blob: b796eb07f076a073121b4df5d67a5944fae12c8a [file] [log] [blame]
/*
* Copyright (C) 2015 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "ResourceValues.h"
#include <algorithm>
#include <cinttypes>
#include <limits>
#include <set>
#include <sstream>
#include "android-base/stringprintf.h"
#include "androidfw/ResourceTypes.h"
#include "Resource.h"
#include "ResourceUtils.h"
#include "ValueVisitor.h"
#include "util/Util.h"
using ::aapt::text::Printer;
using ::android::StringPiece;
using ::android::base::StringPrintf;
namespace aapt {
void Value::PrettyPrint(Printer* printer) const {
std::ostringstream str_stream;
Print(&str_stream);
printer->Print(str_stream.str());
}
std::ostream& operator<<(std::ostream& out, const Value& value) {
value.Print(&out);
return out;
}
std::unique_ptr<Value> Value::Transform(ValueTransformer& transformer) const {
return std::unique_ptr<Value>(this->TransformValueImpl(transformer));
}
std::unique_ptr<Item> Item::Transform(ValueTransformer& transformer) const {
return std::unique_ptr<Item>(this->TransformItemImpl(transformer));
}
template <typename Derived>
void BaseValue<Derived>::Accept(ValueVisitor* visitor) {
visitor->Visit(static_cast<Derived*>(this));
}
template <typename Derived>
void BaseValue<Derived>::Accept(ConstValueVisitor* visitor) const {
visitor->Visit(static_cast<const Derived*>(this));
}
template <typename Derived>
void BaseItem<Derived>::Accept(ValueVisitor* visitor) {
visitor->Visit(static_cast<Derived*>(this));
}
template <typename Derived>
void BaseItem<Derived>::Accept(ConstValueVisitor* visitor) const {
visitor->Visit(static_cast<const Derived*>(this));
}
RawString::RawString(const StringPool::Ref& ref) : value(ref) {}
bool RawString::Equals(const Value* value) const {
const RawString* other = ValueCast<RawString>(value);
if (!other) {
return false;
}
return *this->value == *other->value;
}
bool RawString::Flatten(android::Res_value* out_value) const {
out_value->dataType = android::Res_value::TYPE_STRING;
out_value->data = util::HostToDevice32(static_cast<uint32_t>(value.index()));
return true;
}
void RawString::Print(std::ostream* out) const {
*out << "(raw string) " << *value;
}
Reference::Reference() : reference_type(Type::kResource) {}
Reference::Reference(const ResourceNameRef& n, Type t)
: name(n.ToResourceName()), reference_type(t) {}
Reference::Reference(const ResourceId& i, Type type)
: id(i), reference_type(type) {}
Reference::Reference(const ResourceNameRef& n, const ResourceId& i)
: name(n.ToResourceName()), id(i), reference_type(Type::kResource) {}
bool Reference::Equals(const Value* value) const {
const Reference* other = ValueCast<Reference>(value);
if (!other) {
return false;
}
return reference_type == other->reference_type && private_reference == other->private_reference &&
id == other->id && name == other->name && type_flags == other->type_flags;
}
bool Reference::Flatten(android::Res_value* out_value) const {
if (name && name.value().type.type == ResourceType::kMacro) {
return false;
}
const ResourceId resid = id.value_or(ResourceId(0));
const bool dynamic = resid.is_valid() && is_dynamic;
if (reference_type == Reference::Type::kResource) {
if (dynamic) {
out_value->dataType = android::Res_value::TYPE_DYNAMIC_REFERENCE;
} else {
out_value->dataType = android::Res_value::TYPE_REFERENCE;
}
} else {
if (dynamic) {
