| #undef LOG_TAG |
| #define LOG_TAG "BitmapFactory" |
| |
| #include "BitmapFactory.h" |
| |
| #include <Gainmap.h> |
| #include <HardwareBitmapUploader.h> |
| #include <androidfw/Asset.h> |
| #include <androidfw/ResourceTypes.h> |
| #include <cutils/compiler.h> |
| #include <fcntl.h> |
| #include <nativehelper/JNIPlatformHelp.h> |
| #include <stdint.h> |
| #include <stdio.h> |
| #include <sys/stat.h> |
| |
| #include <memory> |
| |
| #include "CreateJavaOutputStreamAdaptor.h" |
| #include "FrontBufferedStream.h" |
| #include "GraphicsJNI.h" |
| #include "MimeType.h" |
| #include "NinePatchPeeker.h" |
| #include "SkAndroidCodec.h" |
| #include "SkBitmap.h" |
| #include "SkBlendMode.h" |
| #include "SkCanvas.h" |
| #include "SkColorSpace.h" |
| #include "SkEncodedImageFormat.h" |
| #include "SkGainmapInfo.h" |
| #include "SkImageInfo.h" |
| #include "SkPaint.h" |
| #include "SkPixelRef.h" |
| #include "SkRect.h" |
| #include "SkRefCnt.h" |
| #include "SkSamplingOptions.h" |
| #include "SkSize.h" |
| #include "SkStream.h" |
| #include "SkString.h" |
| #include "Utils.h" |
| |
| jfieldID gOptions_justBoundsFieldID; |
| jfieldID gOptions_sampleSizeFieldID; |
| jfieldID gOptions_configFieldID; |
| jfieldID gOptions_colorSpaceFieldID; |
| jfieldID gOptions_premultipliedFieldID; |
| jfieldID gOptions_mutableFieldID; |
| jfieldID gOptions_ditherFieldID; |
| jfieldID gOptions_preferQualityOverSpeedFieldID; |
| jfieldID gOptions_scaledFieldID; |
| jfieldID gOptions_densityFieldID; |
| jfieldID gOptions_screenDensityFieldID; |
| jfieldID gOptions_targetDensityFieldID; |
| jfieldID gOptions_widthFieldID; |
| jfieldID gOptions_heightFieldID; |
| jfieldID gOptions_mimeFieldID; |
| jfieldID gOptions_outConfigFieldID; |
| jfieldID gOptions_outColorSpaceFieldID; |
| jfieldID gOptions_mCancelID; |
| jfieldID gOptions_bitmapFieldID; |
| |
| jfieldID gBitmap_ninePatchInsetsFieldID; |
| |
| jclass gBitmapConfig_class; |
| jmethodID gBitmapConfig_nativeToConfigMethodID; |
| |
| using namespace android; |
| |
| const char* getMimeType(SkEncodedImageFormat format) { |
| switch (format) { |
| case SkEncodedImageFormat::kBMP: |
| return "image/bmp"; |
| case SkEncodedImageFormat::kGIF: |
| return "image/gif"; |
| case SkEncodedImageFormat::kICO: |
| return "image/x-ico"; |
| case SkEncodedImageFormat::kJPEG: |
| return "image/jpeg"; |
| case SkEncodedImageFormat::kPNG: |
| return "image/png"; |
| case SkEncodedImageFormat::kWEBP: |
| return "image/webp"; |
| case SkEncodedImageFormat::kHEIF: |
| return "image/heif"; |
| case SkEncodedImageFormat::kAVIF: |
| return "image/avif"; |
| case SkEncodedImageFormat::kWBMP: |
| return "image/vnd.wap.wbmp"; |
| case SkEncodedImageFormat::kDNG: |
| return "image/x-adobe-dng"; |
| default: |
| return nullptr; |
| } |
| } |
| |
| jstring getMimeTypeAsJavaString(JNIEnv* env, SkEncodedImageFormat format) { |
| jstring jstr = nullptr; |
| const char* mimeType = getMimeType(format); |
| if (mimeType) { |
| // NOTE: Caller should env->ExceptionCheck() for OOM |
| // (can't check for nullptr as it's a valid return value) |
| jstr = env->NewStringUTF(mimeType); |
| } |
| return jstr; |
| } |
| |
| class ScaleCheckingAllocator : public SkBitmap::HeapAllocator { |
| public: |
| ScaleCheckingAllocator(float scale, int size) |
| : mScale(scale), mSize(size) { |
| } |
| |
| virtual bool allocPixelRef(SkBitmap* bitmap) { |
| // accounts for scale in final allocation, using eventual size and config |
| const int bytesPerPixel = SkColorTypeBytesPerPixel(bitmap->colorType()); |
| const int requestedSize = bytesPerPixel * |
| int(bitmap->width() * mScale + 0.5f) * |
| int(bitmap->height() * mScale + 0.5f); |
| if (requestedSize > mSize) { |
| ALOGW("bitmap for alloc reuse (%d bytes) can't fit scaled bitmap (%d bytes)", |
| mSize, requestedSize); |
| return false; |
| } |
| return SkBitmap::HeapAllocator::allocPixelRef(bitmap); |
| } |
| private: |
| const float mScale; |
| const int mSize; |
| }; |
| |
| class RecyclingPixelAllocator : public SkBitmap::Allocator { |
| public: |
