blob: 8abcd9a59122d16bed00acc54f8f02eea534acc0 [file] [log] [blame]
#undef LOG_TAG
#define LOG_TAG "BitmapFactory"
#include "BitmapFactory.h"
#include <Gainmap.h>
#include <HardwareBitmapUploader.h>
#include <androidfw/Asset.h>
#include <androidfw/ResourceTypes.h>
#include <cutils/compiler.h>
#include <fcntl.h>
#include <nativehelper/JNIPlatformHelp.h>
#include <stdint.h>
#include <stdio.h>
#include <sys/stat.h>
#include <memory>
#include "CreateJavaOutputStreamAdaptor.h"
#include "FrontBufferedStream.h"
#include "GraphicsJNI.h"
#include "MimeType.h"
#include "NinePatchPeeker.h"
#include "SkAndroidCodec.h"
#include "SkBitmap.h"
#include "SkBlendMode.h"
#include "SkCanvas.h"
#include "SkColorSpace.h"
#include "SkEncodedImageFormat.h"
#include "SkGainmapInfo.h"
#include "SkImageInfo.h"
#include "SkPaint.h"
#include "SkPixelRef.h"
#include "SkRect.h"
#include "SkRefCnt.h"
#include "SkSamplingOptions.h"
#include "SkSize.h"
#include "SkStream.h"
#include "SkString.h"
#include "Utils.h"
jfieldID gOptions_justBoundsFieldID;
jfieldID gOptions_sampleSizeFieldID;
jfieldID gOptions_configFieldID;
jfieldID gOptions_colorSpaceFieldID;
jfieldID gOptions_premultipliedFieldID;
jfieldID gOptions_mutableFieldID;
jfieldID gOptions_ditherFieldID;
jfieldID gOptions_preferQualityOverSpeedFieldID;
jfieldID gOptions_scaledFieldID;
jfieldID gOptions_densityFieldID;
jfieldID gOptions_screenDensityFieldID;
jfieldID gOptions_targetDensityFieldID;
jfieldID gOptions_widthFieldID;
jfieldID gOptions_heightFieldID;
jfieldID gOptions_mimeFieldID;
jfieldID gOptions_outConfigFieldID;
jfieldID gOptions_outColorSpaceFieldID;
jfieldID gOptions_mCancelID;
jfieldID gOptions_bitmapFieldID;
jfieldID gBitmap_ninePatchInsetsFieldID;
jclass gBitmapConfig_class;
jmethodID gBitmapConfig_nativeToConfigMethodID;
using namespace android;
const char* getMimeType(SkEncodedImageFormat format) {
switch (format) {
case SkEncodedImageFormat::kBMP:
return "image/bmp";
case SkEncodedImageFormat::kGIF:
return "image/gif";
case SkEncodedImageFormat::kICO:
return "image/x-ico";
case SkEncodedImageFormat::kJPEG:
return "image/jpeg";
case SkEncodedImageFormat::kPNG:
return "image/png";
case SkEncodedImageFormat::kWEBP:
return "image/webp";
case SkEncodedImageFormat::kHEIF:
return "image/heif";
case SkEncodedImageFormat::kAVIF:
return "image/avif";
case SkEncodedImageFormat::kWBMP:
return "image/vnd.wap.wbmp";
case SkEncodedImageFormat::kDNG:
return "image/x-adobe-dng";
default:
return nullptr;
}
}
jstring getMimeTypeAsJavaString(JNIEnv* env, SkEncodedImageFormat format) {
jstring jstr = nullptr;
const char* mimeType = getMimeType(format);
if (mimeType) {
// NOTE: Caller should env->ExceptionCheck() for OOM
// (can't check for nullptr as it's a valid return value)
jstr = env->NewStringUTF(mimeType);
}
return jstr;
}
class ScaleCheckingAllocator : public SkBitmap::HeapAllocator {
public:
ScaleCheckingAllocator(float scale, int size)
: mScale(scale), mSize(size) {
}
virtual bool allocPixelRef(SkBitmap* bitmap) {
// accounts for scale in final allocation, using eventual size and config
const int bytesPerPixel = SkColorTypeBytesPerPixel(bitmap->colorType());
const int requestedSize = bytesPerPixel *
int(bitmap->width() * mScale + 0.5f) *
int(bitmap->height() * mScale + 0.5f);
if (requestedSize > mSize) {
ALOGW("bitmap for alloc reuse (%d bytes) can't fit scaled bitmap (%d bytes)",
mSize, requestedSize);
return false;
}
return SkBitmap::HeapAllocator::allocPixelRef(bitmap);
}
private:
const float mScale;
const int mSize;
};
class RecyclingPixelAllocator : public SkBitmap::Allocator {
public:
RecyclingPixelAllocator(android::Bitmap* bitmap, unsigned int size)
: mBitmap(bitmap), mSize(size) {
}
