURE_2D, 0, internalFormat, mWidth, mHeight, 0,
format, type, pixels);
}
GL_CHECKPOINT(MODERATE);
}
void Texture::uploadHardwareBitmapToTexture(GraphicBuffer* buffer) {
EGLDisplay eglDisplayHandle = eglGetCurrentDisplay();
if (mEglImageHandle != EGL_NO_IMAGE_KHR) {
eglDestroyImageKHR(eglDisplayHandle, mEglImageHandle);
mEglImageHandle = EGL_NO_IMAGE_KHR;
}
mEglImageHandle = eglCreateImageKHR(eglDisplayHandle, EGL_NO_CONTEXT, EGL_NATIVE_BUFFER_ANDROID,
buffer->getNativeBuffer(), 0);
glEGLImageTargetTexture2DOES(GL_TEXTURE_EXTERNAL_OES, mEglImageHandle);
}
static void uploadToTexture(bool resize, GLint internalFormat, GLenum format, GLenum type,
GLsizei stride, GLsizei bpp, GLsizei width, GLsizei height, const GLvoid * data) {
const bool useStride = stride != width
&& Caches::getInstance().extensions().hasUnpackRowLength();
if ((stride == width) || useStride) {
if (useStride) {
glPixelStorei(GL_UNPACK_ROW_LENGTH, stride);
}
if (resize) {
glTexImage2D(GL_TEXTURE_2D, 0, internalFormat, width, height, 0, format, type, data);
} else {
glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, width, height, format, type, data);
}
if (useStride) {
glPixelStorei(GL_UNPACK_ROW_LENGTH, 0);
}
} else {
// With OpenGL ES 2.0 we need to copy the bitmap in a temporary buffer
// if the stride doesn't match the width
GLvoid * temp = (GLvoid *) malloc(width * height * bpp);
if (!temp) return;
uint8_t * pDst = (uint8_t *)temp;
uint8_t * pSrc = (uint8_t *)data;
for (GLsizei i = 0; i < height; i++) {
memcpy(pDst, pSrc, width * bpp);
pDst += width * bpp;
pSrc += stride * bpp;
}
if (resize) {
glTexImage2D(GL_TEXTURE_2D, 0, internalFormat, width, height, 0, format, type, temp);
} else {
glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, width, height, format, type, temp);
}
free(temp);
}
}
void Texture::colorTypeToGlFormatAndType(const Caches& caches, SkColorType colorType,
bool needSRGB, GLint* outInternalFormat, GLint* outFormat, GLint* outType) {
switch (colorType) {
case kAlpha_8_SkColorType:
*outFormat = GL_ALPHA;
*outInternalFormat = GL_ALPHA;
*outType = GL_UNSIGNED_BYTE;
break;
case kRGB_565_SkColorType:
if (needSRGB) {
// We would ideally use a GL_RGB/GL_SRGB8 texture but the
// intermediate Skia bitmap needs to be ARGB_8888
*outFormat = GL_RGBA;
*outInternalFormat = caches.rgbaInternalFormat();
*outType = GL_UNSIGNED_BYTE;
} else {
*outFormat = GL_RGB;
*outInternalFormat = GL_RGB;
*outType = GL_UNSIGNED_SHORT_5_6_5;
}
break;
// ARGB_4444 and Index_8 are both upconverted to RGBA_8888
case kARGB_4444_SkColorType:
case kIndex_8_SkColorType:
case kN32_SkColorType:
*outFormat = GL_RGBA;
*outInternalFormat = caches.rgbaInternalFormat(needSRGB);
*outType = GL_UNSIGNED_BYTE;
break;
case kGray_8_SkColorType:
*outFormat = GL_LUMINANCE;
*outInternalFormat = GL_LUMINANCE;
*outType = GL_UNSIGNED_BYTE;
break;
case kRGBA_F16_SkColorType:
if (caches.extensions().getMajorGlVersion() >= 3) {
// This format is always linear
*outFormat = GL_RGBA;
*outInternalFormat = GL_RGBA16F;
*outType = GL_HALF_FLOAT;