| RecyclingPixelAllocator(android::Bitmap* bitmap, unsigned int size) |
| : mBitmap(bitmap), mSize(size) { |
| } |
| |
| ~RecyclingPixelAllocator() { |
| } |
| |
| virtual bool allocPixelRef(SkBitmap* bitmap) { |
| const SkImageInfo& info = bitmap->info(); |
| if (info.colorType() == kUnknown_SkColorType) { |
| ALOGW("unable to reuse a bitmap as the target has an unknown bitmap configuration"); |
| return false; |
| } |
| |
| const size_t size = info.computeByteSize(bitmap->rowBytes()); |
| if (size > INT32_MAX) { |
| ALOGW("bitmap is too large"); |
| return false; |
| } |
| |
| if (size > mSize) { |
| ALOGW("bitmap marked for reuse (%u bytes) can't fit new bitmap " |
| "(%zu bytes)", mSize, size); |
| return false; |
| } |
| |
| mBitmap->reconfigure(info, bitmap->rowBytes()); |
| bitmap->setPixelRef(sk_ref_sp(mBitmap), 0, 0); |
| return true; |
| } |
| |
| private: |
| android::Bitmap* const mBitmap; |
| const unsigned int mSize; |
| }; |
| |
| // Necessary for decodes when the native decoder cannot scale to appropriately match the sampleSize |
| // (for example, RAW). If the sampleSize divides evenly into the dimension, we require that the |
| // scale matches exactly. If sampleSize does not divide evenly, we allow the decoder to choose how |
| // best to round. |
| static bool needsFineScale(const int fullSize, const int decodedSize, const int sampleSize) { |
| if (fullSize % sampleSize == 0 && fullSize / sampleSize != decodedSize) { |
| return true; |
| } else if ((fullSize / sampleSize + 1) != decodedSize && |
| (fullSize / sampleSize) != decodedSize) { |
| return true; |
| } |
| return false; |
| } |
| |
| static bool needsFineScale(const SkISize fullSize, const SkISize decodedSize, |
| const int sampleSize) { |
| return needsFineScale(fullSize.width(), decodedSize.width(), sampleSize) || |
| needsFineScale(fullSize.height(), decodedSize.height(), sampleSize); |
| } |
| |
| static bool decodeGainmap(std::unique_ptr<SkStream> gainmapStream, const SkGainmapInfo& gainmapInfo, |
| sp<uirenderer::Gainmap>* outGainmap, const int sampleSize, float scale) { |
| std::unique_ptr<SkAndroidCodec> codec; |
| codec = SkAndroidCodec::MakeFromStream(std::move(gainmapStream), nullptr); |
| if (!codec) { |
| ALOGE("Can not create a codec for Gainmap."); |
| return false; |
| } |
| SkColorType decodeColorType = kN32_SkColorType; |
| if (codec->getInfo().colorType() == kGray_8_SkColorType) { |
| decodeColorType = kGray_8_SkColorType; |
| } |
| decodeColorType = codec->computeOutputColorType(decodeColorType); |
| sk_sp<SkColorSpace> decodeColorSpace = codec->computeOutputColorSpace(decodeColorType, nullptr); |
| |
| SkISize size = codec->getSampledDimensions(sampleSize); |
| |
| int scaledWidth = size.width(); |
| int scaledHeight = size.height(); |
| bool willScale = false; |
| |
| // Apply a fine scaling step if necessary. |
| if (needsFineScale(codec->getInfo().dimensions(), size, sampleSize) || scale != 1.0f) { |
| willScale = true; |
| // The operation below may loose precision (integer division), but it is put this way to |
| // mimic main image scale calculation |
| scaledWidth = static_cast<int>((codec->getInfo().width() / sampleSize) * scale + 0.5f); |
| scaledHeight = static_cast<int>((codec->getInfo().height() / sampleSize) * scale + 0.5f); |
| } |
| |
| SkAlphaType alphaType = codec->computeOutputAlphaType(false); |
| |
| const SkImageInfo decodeInfo = SkImageInfo::Make(size.width(), size.height(), decodeColorType, |
| alphaType, decodeColorSpace); |
| |
| SkImageInfo bitmapInfo = decodeInfo; |
| if (decodeColorType == kGray_8_SkColorType) { |
| // We treat gray8 as alpha8 in Bitmap's API surface |
| bitmapInfo = bitmapInfo.makeColorType(kAlpha_8_SkColorType); |
| } |
| SkBitmap decodeBitmap; |
| sk_sp<Bitmap> nativeBitmap = nullptr; |
| |
| if (!decodeBitmap.setInfo(bitmapInfo)) { |
| ALOGE("Failed to setInfo."); |
| return false; |
| } |
| |
| if (willScale) { |
| if (!decodeBitmap.tryAllocPixels(nullptr)) { |
| ALOGE("OOM allocating gainmap pixels."); |
| return false; |
| } |
| } else { |