~RecyclingPixelAllocator() {
}
virtual bool allocPixelRef(SkBitmap* bitmap) {
const SkImageInfo& info = bitmap->info();
if (info.colorType() == kUnknown_SkColorType) {
ALOGW("unable to reuse a bitmap as the target has an unknown bitmap configuration");
return false;
}
const size_t size = info.computeByteSize(bitmap->rowBytes());
if (size > INT32_MAX) {
ALOGW("bitmap is too large");
return false;
}
if (size > mSize) {
ALOGW("bitmap marked for reuse (%u bytes) can't fit new bitmap "
"(%zu bytes)", mSize, size);
return false;
}
mBitmap->reconfigure(info, bitmap->rowBytes());
bitmap->setPixelRef(sk_ref_sp(mBitmap), 0, 0);
return true;
}
private:
android::Bitmap* const mBitmap;
const unsigned int mSize;
};
// Necessary for decodes when the native decoder cannot scale to appropriately match the sampleSize
// (for example, RAW). If the sampleSize divides evenly into the dimension, we require that the
// scale matches exactly. If sampleSize does not divide evenly, we allow the decoder to choose how
// best to round.
static bool needsFineScale(const int fullSize, const int decodedSize, const int sampleSize) {
if (fullSize % sampleSize == 0 && fullSize / sampleSize != decodedSize) {
return true;
} else if ((fullSize / sampleSize + 1) != decodedSize &&
(fullSize / sampleSize) != decodedSize) {
return true;
}
return false;
}
static bool needsFineScale(const SkISize fullSize, const SkISize decodedSize,
const int sampleSize) {
return needsFineScale(fullSize.width(), decodedSize.width(), sampleSize) ||
needsFineScale(fullSize.height(), decodedSize.height(), sampleSize);
}
static bool decodeGainmap(std::unique_ptr<SkStream> gainmapStream, const SkGainmapInfo& gainmapInfo,
sp<uirenderer::Gainmap>* outGainmap, const int sampleSize, float scale) {
std::unique_ptr<SkAndroidCodec> codec;
codec = SkAndroidCodec::MakeFromStream(std::move(gainmapStream), nullptr);
if (!codec) {
ALOGE("Can not create a codec for Gainmap.");
return false;
}
SkColorType decodeColorType = kN32_SkColorType;
if (codec->getInfo().colorType() == kGray_8_SkColorType) {
decodeColorType = kGray_8_SkColorType;
}
decodeColorType = codec->computeOutputColorType(decodeColorType);
sk_sp<SkColorSpace> decodeColorSpace = codec->computeOutputColorSpace(decodeColorType, nullptr);
SkISize size = codec->getSampledDimensions(sampleSize);
int scaledWidth = size.width();
int scaledHeight = size.height();
bool willScale = false;
// Apply a fine scaling step if necessary.
if (needsFineScale(codec->getInfo().dimensions(), size, sampleSize) || scale != 1.0f) {
willScale = true;
// The operation below may loose precision (integer division), but it is put this way to
// mimic main image scale calculation
scaledWidth = static_cast<int>((codec->getInfo().width() / sampleSize) * scale + 0.5f);
scaledHeight = static_cast<int>((codec->getInfo().height() / sampleSize) * scale + 0.5f);
}
SkAlphaType alphaType = codec->computeOutputAlphaType(false);
const SkImageInfo decodeInfo = SkImageInfo::Make(size.width(), size.height(), decodeColorType,
alphaType, decodeColorSpace);
SkImageInfo bitmapInfo = decodeInfo;
if (decodeColorType == kGray_8_SkColorType) {
// We treat gray8 as alpha8 in Bitmap's API surface
bitmapInfo = bitmapInfo.makeColorType(kAlpha_8_SkColorType);
}
SkBitmap decodeBitmap;
sk_sp<Bitmap> nativeBitmap = nullptr;
if (!decodeBitmap.setInfo(bitmapInfo)) {
ALOGE("Failed to setInfo.");
return false;
}
if (willScale) {
if (!decodeBitmap.tryAllocPixels(nullptr)) {
ALOGE("OOM allocating gainmap pixels.");
return false;
}
} else {
nativeBitmap = android::Bitmap::allocateHeapBitmap(&decodeBitmap);
if (!nativeBitmap) {
ALOGE("OOM allocating gainmap pixels.");
return false;
}
}
// Use SkAndroidCodec to perform the decode.