out_value->dataType = android::Res_value::TYPE_DYNAMIC_ATTRIBUTE;
} else {
out_value->dataType = android::Res_value::TYPE_ATTRIBUTE;
}
}
out_value->data = util::HostToDevice32(resid.id);
return true;
}
void Reference::Print(std::ostream* out) const {
if (reference_type == Type::kResource) {
*out << "(reference) @";
if (!name && !id) {
*out << "null";
return;
}
} else {
*out << "(attr-reference) ?";
}
if (private_reference) {
*out << "*";
}
if (name) {
*out << name.value();
}
if (id && id.value().is_valid()) {
if (name) {
*out << " ";
}
*out << id.value();
}
}
static void PrettyPrintReferenceImpl(const Reference& ref, bool print_package, Printer* printer) {
switch (ref.reference_type) {
case Reference::Type::kResource:
printer->Print("@");
break;
case Reference::Type::kAttribute:
printer->Print("?");
break;
}
if (!ref.name && !ref.id) {
printer->Print("null");
return;
}
if (ref.private_reference) {
printer->Print("*");
}
if (ref.name) {
const ResourceName& name = ref.name.value();
if (print_package) {
printer->Print(name.to_string());
} else {
printer->Print(name.type.to_string());
printer->Print("/");
printer->Print(name.entry);
}
} else if (ref.id && ref.id.value().is_valid()) {
printer->Print(ref.id.value().to_string());
}
}
void Reference::PrettyPrint(Printer* printer) const {
PrettyPrintReferenceImpl(*this, true /*print_package*/, printer);
}
void Reference::PrettyPrint(const StringPiece& package, Printer* printer) const {
const bool print_package = name ? package != name.value().package : true;
PrettyPrintReferenceImpl(*this, print_package, printer);
}
bool Id::Equals(const Value* value) const {
return ValueCast<Id>(value) != nullptr;
}
bool Id::Flatten(android::Res_value* out) const {
out->dataType = android::Res_value::TYPE_INT_BOOLEAN;
out->data = util::HostToDevice32(0);
return true;
}
void Id::Print(std::ostream* out) const {
*out << "(id)";
}
String::String(const StringPool::Ref& ref) : value(ref) {
}
bool String::Equals(const Value* value) const {
const String* other = ValueCast<String>(value);
if (!other) {
return false;
}
if (this->value != other->value) {
return false;
}
if (untranslatable_sections.size() != other->untranslatable_sections.size()) {
return false;
}
auto other_iter = other->untranslatable_sections.begin();
for (const UntranslatableSection& this_section : untranslatable_sections) {
if (this_section != *other_iter) {
return false;
}
++other_iter;
}
return true;
}
bool String::Flatten(android::Res_value* out_value) const {
// Verify that our StringPool index is within encode-able limits.
if (value.index() > std::numeric_limits<uint32_t>::max()) {
return false;
}
out_value->dataType = android::Res_value::TYPE_STRING;
out_value->data = util::HostToDevice32(static_cast<uint32_t>(value.index()));
return true;
}
void String::Print(std::ostream* out) const {
*out << "(string) \"" << *value << "\"";
}
void String::PrettyPrint(Printer* printer) const {
printer->Print("\"");
printer->Print(*value);
printer->Print("\"");
}
StyledString::StyledString(const StringPool::StyleRef& ref) : value(ref) {
}
bool StyledString::Equals(const Value* value) const {
const StyledString* other = ValueCast<StyledString>(value);
if (!other) {
return false;
}
if (this->value != other->value) {
return false;
}
if (untranslatable_sections.size() != other->untranslatable_sections.size()) {