| nativeBitmap = android::Bitmap::allocateHeapBitmap(&decodeBitmap); |
| if (!nativeBitmap) { |
| ALOGE("OOM allocating gainmap pixels."); |
| return false; |
| } |
| } |
| |
| // Use SkAndroidCodec to perform the decode. |
| SkAndroidCodec::AndroidOptions codecOptions; |
| codecOptions.fZeroInitialized = SkCodec::kYes_ZeroInitialized; |
| codecOptions.fSampleSize = sampleSize; |
| SkCodec::Result result = codec->getAndroidPixels(decodeInfo, decodeBitmap.getPixels(), |
| decodeBitmap.rowBytes(), &codecOptions); |
| switch (result) { |
| case SkCodec::kSuccess: |
| case SkCodec::kIncompleteInput: |
| break; |
| default: |
| ALOGE("Error decoding gainmap."); |
| return false; |
| } |
| |
| if (willScale) { |
| SkBitmap gainmapBitmap; |
| const float scaleX = scaledWidth / float(decodeBitmap.width()); |
| const float scaleY = scaledHeight / float(decodeBitmap.height()); |
| |
| SkColorType scaledColorType = decodeBitmap.colorType(); |
| gainmapBitmap.setInfo( |
| bitmapInfo.makeWH(scaledWidth, scaledHeight).makeColorType(scaledColorType)); |
| |
| nativeBitmap = android::Bitmap::allocateHeapBitmap(&gainmapBitmap); |
| if (!nativeBitmap) { |
| ALOGE("OOM allocating gainmap pixels."); |
| return false; |
| } |
| |
| SkPaint paint; |
| // kSrc_Mode instructs us to overwrite the uninitialized pixels in |
| // outputBitmap. Otherwise we would blend by default, which is not |
| // what we want. |
| paint.setBlendMode(SkBlendMode::kSrc); |
| |
| SkCanvas canvas(gainmapBitmap, SkCanvas::ColorBehavior::kLegacy); |
| canvas.scale(scaleX, scaleY); |
| decodeBitmap.setImmutable(); // so .asImage() doesn't make a copy |
| canvas.drawImage(decodeBitmap.asImage(), 0.0f, 0.0f, |
| SkSamplingOptions(SkFilterMode::kLinear), &paint); |
| } |
| |
| auto gainmap = sp<uirenderer::Gainmap>::make(); |
| if (!gainmap) { |
| ALOGE("OOM allocating Gainmap"); |
| return false; |
| } |
| |
| gainmap->info = gainmapInfo; |
| gainmap->bitmap = std::move(nativeBitmap); |
| *outGainmap = std::move(gainmap); |
| |
| return true; |
| } |
| |
| static jobject doDecode(JNIEnv* env, std::unique_ptr<SkStreamRewindable> stream, |
| jobject padding, jobject options, jlong inBitmapHandle, |
| jlong colorSpaceHandle) { |
| // Set default values for the options parameters. |
| int sampleSize = 1; |
| bool onlyDecodeSize = false; |
| SkColorType prefColorType = kN32_SkColorType; |
| bool isHardware = false; |
| bool isMutable = false; |
| float scale = 1.0f; |
| bool requireUnpremultiplied = false; |
| jobject javaBitmap = NULL; |
| sk_sp<SkColorSpace> prefColorSpace = GraphicsJNI::getNativeColorSpace(colorSpaceHandle); |
| |
| // Update with options supplied by the client. |
| if (options != NULL) { |
| sampleSize = env->GetIntField(options, gOptions_sampleSizeFieldID); |
| // Correct a non-positive sampleSize. sampleSize defaults to zero within the |
| // options object, which is strange. |
| if (sampleSize <= 0) { |
| sampleSize = 1; |
| } |
| |
| if (env->GetBooleanField(options, gOptions_justBoundsFieldID)) { |
| onlyDecodeSize = true; |
| } |
| |
| // initialize these, in case we fail later on |
| env->SetIntField(options, gOptions_widthFieldID, -1); |
| env->SetIntField(options, gOptions_heightFieldID, -1); |
| env->SetObjectField(options, gOptions_mimeFieldID, 0); |
| env->SetObjectField(options, gOptions_outConfigFieldID, 0); |
| env->SetObjectField(options, gOptions_outColorSpaceFieldID, 0); |
| |
| jobject jconfig = env->GetObjectField(options, gOptions_configFieldID); |
| prefColorType = GraphicsJNI::getNativeBitmapColorType(env, jconfig); |
| isHardware = GraphicsJNI::isHardwareConfig(env, jconfig); |
| isMutable = env->GetBooleanField(options, gOptions_mutableFieldID); |
| requireUnpremultiplied = !env->GetBooleanField(options, gOptions_premultipliedFieldID); |
| javaBitmap = env->GetObjectField(options, gOptions_bitmapFieldID); |
| |
| if (env->GetBooleanField(options, gOptions_scaledFieldID)) { |
| const int density = env->GetIntField(options, gOptions_densityFieldID); |
| const int targetDensity = env->GetIntField(options, gOptions_targetDensityFieldID); |