SkAndroidCodec::AndroidOptions codecOptions;
codecOptions.fZeroInitialized = SkCodec::kYes_ZeroInitialized;
codecOptions.fSampleSize = sampleSize;
SkCodec::Result result = codec->getAndroidPixels(decodeInfo, decodeBitmap.getPixels(),
decodeBitmap.rowBytes(), &codecOptions);
switch (result) {
case SkCodec::kSuccess:
case SkCodec::kIncompleteInput:
break;
default:
ALOGE("Error decoding gainmap.");
return false;
}
if (willScale) {
SkBitmap gainmapBitmap;
const float scaleX = scaledWidth / float(decodeBitmap.width());
const float scaleY = scaledHeight / float(decodeBitmap.height());
SkColorType scaledColorType = decodeBitmap.colorType();
gainmapBitmap.setInfo(
bitmapInfo.makeWH(scaledWidth, scaledHeight).makeColorType(scaledColorType));
nativeBitmap = android::Bitmap::allocateHeapBitmap(&gainmapBitmap);
if (!nativeBitmap) {
ALOGE("OOM allocating gainmap pixels.");
return false;
}
SkPaint paint;
// kSrc_Mode instructs us to overwrite the uninitialized pixels in
// outputBitmap. Otherwise we would blend by default, which is not
// what we want.
paint.setBlendMode(SkBlendMode::kSrc);
SkCanvas canvas(gainmapBitmap, SkCanvas::ColorBehavior::kLegacy);
canvas.scale(scaleX, scaleY);
decodeBitmap.setImmutable(); // so .asImage() doesn't make a copy
canvas.drawImage(decodeBitmap.asImage(), 0.0f, 0.0f,
SkSamplingOptions(SkFilterMode::kLinear), &paint);
}
auto gainmap = sp<uirenderer::Gainmap>::make();
if (!gainmap) {
ALOGE("OOM allocating Gainmap");
return false;
}
gainmap->info = gainmapInfo;
gainmap->bitmap = std::move(nativeBitmap);
*outGainmap = std::move(gainmap);
return true;
}
static jobject doDecode(JNIEnv* env, std::unique_ptr<SkStreamRewindable> stream,
jobject padding, jobject options, jlong inBitmapHandle,
jlong colorSpaceHandle) {
// Set default values for the options parameters.
int sampleSize = 1;
bool onlyDecodeSize = false;
SkColorType prefColorType = kN32_SkColorType;
bool isHardware = false;
bool isMutable = false;
float scale = 1.0f;
bool requireUnpremultiplied = false;
jobject javaBitmap = NULL;
sk_sp<SkColorSpace> prefColorSpace = GraphicsJNI::getNativeColorSpace(colorSpaceHandle);
// Update with options supplied by the client.
if (options != NULL) {
sampleSize = env->GetIntField(options, gOptions_sampleSizeFieldID);
// Correct a non-positive sampleSize. sampleSize defaults to zero within the
// options object, which is strange.
if (sampleSize <= 0) {
sampleSize = 1;
}
if (env->GetBooleanField(options, gOptions_justBoundsFieldID)) {
onlyDecodeSize = true;
}
// initialize these, in case we fail later on
env->SetIntField(options, gOptions_widthFieldID, -1);
env->SetIntField(options, gOptions_heightFieldID, -1);
env->SetObjectField(options, gOptions_mimeFieldID, 0);
env->SetObjectField(options, gOptions_outConfigFieldID, 0);
env->SetObjectField(options, gOptions_outColorSpaceFieldID, 0);
jobject jconfig = env->GetObjectField(options, gOptions_configFieldID);
prefColorType = GraphicsJNI::getNativeBitmapColorType(env, jconfig);
isHardware = GraphicsJNI::isHardwareConfig(env, jconfig);
isMutable = env->GetBooleanField(options, gOptions_mutableFieldID);
requireUnpremultiplied = !env->GetBooleanField(options, gOptions_premultipliedFieldID);
javaBitmap = env->GetObjectField(options, gOptions_bitmapFieldID);
if (env->GetBooleanField(options, gOptions_scaledFieldID)) {
const int density = env->GetIntField(options, gOptions_densityFieldID);
const int targetDensity = env->GetIntField(options, gOptions_targetDensityFieldID);
const int screenDensity = env->GetIntField(options, gOptions_screenDensityFieldID);
if (density != 0 && targetDensity != 0 && density != screenDensity) {
scale = (float) targetDensity / density;
}
}
}
if (isMutable && isHardware) {
doThrowIAE(env, "Bitmaps with Config.HARDWARE are always immutable");
return nullObjectReturn("Cannot create mutable hardware bitmap");
}
// Create the codec.