return false;
}
auto other_iter = other->untranslatable_sections.begin();
for (const UntranslatableSection& this_section : untranslatable_sections) {
if (this_section != *other_iter) {
return false;
}
++other_iter;
}
return true;
}
bool StyledString::Flatten(android::Res_value* out_value) const {
if (value.index() > std::numeric_limits<uint32_t>::max()) {
return false;
}
out_value->dataType = android::Res_value::TYPE_STRING;
out_value->data = util::HostToDevice32(static_cast<uint32_t>(value.index()));
return true;
}
void StyledString::Print(std::ostream* out) const {
*out << "(styled string) \"" << value->value << "\"";
for (const StringPool::Span& span : value->spans) {
*out << " " << *span.name << ":" << span.first_char << "," << span.last_char;
}
}
FileReference::FileReference(const StringPool::Ref& _path) : path(_path) {
}
bool FileReference::Equals(const Value* value) const {
const FileReference* other = ValueCast<FileReference>(value);
if (!other) {
return false;
}
return path == other->path;
}
bool FileReference::Flatten(android::Res_value* out_value) const {
if (path.index() > std::numeric_limits<uint32_t>::max()) {
return false;
}
out_value->dataType = android::Res_value::TYPE_STRING;
out_value->data = util::HostToDevice32(static_cast<uint32_t>(path.index()));
return true;
}
void FileReference::Print(std::ostream* out) const {
*out << "(file) " << *path;
switch (type) {
case ResourceFile::Type::kBinaryXml:
*out << " type=XML";
break;
case ResourceFile::Type::kProtoXml:
*out << " type=protoXML";
break;
case ResourceFile::Type::kPng:
*out << " type=PNG";
break;
default:
break;
}
}
BinaryPrimitive::BinaryPrimitive(const android::Res_value& val) : value(val) {
}
BinaryPrimitive::BinaryPrimitive(uint8_t dataType, uint32_t data) {
value.dataType = dataType;
value.data = data;
}
bool BinaryPrimitive::Equals(const Value* value) const {
const BinaryPrimitive* other = ValueCast<BinaryPrimitive>(value);
if (!other) {
return false;
}
return this->value.dataType == other->value.dataType &&
this->value.data == other->value.data;
}
bool BinaryPrimitive::Flatten(::android::Res_value* out_value) const {
out_value->dataType = value.dataType;
out_value->data = util::HostToDevice32(value.data);
return true;
}
void BinaryPrimitive::Print(std::ostream* out) const {
*out << StringPrintf("(primitive) type=0x%02x data=0x%08x", value.dataType, value.data);
}
static std::string ComplexToString(uint32_t complex_value, bool fraction) {
using ::android::Res_value;
constexpr std::array<int, 4> kRadixShifts = {{23, 16, 8, 0}};
// Determine the radix that was used.
const uint32_t radix =
(complex_value >> Res_value::COMPLEX_RADIX_SHIFT) & Res_value::COMPLEX_RADIX_MASK;
const uint64_t mantissa = uint64_t{(complex_value >> Res_value::COMPLEX_MANTISSA_SHIFT) &
Res_value::COMPLEX_MANTISSA_MASK}
<< kRadixShifts[radix];
const float value = mantissa * (1.0f / (1 << 23));
std::string str = StringPrintf("%f", value);
const int unit_type =
(complex_value >> Res_value::COMPLEX_UNIT_SHIFT) & Res_value::COMPLEX_UNIT_MASK;
if (fraction) {
switch (unit_type) {
case Res_value::COMPLEX_UNIT_FRACTION:
str += "%";
break;
case Res_value::COMPLEX_UNIT_FRACTION_PARENT:
str += "%p";
break;
default:
str += "???";
break;
}
} else {
switch (unit_type) {
case Res_value::COMPLEX_UNIT_PX:
str += "px";
break;