| const int screenDensity = env->GetIntField(options, gOptions_screenDensityFieldID); |
| if (density != 0 && targetDensity != 0 && density != screenDensity) { |
| scale = (float) targetDensity / density; |
| } |
| } |
| } |
| |
| if (isMutable && isHardware) { |
| doThrowIAE(env, "Bitmaps with Config.HARDWARE are always immutable"); |
| return nullObjectReturn("Cannot create mutable hardware bitmap"); |
| } |
| |
| // Create the codec. |
| NinePatchPeeker peeker; |
| std::unique_ptr<SkAndroidCodec> codec; |
| { |
| SkCodec::Result result; |
| std::unique_ptr<SkCodec> c = SkCodec::MakeFromStream(std::move(stream), &result, |
| &peeker); |
| if (!c) { |
| SkString msg; |
| msg.printf("Failed to create image decoder with message '%s'", |
| SkCodec::ResultToString(result)); |
| return nullObjectReturn(msg.c_str()); |
| } |
| |
| codec = SkAndroidCodec::MakeFromCodec(std::move(c)); |
| if (!codec) { |
| return nullObjectReturn("SkAndroidCodec::MakeFromCodec returned null"); |
| } |
| } |
| |
| // Do not allow ninepatch decodes to 565. In the past, decodes to 565 |
| // would dither, and we do not want to pre-dither ninepatches, since we |
| // know that they will be stretched. We no longer dither 565 decodes, |
| // but we continue to prevent ninepatches from decoding to 565, in order |
| // to maintain the old behavior. |
| if (peeker.mPatch && kRGB_565_SkColorType == prefColorType) { |
| prefColorType = kN32_SkColorType; |
| } |
| |
| // Determine the output size. |
| SkISize size = codec->getSampledDimensions(sampleSize); |
| |
| int scaledWidth = size.width(); |
| int scaledHeight = size.height(); |
| bool willScale = false; |
| |
| // Apply a fine scaling step if necessary. |
| if (needsFineScale(codec->getInfo().dimensions(), size, sampleSize)) { |
| willScale = true; |
| scaledWidth = codec->getInfo().width() / sampleSize; |
| scaledHeight = codec->getInfo().height() / sampleSize; |
| } |
| |
| // Set the decode colorType |
| SkColorType decodeColorType = codec->computeOutputColorType(prefColorType); |
| if (decodeColorType == kRGBA_F16_SkColorType && isHardware && |
| !uirenderer::HardwareBitmapUploader::hasFP16Support()) { |
| decodeColorType = kN32_SkColorType; |
| } |
| |
| // b/276879147, fallback to RGBA_8888 when decoding HEIF and P010 is not supported. |
| if (decodeColorType == kRGBA_1010102_SkColorType && |
| codec->getEncodedFormat() == SkEncodedImageFormat::kHEIF && |
| env->CallStaticBooleanMethod(gImageDecoder_class, |
| gImageDecoder_isP010SupportedForHEVCMethodID) == JNI_FALSE) { |
| decodeColorType = kN32_SkColorType; |
| } |
| |
| sk_sp<SkColorSpace> decodeColorSpace = codec->computeOutputColorSpace( |
| decodeColorType, prefColorSpace); |
| |
| // Set the options and return if the client only wants the size. |
| if (options != NULL) { |
| jstring mimeType = getMimeTypeAsJavaString(env, codec->getEncodedFormat()); |
| if (env->ExceptionCheck()) { |
| return nullObjectReturn("OOM in getMimeTypeAsJavaString()"); |
| } |
| env->SetIntField(options, gOptions_widthFieldID, scaledWidth); |
| env->SetIntField(options, gOptions_heightFieldID, scaledHeight); |
| env->SetObjectField(options, gOptions_mimeFieldID, mimeType); |
| |
| jint configID = GraphicsJNI::colorTypeToLegacyBitmapConfig(decodeColorType); |
| if (isHardware) { |
| configID = GraphicsJNI::kHardware_LegacyBitmapConfig; |
| } |
| jobject config = env->CallStaticObjectMethod(gBitmapConfig_class, |
| gBitmapConfig_nativeToConfigMethodID, configID); |
| env->SetObjectField(options, gOptions_outConfigFieldID, config); |
| |
| env->SetObjectField(options, gOptions_outColorSpaceFieldID, |
| GraphicsJNI::getColorSpace(env, decodeColorSpace.get(), decodeColorType)); |
| |
| if (onlyDecodeSize) { |
| return nullptr; |
| } |
| } |
| |
| // Scale is necessary due to density differences. |
| if (scale != 1.0f) { |
| willScale = true; |
| scaledWidth = static_cast<int>(scaledWidth * scale + 0.5f); |
| scaledHeight = static_cast<int>(scaledHeight * scale + 0.5f); |
| } |
| |
| android::Bitmap* reuseBitmap = nullptr; |