NinePatchPeeker peeker;
std::unique_ptr<SkAndroidCodec> codec;
{
SkCodec::Result result;
std::unique_ptr<SkCodec> c = SkCodec::MakeFromStream(std::move(stream), &result,
&peeker);
if (!c) {
SkString msg;
msg.printf("Failed to create image decoder with message '%s'",
SkCodec::ResultToString(result));
return nullObjectReturn(msg.c_str());
}
codec = SkAndroidCodec::MakeFromCodec(std::move(c));
if (!codec) {
return nullObjectReturn("SkAndroidCodec::MakeFromCodec returned null");
}
}
// Do not allow ninepatch decodes to 565. In the past, decodes to 565
// would dither, and we do not want to pre-dither ninepatches, since we
// know that they will be stretched. We no longer dither 565 decodes,
// but we continue to prevent ninepatches from decoding to 565, in order
// to maintain the old behavior.
if (peeker.mPatch && kRGB_565_SkColorType == prefColorType) {
prefColorType = kN32_SkColorType;
}
// Determine the output size.
SkISize size = codec->getSampledDimensions(sampleSize);
int scaledWidth = size.width();
int scaledHeight = size.height();
bool willScale = false;
// Apply a fine scaling step if necessary.
if (needsFineScale(codec->getInfo().dimensions(), size, sampleSize)) {
willScale = true;
scaledWidth = codec->getInfo().width() / sampleSize;
scaledHeight = codec->getInfo().height() / sampleSize;
}
// Set the decode colorType
SkColorType decodeColorType = codec->computeOutputColorType(prefColorType);
if (decodeColorType == kRGBA_F16_SkColorType && isHardware &&
!uirenderer::HardwareBitmapUploader::hasFP16Support()) {
decodeColorType = kN32_SkColorType;
}
// b/276879147, fallback to RGBA_8888 when decoding HEIF and P010 is not supported.
if (decodeColorType == kRGBA_1010102_SkColorType &&
codec->getEncodedFormat() == SkEncodedImageFormat::kHEIF &&
env->CallStaticBooleanMethod(gImageDecoder_class,
gImageDecoder_isP010SupportedForHEVCMethodID) == JNI_FALSE) {
decodeColorType = kN32_SkColorType;
}
sk_sp<SkColorSpace> decodeColorSpace = codec->computeOutputColorSpace(
decodeColorType, prefColorSpace);
// Set the options and return if the client only wants the size.
if (options != NULL) {
jstring mimeType = getMimeTypeAsJavaString(env, codec->getEncodedFormat());
if (env->ExceptionCheck()) {
return nullObjectReturn("OOM in getMimeTypeAsJavaString()");
}
env->SetIntField(options, gOptions_widthFieldID, scaledWidth);
env->SetIntField(options, gOptions_heightFieldID, scaledHeight);
env->SetObjectField(options, gOptions_mimeFieldID, mimeType);
jint configID = GraphicsJNI::colorTypeToLegacyBitmapConfig(decodeColorType);
if (isHardware) {
configID = GraphicsJNI::kHardware_LegacyBitmapConfig;
}
jobject config = env->CallStaticObjectMethod(gBitmapConfig_class,
gBitmapConfig_nativeToConfigMethodID, configID);
env->SetObjectField(options, gOptions_outConfigFieldID, config);
env->SetObjectField(options, gOptions_outColorSpaceFieldID,
GraphicsJNI::getColorSpace(env, decodeColorSpace.get(), decodeColorType));
if (onlyDecodeSize) {
return nullptr;
}
}
// Scale is necessary due to density differences.