case Res_value::COMPLEX_UNIT_DIP:
str += "dp";
break;
case Res_value::COMPLEX_UNIT_SP:
str += "sp";
break;
case Res_value::COMPLEX_UNIT_PT:
str += "pt";
break;
case Res_value::COMPLEX_UNIT_IN:
str += "in";
break;
case Res_value::COMPLEX_UNIT_MM:
str += "mm";
break;
default:
str += "???";
break;
}
}
return str;
}
void BinaryPrimitive::PrettyPrint(Printer* printer) const {
using ::android::Res_value;
switch (value.dataType) {
case Res_value::TYPE_NULL:
if (value.data == Res_value::DATA_NULL_EMPTY) {
printer->Print("@empty");
} else {
printer->Print("@null");
}
break;
case Res_value::TYPE_INT_DEC:
printer->Print(StringPrintf("%" PRIi32, static_cast<int32_t>(value.data)));
break;
case Res_value::TYPE_INT_HEX:
printer->Print(StringPrintf("0x%08x", value.data));
break;
case Res_value::TYPE_INT_BOOLEAN:
printer->Print(value.data != 0 ? "true" : "false");
break;
case Res_value::TYPE_INT_COLOR_ARGB8:
case Res_value::TYPE_INT_COLOR_RGB8:
case Res_value::TYPE_INT_COLOR_ARGB4:
case Res_value::TYPE_INT_COLOR_RGB4:
printer->Print(StringPrintf("#%08x", value.data));
break;
case Res_value::TYPE_FLOAT:
printer->Print(StringPrintf("%g", *reinterpret_cast<const float*>(&value.data)));
break;
case Res_value::TYPE_DIMENSION:
printer->Print(ComplexToString(value.data, false /*fraction*/));
break;
case Res_value::TYPE_FRACTION:
printer->Print(ComplexToString(value.data, true /*fraction*/));
break;
default:
printer->Print(StringPrintf("(unknown 0x%02x) 0x%08x", value.dataType, value.data));
break;
}
}
Attribute::Attribute(uint32_t t)
: type_mask(t),
min_int(std::numeric_limits<int32_t>::min()),
max_int(std::numeric_limits<int32_t>::max()) {
}
std::ostream& operator<<(std::ostream& out, const Attribute::Symbol& s) {
if (s.symbol.name) {
out << s.symbol.name.value().entry;
} else {
out << "???";
}
return out << "=" << s.value;
}
template <typename T>
constexpr T* add_pointer(T& val) {
return &val;
}
bool Attribute::Equals(const Value* value) const {
const Attribute* other = ValueCast<Attribute>(value);
if (!other) {
return false;
}
if (symbols.size() != other->symbols.size()) {
return false;
}
if (type_mask != other->type_mask || min_int != other->min_int || max_int != other->max_int) {
return false;
}
std::vector<const Symbol*> sorted_a;
std::transform(symbols.begin(), symbols.end(), std::back_inserter(sorted_a),
add_pointer<const Symbol>);
std::sort(sorted_a.begin(), sorted_a.end(), [](const Symbol* a, const Symbol* b) -> bool {
return a->symbol.name < b->symbol.name;
});
std::vector<const Symbol*> sorted_b;
std::transform(other->symbols.begin(), other->symbols.end(), std::back_inserter(sorted_b),
add_pointer<const Symbol>);
std::sort(sorted_b.begin(), sorted_b.end(), [](const Symbol* a, const Symbol* b) -> bool {
return a->symbol.name < b->symbol.name;
});
return std::equal(sorted_a.begin(), sorted_a.end(), sorted_b.begin(),
[](const Symbol* a, const Symbol* b) -> bool {
return a->symbol.Equals(&b->symbol) && a->value == b->value;
});
}
bool Attribute::IsCompatibleWith(const Attribute& attr) const {
// If the high bits are set on any of these attribute type masks, then they are incompatible.
// We don't check that flags and enums are identical.
if ((type_mask & ~android::ResTable_map::TYPE_ANY) != 0 ||
(attr.type_mask & ~android::ResTable_map::TYPE_ANY) != 0) {
return false;
}
// Every attribute accepts a reference.