| unsigned int existingBufferSize = 0; |
| if (javaBitmap != nullptr) { |
| reuseBitmap = &bitmap::toBitmap(inBitmapHandle); |
| if (reuseBitmap->isImmutable()) { |
| ALOGW("Unable to reuse an immutable bitmap as an image decoder target."); |
| javaBitmap = nullptr; |
| reuseBitmap = nullptr; |
| } else { |
| existingBufferSize = reuseBitmap->getAllocationByteCount(); |
| } |
| } |
| |
| HeapAllocator defaultAllocator; |
| RecyclingPixelAllocator recyclingAllocator(reuseBitmap, existingBufferSize); |
| ScaleCheckingAllocator scaleCheckingAllocator(scale, existingBufferSize); |
| SkBitmap::HeapAllocator heapAllocator; |
| SkBitmap::Allocator* decodeAllocator; |
| if (javaBitmap != nullptr && willScale) { |
| // This will allocate pixels using a HeapAllocator, since there will be an extra |
| // scaling step that copies these pixels into Java memory. This allocator |
| // also checks that the recycled javaBitmap is large enough. |
| decodeAllocator = &scaleCheckingAllocator; |
| } else if (javaBitmap != nullptr) { |
| decodeAllocator = &recyclingAllocator; |
| } else if (willScale || isHardware) { |
| // This will allocate pixels using a HeapAllocator, |
| // for scale case: there will be an extra scaling step. |
| // for hardware case: there will be extra swizzling & upload to gralloc step. |
| decodeAllocator = &heapAllocator; |
| } else { |
| decodeAllocator = &defaultAllocator; |
| } |
| |
| SkAlphaType alphaType = codec->computeOutputAlphaType(requireUnpremultiplied); |
| |
| const SkImageInfo decodeInfo = SkImageInfo::Make(size.width(), size.height(), |
| decodeColorType, alphaType, decodeColorSpace); |
| |
| SkImageInfo bitmapInfo = decodeInfo; |
| if (decodeColorType == kGray_8_SkColorType) { |
| // The legacy implementation of BitmapFactory used kAlpha8 for |
| // grayscale images (before kGray8 existed). While the codec |
| // recognizes kGray8, we need to decode into a kAlpha8 bitmap |
| // in order to avoid a behavior change. |
| bitmapInfo = |
| bitmapInfo.makeColorType(kAlpha_8_SkColorType).makeAlphaType(kPremul_SkAlphaType); |
| } |
| SkBitmap decodingBitmap; |
| if (!decodingBitmap.setInfo(bitmapInfo) || |
| !decodingBitmap.tryAllocPixels(decodeAllocator)) { |
| // SkAndroidCodec should recommend a valid SkImageInfo, so setInfo() |
| // should only only fail if the calculated value for rowBytes is too |
| // large. |
| // tryAllocPixels() can fail due to OOM on the Java heap, OOM on the |
| // native heap, or the recycled javaBitmap being too small to reuse. |
| return nullptr; |
| } |
| |
| // Use SkAndroidCodec to perform the decode. |
| SkAndroidCodec::AndroidOptions codecOptions; |
| codecOptions.fZeroInitialized = decodeAllocator == &defaultAllocator ? |
| SkCodec::kYes_ZeroInitialized : SkCodec::kNo_ZeroInitialized; |
| codecOptions.fSampleSize = sampleSize; |
| SkCodec::Result result = codec->getAndroidPixels(decodeInfo, decodingBitmap.getPixels(), |
| decodingBitmap.rowBytes(), &codecOptions); |
| switch (result) { |
| case SkCodec::kSuccess: |
| case SkCodec::kIncompleteInput: |
| break; |
| default: |
| return nullObjectReturn("codec->getAndroidPixels() failed."); |
| } |
| |
| // This is weird so let me explain: we could use the scale parameter |
| // directly, but for historical reasons this is how the corresponding |
| // Dalvik code has always behaved. We simply recreate the behavior here. |
| // The result is slightly different from simply using scale because of |
| // the 0.5f rounding bias applied when computing the target image size |
| const float scaleX = scaledWidth / float(decodingBitmap.width()); |
| const float scaleY = scaledHeight / float(decodingBitmap.height()); |
| |
| jbyteArray ninePatchChunk = NULL; |
| if (peeker.mPatch != NULL) { |
| if (willScale) { |
| peeker.scale(scaleX, scaleY, scaledWidth, scaledHeight); |
| } |
| |
| size_t ninePatchArraySize = peeker.mPatch->serializedSize(); |
| ninePatchChunk = env->NewByteArray(ninePatchArraySize); |
| if (ninePatchChunk == NULL) { |
| return nullObjectReturn("ninePatchChunk == null"); |
| } |
| |