if (scale != 1.0f) {
willScale = true;
scaledWidth = static_cast<int>(scaledWidth * scale + 0.5f);
scaledHeight = static_cast<int>(scaledHeight * scale + 0.5f);
}
android::Bitmap* reuseBitmap = nullptr;
unsigned int existingBufferSize = 0;
if (javaBitmap != nullptr) {
reuseBitmap = &bitmap::toBitmap(inBitmapHandle);
if (reuseBitmap->isImmutable()) {
ALOGW("Unable to reuse an immutable bitmap as an image decoder target.");
javaBitmap = nullptr;
reuseBitmap = nullptr;
} else {
existingBufferSize = reuseBitmap->getAllocationByteCount();
}
}
HeapAllocator defaultAllocator;
RecyclingPixelAllocator recyclingAllocator(reuseBitmap, existingBufferSize);
ScaleCheckingAllocator scaleCheckingAllocator(scale, existingBufferSize);
SkBitmap::HeapAllocator heapAllocator;
SkBitmap::Allocator* decodeAllocator;
if (javaBitmap != nullptr && willScale) {
// This will allocate pixels using a HeapAllocator, since there will be an extra
// scaling step that copies these pixels into Java memory. This allocator
// also checks that the recycled javaBitmap is large enough.
decodeAllocator = &scaleCheckingAllocator;
} else if (javaBitmap != nullptr) {
decodeAllocator = &recyclingAllocator;
} else if (willScale || isHardware) {
// This will allocate pixels using a HeapAllocator,
// for scale case: there will be an extra scaling step.
// for hardware case: there will be extra swizzling & upload to gralloc step.
decodeAllocator = &heapAllocator;
} else {
decodeAllocator = &defaultAllocator;
}
SkAlphaType alphaType = codec->computeOutputAlphaType(requireUnpremultiplied);
const SkImageInfo decodeInfo = SkImageInfo::Make(size.width(), size.height(),
decodeColorType, alphaType, decodeColorSpace);
SkImageInfo bitmapInfo = decodeInfo;
if (decodeColorType == kGray_8_SkColorType) {
// The legacy implementation of BitmapFactory used kAlpha8 for
// grayscale images (before kGray8 existed). While the codec
// recognizes kGray8, we need to decode into a kAlpha8 bitmap
// in order to avoid a behavior change.
bitmapInfo =
bitmapInfo.makeColorType(kAlpha_8_SkColorType).makeAlphaType(kPremul_SkAlphaType);
}
SkBitmap decodingBitmap;
if (!decodingBitmap.setInfo(bitmapInfo) ||
!decodingBitmap.tryAllocPixels(decodeAllocator)) {
// SkAndroidCodec should recommend a valid SkImageInfo, so setInfo()
// should only only fail if the calculated value for rowBytes is too
// large.
// tryAllocPixels() can fail due to OOM on the Java heap, OOM on the
// native heap, or the recycled javaBitmap being too small to reuse.
return nullptr;
}
// Use SkAndroidCodec to perform the decode.
SkAndroidCodec::AndroidOptions codecOptions;
codecOptions.fZeroInitialized = decodeAllocator == &defaultAllocator ?
SkCodec::kYes_ZeroInitialized : SkCodec::kNo_ZeroInitialized;
codecOptions.fSampleSize = sampleSize;
SkCodec::Result result = codec->getAndroidPixels(decodeInfo, decodingBitmap.getPixels(),
decodingBitmap.rowBytes(), &codecOptions);
switch (result) {
case SkCodec::kSuccess:
case SkCodec::kIncompleteInput:
break;
default:
return nullObjectReturn("codec->getAndroidPixels() failed.");
}
// This is weird so let me explain: we could use the scale parameter
// directly, but for historical reasons this is how the corresponding
// Dalvik code has always behaved. We simply recreate the behavior here.
// The result is slightly different from simply using scale because of
// the 0.5f rounding bias applied when computing the target image size
const float scaleX = scaledWidth / float(decodingBitmap.width());
const float scaleY = scaledHeight / float(decodingBitmap.height());
jbyteArray ninePatchChunk = NULL;
if (peeker.mPatch != NULL) {
if (willScale) {
peeker.scale(scaleX, scaleY, scaledWidth, scaledHeight);
}
size_t ninePatchArraySize = peeker.mPatch->serializedSize();
ninePatchChunk = env->NewByteArray(ninePatchArraySize);
if (ninePatchChunk == NULL) {
return nullObjectReturn("ninePatchChunk == null");
}
jbyte* array = (jbyte*) env->GetPrimitiveArrayCritical(ninePatchChunk, NULL);
if (array == NULL) {
return nullObjectReturn("primitive array == null");
}
memcpy(array, peeker.mPatch, peeker.mPatchSize);
env->ReleasePrimitiveArrayCritical(ninePatchChunk, array, 0);
}
jobject ninePatchInsets = NULL;
if (peeker.mHasInsets) {
ninePatchInsets = peeker.createNinePatchInsets(env, scale);
if (ninePatchInsets == NULL) {
return nullObjectReturn("nine patch insets == null");
}
if (javaBitmap != NULL) {
env->SetObjectField(javaBitmap, gBitmap_ninePatchInsetsFieldID, ninePatchInsets);
}
}
SkBitmap outputBitmap;
if (willScale) {
// Set the allocator for the outputBitmap.