} else {
*outFormat = GL_RGBA;
*outInternalFormat = caches.rgbaInternalFormat(true);
*outType = GL_UNSIGNED_BYTE;
}
break;
default:
LOG_ALWAYS_FATAL("Unsupported bitmap colorType: %d", colorType);
break;
}
}
SkBitmap Texture::uploadToN32(const SkBitmap& bitmap, bool hasLinearBlending,
sk_sp<SkColorSpace> sRGB) {
SkBitmap rgbaBitmap;
rgbaBitmap.allocPixels(SkImageInfo::MakeN32(bitmap.width(), bitmap.height(),
bitmap.info().alphaType(), hasLinearBlending ? sRGB : nullptr));
rgbaBitmap.eraseColor(0);
if (bitmap.colorType() == kRGBA_F16_SkColorType) {
// Drawing RGBA_F16 onto ARGB_8888 is not supported
bitmap.readPixels(rgbaBitmap.info()
.makeColorSpace(SkColorSpace::MakeSRGB()),
rgbaBitmap.getPixels(), rgbaBitmap.rowBytes(), 0, 0);
} else {
SkCanvas canvas(rgbaBitmap);
canvas.drawBitmap(bitmap, 0.0f, 0.0f, nullptr);
}
return rgbaBitmap;
}
bool Texture::hasUnsupportedColorType(const SkImageInfo& info, bool hasLinearBlending) {
return info.colorType() == kARGB_4444_SkColorType
|| info.colorType() == kIndex_8_SkColorType
|| (info.colorType() == kRGB_565_SkColorType
&& hasLinearBlending
&& info.colorSpace()->isSRGB())
|| (info.colorType() == kRGBA_F16_SkColorType
&& Caches::getInstance().extensions().getMajorGlVersion() < 3);
}
void Texture::upload(Bitmap& bitmap) {
if (!bitmap.readyToDraw()) {
ALOGE("Cannot generate texture from bitmap");
return;
}
ATRACE_FORMAT("Upload %ux%u Texture", bitmap.width(), bitmap.height());
// We could also enable mipmapping if both bitmap dimensions are powers
// of 2 but we'd have to deal with size changes. Let's keep this simple
const bool canMipMap = mCaches.extensions().hasNPot();
// If the texture had mipmap enabled but not anymore,
// force a glTexImage2D to discard the mipmap levels
bool needsAlloc = canMipMap && mipMap && !bitmap.hasHardwareMipMap();
bool setDefaultParams = false;
if (!mId) {
glGenTextures(1, &mId);
needsAlloc = true;
setDefaultParams = true;
}
bool hasLinearBlending = mCaches.extensions().hasLinearBlending();
bool needSRGB = transferFunctionCloseToSRGB(bitmap.info().colorSpace());
GLint internalFormat, format, type;
colorTypeToGlFormatAndType(mCaches, bitmap.colorType(),
needSRGB && hasLinearBlending, &internalFormat, &format, &type);
// Some devices don't support GL_RGBA16F, so we need to compare the color type
// and internal GL format to decide what to do with 16 bit bitmaps
bool rgba16fNeedsConversion = bitmap.colorType() == kRGBA_F16_SkColorType
&& internalFormat != GL_RGBA16F;
mConnector.reset();
// RGBA16F is always extended sRGB, alpha masks don't have color profiles
// If an RGBA16F bitmap needs conversion, we know the target will be sRGB
if (internalFormat != GL_RGBA16F && internalFormat != GL_ALPHA && !rgba16fNeedsConversion) {
SkColorSpace* colorSpace = bitmap.info().colorSpace();
// If the bitmap is sRGB we don't need conversion
if (colorSpace != nullptr && !colorSpace->isSRGB()) {
SkMatrix44 xyzMatrix(SkMatrix44::kUninitialized_Constructor);
if (!colorSpace->toXYZD50(&xyzMatrix)) {