| jbyte* array = (jbyte*) env->GetPrimitiveArrayCritical(ninePatchChunk, NULL); |
| if (array == NULL) { |
| return nullObjectReturn("primitive array == null"); |
| } |
| |
| memcpy(array, peeker.mPatch, peeker.mPatchSize); |
| env->ReleasePrimitiveArrayCritical(ninePatchChunk, array, 0); |
| } |
| |
| jobject ninePatchInsets = NULL; |
| if (peeker.mHasInsets) { |
| ninePatchInsets = peeker.createNinePatchInsets(env, scale); |
| if (ninePatchInsets == NULL) { |
| return nullObjectReturn("nine patch insets == null"); |
| } |
| if (javaBitmap != NULL) { |
| env->SetObjectField(javaBitmap, gBitmap_ninePatchInsetsFieldID, ninePatchInsets); |
| } |
| } |
| |
| SkBitmap outputBitmap; |
| if (willScale) { |
| // Set the allocator for the outputBitmap. |
| SkBitmap::Allocator* outputAllocator; |
| if (javaBitmap != nullptr) { |
| outputAllocator = &recyclingAllocator; |
| } else { |
| outputAllocator = &defaultAllocator; |
| } |
| |
| SkColorType scaledColorType = decodingBitmap.colorType(); |
| // FIXME: If the alphaType is kUnpremul and the image has alpha, the |
| // colors may not be correct, since Skia does not yet support drawing |
| // to/from unpremultiplied bitmaps. |
| outputBitmap.setInfo( |
| bitmapInfo.makeWH(scaledWidth, scaledHeight).makeColorType(scaledColorType)); |
| if (!outputBitmap.tryAllocPixels(outputAllocator)) { |
| // This should only fail on OOM. The recyclingAllocator should have |
| // enough memory since we check this before decoding using the |
| // scaleCheckingAllocator. |
| return nullObjectReturn("allocation failed for scaled bitmap"); |
| } |
| |
| SkPaint paint; |
| // kSrc_Mode instructs us to overwrite the uninitialized pixels in |
| // outputBitmap. Otherwise we would blend by default, which is not |
| // what we want. |
| paint.setBlendMode(SkBlendMode::kSrc); |
| |
| SkCanvas canvas(outputBitmap, SkCanvas::ColorBehavior::kLegacy); |
| canvas.scale(scaleX, scaleY); |
| decodingBitmap.setImmutable(); // so .asImage() doesn't make a copy |
| canvas.drawImage(decodingBitmap.asImage(), 0.0f, 0.0f, |
| SkSamplingOptions(SkFilterMode::kLinear), &paint); |
| } else { |
| outputBitmap.swap(decodingBitmap); |
| } |
| |
| if (padding) { |
| peeker.getPadding(env, padding); |
| } |
| |
| // If we get here, the outputBitmap should have an installed pixelref. |
| if (outputBitmap.pixelRef() == NULL) { |
| return nullObjectReturn("Got null SkPixelRef"); |
| } |
| |
| bool hasGainmap = false; |
| SkGainmapInfo gainmapInfo; |
| std::unique_ptr<SkStream> gainmapStream = nullptr; |
| sp<uirenderer::Gainmap> gainmap = nullptr; |
| if (result == SkCodec::kSuccess) { |
| hasGainmap = codec->getAndroidGainmap(&gainmapInfo, &gainmapStream); |
| } |
| |
| if (hasGainmap) { |
| hasGainmap = |
| decodeGainmap(std::move(gainmapStream), gainmapInfo, &gainmap, sampleSize, scale); |
| } |
| |
| if (!isMutable && javaBitmap == NULL) { |
| // promise we will never change our pixels (great for sharing and pictures) |
| outputBitmap.setImmutable(); |
| } |
| |
| bool isPremultiplied = !requireUnpremultiplied; |
| if (javaBitmap != nullptr) { |
| if (hasGainmap) { |
| reuseBitmap->setGainmap(std::move(gainmap)); |
| } |
| bitmap::reinitBitmap(env, javaBitmap, outputBitmap.info(), isPremultiplied); |
| outputBitmap.notifyPixelsChanged(); |
| // If a java bitmap was passed in for reuse, pass it back |
| return javaBitmap; |
| } |
| |
| int bitmapCreateFlags = 0x0; |
| if (isMutable) bitmapCreateFlags |= android::bitmap::kBitmapCreateFlag_Mutable; |
| if (isPremultiplied) bitmapCreateFlags |= android::bitmap::kBitmapCreateFlag_Premultiplied; |
| |
| if (isHardware) { |
| sk_sp<Bitmap> hardwareBitmap = Bitmap::allocateHardwareBitmap(outputBitmap); |
| if (!hardwareBitmap.get()) { |
| return nullObjectReturn("Failed to allocate a hardware bitmap"); |
| } |
| if (hasGainmap) { |
| auto gm = uirenderer::Gainmap::allocateHardwareGainmap(gainmap); |
| if (gm) { |
| hardwareBitmap->setGainmap(std::move(gm)); |
| } |
| } |
| |
| return bitmap::createBitmap(env, hardwareBitmap.release(), bitmapCreateFlags, |