SkBitmap::Allocator* outputAllocator;
if (javaBitmap != nullptr) {
outputAllocator = &recyclingAllocator;
} else {
outputAllocator = &defaultAllocator;
}
SkColorType scaledColorType = decodingBitmap.colorType();
// FIXME: If the alphaType is kUnpremul and the image has alpha, the
// colors may not be correct, since Skia does not yet support drawing
// to/from unpremultiplied bitmaps.
outputBitmap.setInfo(
bitmapInfo.makeWH(scaledWidth, scaledHeight).makeColorType(scaledColorType));
if (!outputBitmap.tryAllocPixels(outputAllocator)) {
// This should only fail on OOM. The recyclingAllocator should have
// enough memory since we check this before decoding using the
// scaleCheckingAllocator.
return nullObjectReturn("allocation failed for scaled bitmap");
}
SkPaint paint;
// kSrc_Mode instructs us to overwrite the uninitialized pixels in
// outputBitmap. Otherwise we would blend by default, which is not
// what we want.
paint.setBlendMode(SkBlendMode::kSrc);
SkCanvas canvas(outputBitmap, SkCanvas::ColorBehavior::kLegacy);
canvas.scale(scaleX, scaleY);
decodingBitmap.setImmutable(); // so .asImage() doesn't make a copy
canvas.drawImage(decodingBitmap.asImage(), 0.0f, 0.0f,
SkSamplingOptions(SkFilterMode::kLinear), &paint);
} else {
outputBitmap.swap(decodingBitmap);
}
if (padding) {
peeker.getPadding(env, padding);
}
// If we get here, the outputBitmap should have an installed pixelref.
if (outputBitmap.pixelRef() == NULL) {
return nullObjectReturn("Got null SkPixelRef");
}
bool hasGainmap = false;
SkGainmapInfo gainmapInfo;
std::unique_ptr<SkStream> gainmapStream = nullptr;
sp<uirenderer::Gainmap> gainmap = nullptr;
if (result == SkCodec::kSuccess) {
hasGainmap = codec->getAndroidGainmap(&gainmapInfo, &gainmapStream);
}
if (hasGainmap) {
hasGainmap =
decodeGainmap(std::move(gainmapStream), gainmapInfo, &gainmap, sampleSize, scale);
}
if (!isMutable && javaBitmap == NULL) {
// promise we will never change our pixels (great for sharing and pictures)
outputBitmap.setImmutable();
}
bool isPremultiplied = !requireUnpremultiplied;
if (javaBitmap != nullptr) {
if (hasGainmap) {
reuseBitmap->setGainmap(std::move(gainmap));
}
bitmap::reinitBitmap(env, javaBitmap, outputBitmap.info(), isPremultiplied);
outputBitmap.notifyPixelsChanged();
// If a java bitmap was passed in for reuse, pass it back
return javaBitmap;
}
int bitmapCreateFlags = 0x0;
if (isMutable) bitmapCreateFlags |= android::bitmap::kBitmapCreateFlag_Mutable;
if (isPremultiplied) bitmapCreateFlags |= android::bitmap::kBitmapCreateFlag_Premultiplied;
if (isHardware) {
sk_sp<Bitmap> hardwareBitmap = Bitmap::allocateHardwareBitmap(outputBitmap);
if (!hardwareBitmap.get()) {
return nullObjectReturn("Failed to allocate a hardware bitmap");
}
if (hasGainmap) {
auto gm = uirenderer::Gainmap::allocateHardwareGainmap(gainmap);
if (gm) {
hardwareBitmap->setGainmap(std::move(gm));
}
}
return bitmap::createBitmap(env, hardwareBitmap.release(), bitmapCreateFlags,
ninePatchChunk, ninePatchInsets, -1);
}
Bitmap* heapBitmap = defaultAllocator.getStorageObjAndReset();
if (hasGainmap && heapBitmap != nullptr) {
heapBitmap->setGainmap(std::move(gainmap));
}
// now create the java bitmap
return bitmap::createBitmap(env, heapBitmap, bitmapCreateFlags, ninePatchChunk, ninePatchInsets,
-1);
}
static jobject nativeDecodeStream(JNIEnv* env, jobject clazz, jobject is, jbyteArray storage,
jobject padding, jobject options, jlong inBitmapHandle, jlong colorSpaceHandle) {
jobject bitmap = NULL;