ALOGW("Incompatible color space!");
} else {
SkColorSpaceTransferFn fn;
if (!colorSpace->isNumericalTransferFn(&fn)) {
ALOGW("Incompatible color space, no numerical transfer function!");
} else {
float data[16];
xyzMatrix.asColMajorf(data);
ColorSpace::TransferParameters p =
{fn.fG, fn.fA, fn.fB, fn.fC, fn.fD, fn.fE, fn.fF};
ColorSpace src("Unnamed", mat4f((const float*) &data[0]).upperLeft(), p);
mConnector.reset(new ColorSpaceConnector(src, ColorSpace::sRGB()));
// A non-sRGB color space might have a transfer function close enough to sRGB
// that we can save shader instructions by using an sRGB sampler
// This is only possible if we have hardware support for sRGB textures
if (needSRGB && internalFormat == GL_RGBA
&& mCaches.extensions().hasSRGB() && !bitmap.isHardware()) {
internalFormat = GL_SRGB8_ALPHA8;
}
}
}
}
}
GLenum target = bitmap.isHardware() ? GL_TEXTURE_EXTERNAL_OES : GL_TEXTURE_2D;
needsAlloc |= updateLayout(bitmap.width(), bitmap.height(), internalFormat, format, target);
blend = !bitmap.isOpaque();
mCaches.textureState().bindTexture(mTarget, mId);
// TODO: Handle sRGB gray bitmaps
if (CC_UNLIKELY(hasUnsupportedColorType(bitmap.info(), hasLinearBlending))) {
SkBitmap skBitmap;
bitmap.getSkBitmap(&skBitmap);
sk_sp<SkColorSpace> sRGB = SkColorSpace::MakeSRGB();
SkBitmap rgbaBitmap = uploadToN32(skBitmap, hasLinearBlending, std::move(sRGB));
uploadToTexture(needsAlloc, internalFormat, format, type, rgbaBitmap.rowBytesAsPixels(),
rgbaBitmap.bytesPerPixel(), rgbaBitmap.width(),
rgbaBitmap.height(), rgbaBitmap.getPixels());
} else if (bitmap.isHardware()) {
uploadHardwareBitmapToTexture(bitmap.graphicBuffer());
} else {
uploadToTexture(needsAlloc, internalFormat, format, type, bitmap.rowBytesAsPixels(),
bitmap.info().bytesPerPixel(), bitmap.width(), bitmap.height(), bitmap.pixels());
}
if (canMipMap) {
mipMap = bitmap.hasHardwareMipMap();
if (mipMap) {
glGenerateMipmap(GL_TEXTURE_2D);
}
}
if (setDefaultParams) {
setFilter(GL_NEAREST);
setWrap(GL_CLAMP_TO_EDGE);
}
}
void Texture::wrap(GLuint id, uint32_t width, uint32_t height,
GLint internalFormat, GLint format, GLenum target) {
mId = id;
mWidth = width;
mHeight = height;
mFormat = format;
mInternalFormat = internalFormat;
mTarget = target;
mConnector.reset();
// We're wrapping an existing texture, so don't double count this memory
notifySizeChanged(0);
}
TransferFunctionType Texture::getTransferFunctionType() const {
if (mConnector.get() != nullptr && mInternalFormat != GL_SRGB8_ALPHA8) {
const ColorSpace::TransferParameters& p = mConnector->getSource().getTransferParameters();
if (MathUtils::isZero(p.e) && MathUtils::isZero(p.f)) {
if (MathUtils::areEqual(p.a, 1.0f) && MathUtils::isZero(p.b)
&& MathUtils::isZero(p.c) && MathUtils::isZero(p.d)) {
if (MathUtils::areEqual(p.g, 1.0f)) {
return TransferFunctionType::None;
}
return TransferFunctionType::Gamma;
}
return TransferFunctionType::Limited;
}
return TransferFunctionType::Full;
}
return TransferFunctionType::None;
}
}; // namespace uirenderer
}; // namespace android