| ninePatchChunk, ninePatchInsets, -1); |
| } |
| |
| Bitmap* heapBitmap = defaultAllocator.getStorageObjAndReset(); |
| if (hasGainmap && heapBitmap != nullptr) { |
| heapBitmap->setGainmap(std::move(gainmap)); |
| } |
| |
| // now create the java bitmap |
| return bitmap::createBitmap(env, heapBitmap, bitmapCreateFlags, ninePatchChunk, ninePatchInsets, |
| -1); |
| } |
| |
| static jobject nativeDecodeStream(JNIEnv* env, jobject clazz, jobject is, jbyteArray storage, |
| jobject padding, jobject options, jlong inBitmapHandle, jlong colorSpaceHandle) { |
| |
| jobject bitmap = NULL; |
| std::unique_ptr<SkStream> stream(CreateJavaInputStreamAdaptor(env, is, storage)); |
| |
| if (stream.get()) { |
| std::unique_ptr<SkStreamRewindable> bufferedStream(skia::FrontBufferedStream::Make( |
| std::move(stream), SkCodec::MinBufferedBytesNeeded())); |
| SkASSERT(bufferedStream.get() != NULL); |
| bitmap = doDecode(env, std::move(bufferedStream), padding, options, inBitmapHandle, |
| colorSpaceHandle); |
| } |
| return bitmap; |
| } |
| |
| static jobject nativeDecodeFileDescriptor(JNIEnv* env, jobject clazz, jobject fileDescriptor, |
| jobject padding, jobject bitmapFactoryOptions, jlong inBitmapHandle, jlong colorSpaceHandle) { |
| #ifndef __ANDROID__ // LayoutLib for Windows does not support F_DUPFD_CLOEXEC |
| return nullObjectReturn("Not supported on Windows"); |
| #else |
| NPE_CHECK_RETURN_ZERO(env, fileDescriptor); |
| |
| int descriptor = jniGetFDFromFileDescriptor(env, fileDescriptor); |
| |
| struct stat fdStat; |
| if (fstat(descriptor, &fdStat) == -1) { |
| doThrowIOE(env, "broken file descriptor"); |
| return nullObjectReturn("fstat return -1"); |
| } |
| |
| // Restore the descriptor's offset on exiting this function. Even though |
| // we dup the descriptor, both the original and dup refer to the same open |
| // file description and changes to the file offset in one impact the other. |
| AutoFDSeek autoRestore(descriptor); |
| |
| // Duplicate the descriptor here to prevent leaking memory. A leak occurs |
| // if we only close the file descriptor and not the file object it is used to |
| // create. If we don't explicitly clean up the file (which in turn closes the |
| // descriptor) the buffers allocated internally by fseek will be leaked. |
| int dupDescriptor = fcntl(descriptor, F_DUPFD_CLOEXEC, 0); |
| |
| FILE* file = fdopen(dupDescriptor, "r"); |
| if (file == NULL) { |
| // cleanup the duplicated descriptor since it will not be closed when the |
| // file is cleaned up (fclose). |
| close(dupDescriptor); |
| return nullObjectReturn("Could not open file"); |
| } |
| |
| std::unique_ptr<SkFILEStream> fileStream(new SkFILEStream(file)); |
| |
| // If there is no offset for the file descriptor, we use SkFILEStream directly. |
| if (::lseek(descriptor, 0, SEEK_CUR) == 0) { |
| assert(isSeekable(dupDescriptor)); |
| return doDecode(env, std::move(fileStream), padding, bitmapFactoryOptions, |
| inBitmapHandle, colorSpaceHandle); |
| } |
| |
| // Use a buffered stream. Although an SkFILEStream can be rewound, this |
| // ensures that SkImageDecoder::Factory never rewinds beyond the |
| // current position of the file descriptor. |
| std::unique_ptr<SkStreamRewindable> stream(skia::FrontBufferedStream::Make( |
| std::move(fileStream), SkCodec::MinBufferedBytesNeeded())); |
| |
| return doDecode(env, std::move(stream), padding, bitmapFactoryOptions, inBitmapHandle, |
| colorSpaceHandle); |
| #endif |
| } |
| |
| static jobject nativeDecodeAsset(JNIEnv* env, jobject clazz, jlong native_asset, |
| jobject padding, jobject options, jlong inBitmapHandle, jlong colorSpaceHandle) { |
| |
| Asset* asset = reinterpret_cast<Asset*>(native_asset); |
| // since we know we'll be done with the asset when we return, we can |
| // just use a simple wrapper |
| return doDecode(env, std::make_unique<AssetStreamAdaptor>(asset), padding, options, |
| inBitmapHandle, colorSpaceHandle); |
| } |
| |
| static jobject nativeDecodeByteArray(JNIEnv* env, jobject, jbyteArray byteArray, |