std::unique_ptr<SkStream> stream(CreateJavaInputStreamAdaptor(env, is, storage));
if (stream.get()) {
std::unique_ptr<SkStreamRewindable> bufferedStream(skia::FrontBufferedStream::Make(
std::move(stream), SkCodec::MinBufferedBytesNeeded()));
SkASSERT(bufferedStream.get() != NULL);
bitmap = doDecode(env, std::move(bufferedStream), padding, options, inBitmapHandle,
colorSpaceHandle);
}
return bitmap;
}
static jobject nativeDecodeFileDescriptor(JNIEnv* env, jobject clazz, jobject fileDescriptor,
jobject padding, jobject bitmapFactoryOptions, jlong inBitmapHandle, jlong colorSpaceHandle) {
#ifndef __ANDROID__ // LayoutLib for Windows does not support F_DUPFD_CLOEXEC
return nullObjectReturn("Not supported on Windows");
#else
NPE_CHECK_RETURN_ZERO(env, fileDescriptor);
int descriptor = jniGetFDFromFileDescriptor(env, fileDescriptor);
struct stat fdStat;
if (fstat(descriptor, &fdStat) == -1) {
doThrowIOE(env, "broken file descriptor");
return nullObjectReturn("fstat return -1");
}
// Restore the descriptor's offset on exiting this function. Even though
// we dup the descriptor, both the original and dup refer to the same open
// file description and changes to the file offset in one impact the other.
AutoFDSeek autoRestore(descriptor);
// Duplicate the descriptor here to prevent leaking memory. A leak occurs
// if we only close the file descriptor and not the file object it is used to
// create. If we don't explicitly clean up the file (which in turn closes the
// descriptor) the buffers allocated internally by fseek will be leaked.
int dupDescriptor = fcntl(descriptor, F_DUPFD_CLOEXEC, 0);
FILE* file = fdopen(dupDescriptor, "r");
if (file == NULL) {
// cleanup the duplicated descriptor since it will not be closed when the
// file is cleaned up (fclose).
close(dupDescriptor);
return nullObjectReturn("Could not open file");
}
std::unique_ptr<SkFILEStream> fileStream(new SkFILEStream(file));
// If there is no offset for the file descriptor, we use SkFILEStream directly.
if (::lseek(descriptor, 0, SEEK_CUR) == 0) {
assert(isSeekable(dupDescriptor));
return doDecode(env, std::move(fileStream), padding, bitmapFactoryOptions,
inBitmapHandle, colorSpaceHandle);
}
// Use a buffered stream. Although an SkFILEStream can be rewound, this
// ensures that SkImageDecoder::Factory never rewinds beyond the
// current position of the file descriptor.
std::unique_ptr<SkStreamRewindable> stream(skia::FrontBufferedStream::Make(
std::move(fileStream), SkCodec::MinBufferedBytesNeeded()));
return doDecode(env, std::move(stream), padding, bitmapFactoryOptions, inBitmapHandle,
colorSpaceHandle);
#endif
}
static jobject nativeDecodeAsset(JNIEnv* env, jobject clazz, jlong native_asset,
jobject padding, jobject options, jlong inBitmapHandle, jlong colorSpaceHandle) {
Asset* asset = reinterpret_cast<Asset*>(native_asset);
// since we know we'll be done with the asset when we return, we can
// just use a simple wrapper
return doDecode(env, std::make_unique<AssetStreamAdaptor>(asset), padding, options,
inBitmapHandle, colorSpaceHandle);
}
static jobject nativeDecodeByteArray(JNIEnv* env, jobject, jbyteArray byteArray,
jint offset, jint length, jobject options, jlong inBitmapHandle, jlong colorSpaceHandle) {
AutoJavaByteArray ar(env, byteArray);
return doDecode(env, std::make_unique<SkMemoryStream>(ar.ptr() + offset, length, false),
nullptr, options, inBitmapHandle, colorSpaceHandle);
}
static jboolean nativeIsSeekable(JNIEnv* env, jobject, jobject fileDescriptor) {
jint descriptor = jniGetFDFromFileDescriptor(env, fileDescriptor);
return isSeekable(descriptor) ? JNI_TRUE : JNI_FALSE;
}
///////////////////////////////////////////////////////////////////////////////
static const JNINativeMethod gMethods[] = {
{ "nativeDecodeStream",
"(Ljava/io/InputStream;[BLandroid/graphics/Rect;Landroid/graphics/BitmapFactory$Options;JJ)Landroid/graphics/Bitmap;",
(void*)nativeDecodeStream
},
{ "nativeDecodeFileDescriptor",
"(Ljava/io/FileDescriptor;Landroid/graphics/Rect;Landroid/graphics/BitmapFactory$Options;JJ)Landroid/graphics/Bitmap;",
(void*)nativeDecodeFileDescriptor
},
{ "nativeDecodeAsset",
"(JLandroid/graphics/Rect;Landroid/graphics/BitmapFactory$Options;JJ)Landroid/graphics/Bitmap;",
(void*)nativeDecodeAsset
},
{ "nativeDecodeByteArray",
"([BIILandroid/graphics/BitmapFactory$Options;JJ)Landroid/graphics/Bitmap;",
(void*)nativeDecodeByteArray
},
{ "nativeIsSeekable",
"(Ljava/io/FileDescriptor;)Z",
(void*)nativeIsSeekable
},
};
int register_android_graphics_BitmapFactory(JNIEnv* env) {
jclass options_class = FindClassOrDie(env, "android/graphics/BitmapFactory$Options");
gOptions_bitmapFieldID = GetFieldIDOrDie(env, options_class, "inBitmap",
"Landroid/graphics/Bitmap;");
gOptions_justBoundsFieldID = GetFieldIDOrDie(env, options_class, "inJustDecodeBounds", "Z");
gOptions_sampleSizeFieldID = GetFieldIDOrDie(env, options_class, "inSampleSize", "I");
gOptions_configFieldID = GetFieldIDOrDie(env, options_class, "inPreferredConfig",
"Landroid/graphics/Bitmap$Config;");
gOptions_colorSpaceFieldID = GetFieldIDOrDie(env, options_class, "inPreferredColorSpace",
"Landroid/graphics/ColorSpace;");
gOptions_premultipliedFieldID = GetFieldIDOrDie(env, options_class, "inPremultiplied", "Z");
gOptions_mutableFieldID = GetFieldIDOrDie(env, options_class, "inMutable", "Z");
gOptions_ditherFieldID = GetFieldIDOrDie(env, options_class, "inDither", "Z");
gOptions_preferQualityOverSpeedFieldID = GetFieldIDOrDie(env, options_class,
"inPreferQualityOverSpeed", "Z");
gOptions_scaledFieldID = GetFieldIDOrDie(env, options_class, "inScaled", "Z");
gOptions_densityFieldID = GetFieldIDOrDie(env, options_class, "inDensity", "I");
gOptions_screenDensityFieldID = GetFieldIDOrDie(env, options_class, "inScreenDensity", "I");
gOptions_targetDensityFieldID = GetFieldIDOrDie(env, options_class, "inTargetDensity", "I");
gOptions_widthFieldID = GetFieldIDOrDie(env, options_class, "outWidth", "I");
gOptions_heightFieldID = GetFieldIDOrDie(env, options_class, "outHeight", "I");
gOptions_mimeFieldID = GetFieldIDOrDie(env, options_class, "outMimeType", "Ljava/lang/String;");
gOptions_outConfigFieldID = GetFieldIDOrDie(env, options_class, "outConfig",
"Landroid/graphics/Bitmap$Config;");
gOptions_outColorSpaceFieldID = GetFieldIDOrDie(env, options_class, "outColorSpace",
"Landroid/graphics/ColorSpace;");
gOptions_mCancelID = GetFieldIDOrDie(env, options_class, "mCancel", "Z");
jclass bitmap_class = FindClassOrDie(env, "android/graphics/Bitmap");
gBitmap_ninePatchInsetsFieldID = GetFieldIDOrDie(env, bitmap_class, "mNinePatchInsets",
"Landroid/graphics/NinePatch$InsetStruct;");
gBitmapConfig_class = MakeGlobalRefOrDie(env, FindClassOrDie(env,
"android/graphics/Bitmap$Config"));
gBitmapConfig_nativeToConfigMethodID = GetStaticMethodIDOrDie(env, gBitmapConfig_class,
"nativeToConfig", "(I)Landroid/graphics/Bitmap$Config;");
return android::RegisterMethodsOrDie(env, "android/graphics/BitmapFactory",
gMethods, NELEM(gMethods));
}