| jint offset, jint length, jobject options, jlong inBitmapHandle, jlong colorSpaceHandle) { |
| |
| AutoJavaByteArray ar(env, byteArray); |
| return doDecode(env, std::make_unique<SkMemoryStream>(ar.ptr() + offset, length, false), |
| nullptr, options, inBitmapHandle, colorSpaceHandle); |
| } |
| |
| static jboolean nativeIsSeekable(JNIEnv* env, jobject, jobject fileDescriptor) { |
| jint descriptor = jniGetFDFromFileDescriptor(env, fileDescriptor); |
| return isSeekable(descriptor) ? JNI_TRUE : JNI_FALSE; |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| static const JNINativeMethod gMethods[] = { |
| { "nativeDecodeStream", |
| "(Ljava/io/InputStream;[BLandroid/graphics/Rect;Landroid/graphics/BitmapFactory$Options;JJ)Landroid/graphics/Bitmap;", |
| (void*)nativeDecodeStream |
| }, |
| |
| { "nativeDecodeFileDescriptor", |
| "(Ljava/io/FileDescriptor;Landroid/graphics/Rect;Landroid/graphics/BitmapFactory$Options;JJ)Landroid/graphics/Bitmap;", |
| (void*)nativeDecodeFileDescriptor |
| }, |
| |
| { "nativeDecodeAsset", |
| "(JLandroid/graphics/Rect;Landroid/graphics/BitmapFactory$Options;JJ)Landroid/graphics/Bitmap;", |
| (void*)nativeDecodeAsset |
| }, |
| |
| { "nativeDecodeByteArray", |
| "([BIILandroid/graphics/BitmapFactory$Options;JJ)Landroid/graphics/Bitmap;", |
| (void*)nativeDecodeByteArray |
| }, |
| |
| { "nativeIsSeekable", |
| "(Ljava/io/FileDescriptor;)Z", |
| (void*)nativeIsSeekable |
| }, |
| }; |
| |
| int register_android_graphics_BitmapFactory(JNIEnv* env) { |
| jclass options_class = FindClassOrDie(env, "android/graphics/BitmapFactory$Options"); |
| gOptions_bitmapFieldID = GetFieldIDOrDie(env, options_class, "inBitmap", |
| "Landroid/graphics/Bitmap;"); |
| gOptions_justBoundsFieldID = GetFieldIDOrDie(env, options_class, "inJustDecodeBounds", "Z"); |
| gOptions_sampleSizeFieldID = GetFieldIDOrDie(env, options_class, "inSampleSize", "I"); |
| gOptions_configFieldID = GetFieldIDOrDie(env, options_class, "inPreferredConfig", |
| "Landroid/graphics/Bitmap$Config;"); |
| gOptions_colorSpaceFieldID = GetFieldIDOrDie(env, options_class, "inPreferredColorSpace", |
| "Landroid/graphics/ColorSpace;"); |
| gOptions_premultipliedFieldID = GetFieldIDOrDie(env, options_class, "inPremultiplied", "Z"); |
| gOptions_mutableFieldID = GetFieldIDOrDie(env, options_class, "inMutable", "Z"); |
| gOptions_ditherFieldID = GetFieldIDOrDie(env, options_class, "inDither", "Z"); |
| gOptions_preferQualityOverSpeedFieldID = GetFieldIDOrDie(env, options_class, |
| "inPreferQualityOverSpeed", "Z"); |
| gOptions_scaledFieldID = GetFieldIDOrDie(env, options_class, "inScaled", "Z"); |
| gOptions_densityFieldID = GetFieldIDOrDie(env, options_class, "inDensity", "I"); |
| gOptions_screenDensityFieldID = GetFieldIDOrDie(env, options_class, "inScreenDensity", "I"); |
| gOptions_targetDensityFieldID = GetFieldIDOrDie(env, options_class, "inTargetDensity", "I"); |
| gOptions_widthFieldID = GetFieldIDOrDie(env, options_class, "outWidth", "I"); |
| gOptions_heightFieldID = GetFieldIDOrDie(env, options_class, "outHeight", "I"); |
| gOptions_mimeFieldID = GetFieldIDOrDie(env, options_class, "outMimeType", "Ljava/lang/String;"); |
| gOptions_outConfigFieldID = GetFieldIDOrDie(env, options_class, "outConfig", |
| "Landroid/graphics/Bitmap$Config;"); |
| gOptions_outColorSpaceFieldID = GetFieldIDOrDie(env, options_class, "outColorSpace", |
| "Landroid/graphics/ColorSpace;"); |
| gOptions_mCancelID = GetFieldIDOrDie(env, options_class, "mCancel", "Z"); |
| |
| jclass bitmap_class = FindClassOrDie(env, "android/graphics/Bitmap"); |
| gBitmap_ninePatchInsetsFieldID = GetFieldIDOrDie(env, bitmap_class, "mNinePatchInsets", |
| "Landroid/graphics/NinePatch$InsetStruct;"); |
| |
| gBitmapConfig_class = MakeGlobalRefOrDie(env, FindClassOrDie(env, |
| "android/graphics/Bitmap$Config")); |
| gBitmapConfig_nativeToConfigMethodID = GetStaticMethodIDOrDie(env, gBitmapConfig_class, |
| "nativeToConfig", "(I)Landroid/graphics/Bitmap$Config;"); |
| |
| return android::RegisterMethodsOrDie(env, "android/graphics/BitmapFactory", |
| gMethods, NELEM(gMethods)); |
| } |