uint32_t this_type_mask = type_mask | android::ResTable_map::TYPE_REFERENCE;
uint32_t that_type_mask = attr.type_mask | android::ResTable_map::TYPE_REFERENCE;
return this_type_mask == that_type_mask;
}
std::string Attribute::MaskString(uint32_t type_mask) {
if (type_mask == android::ResTable_map::TYPE_ANY) {
return "any";
}
std::ostringstream out;
bool set = false;
if ((type_mask & android::ResTable_map::TYPE_REFERENCE) != 0) {
if (!set) {
set = true;
} else {
out << "|";
}
out << "reference";
}
if ((type_mask & android::ResTable_map::TYPE_STRING) != 0) {
if (!set) {
set = true;
} else {
out << "|";
}
out << "string";
}
if ((type_mask & android::ResTable_map::TYPE_INTEGER) != 0) {
if (!set) {
set = true;
} else {
out << "|";
}
out << "integer";
}
if ((type_mask & android::ResTable_map::TYPE_BOOLEAN) != 0) {
if (!set) {
set = true;
} else {
out << "|";
}
out << "boolean";
}
if ((type_mask & android::ResTable_map::TYPE_COLOR) != 0) {
if (!set) {
set = true;
} else {
out << "|";
}
out << "color";
}
if ((type_mask & android::ResTable_map::TYPE_FLOAT) != 0) {
if (!set) {
set = true;
} else {
out << "|";
}
out << "float";
}
if ((type_mask & android::ResTable_map::TYPE_DIMENSION) != 0) {
if (!set) {
set = true;
} else {
out << "|";
}
out << "dimension";
}
if ((type_mask & android::ResTable_map::TYPE_FRACTION) != 0) {
if (!set) {
set = true;
} else {
out << "|";
}
out << "fraction";
}
if ((type_mask & android::ResTable_map::TYPE_ENUM) != 0) {
if (!set) {
set = true;
} else {
out << "|";
}
out << "enum";
}
if ((type_mask & android::ResTable_map::TYPE_FLAGS) != 0) {
if (!set) {
set = true;
} else {
out << "|";
}
out << "flags";
}
return out.str();
}
std::string Attribute::MaskString() const {
return MaskString(type_mask);
}
void Attribute::Print(std::ostream* out) const {
*out << "(attr) " << MaskString();
if (!symbols.empty()) {
*out << " [" << util::Joiner(symbols, ", ") << "]";
}
if (min_int != std::numeric_limits<int32_t>::min()) {
*out << " min=" << min_int;
}
if (max_int != std::numeric_limits<int32_t>::max()) {
*out << " max=" << max_int;
}
if (IsWeak()) {
*out << " [weak]";
}
}
static void BuildAttributeMismatchMessage(const Attribute& attr, const Item& value,
DiagMessage* out_msg) {
*out_msg << "expected";
if (attr.type_mask & android::ResTable_map::TYPE_BOOLEAN) {
*out_msg << " boolean";
}
if (attr.type_mask & android::ResTable_map::TYPE_COLOR) {
*out_msg << " color";
}
if (attr.type_mask & android::ResTable_map::TYPE_DIMENSION) {
*out_msg << " dimension";
}
if (attr.type_mask & android::ResTable_map::TYPE_ENUM) {
*out_msg << " enum";
}
if (attr.type_mask & android::ResTable_map::TYPE_FLAGS) {
*out_msg << " flags";
}
if (attr.type_mask & android::ResTable_map::TYPE_FLOAT) {
*out_msg << " float";
}
if (attr.type_mask & android::ResTable_map::TYPE_FRACTION) {
*out_msg << " fraction";
}
if (attr.type_mask & android::ResTable_map::TYPE_INTEGER) {
*out_msg << " integer";
}
if (attr.type_mask & android::ResTable_map::TYPE_REFERENCE) {
*out_msg << " reference";
}
if (attr.type_mask & android::ResTable_map::TYPE_STRING) {
*out_msg << " string";
}
*out_msg << " but got " << value;
}
bool Attribute::Matches(const Item& item, DiagMessage* out_msg) const {
constexpr const uint32_t TYPE_ENUM = android::ResTable_map::TYPE_ENUM;
constexpr const uint32_t TYPE_FLAGS = android::ResTable_map::TYPE_FLAGS;
constexpr const uint32_t TYPE_INTEGER = android::ResTable_map::TYPE_INTEGER;
constexpr const uint32_t TYPE_REFERENCE = android::ResTable_map::TYPE_REFERENCE;
android::Res_value val = {};
item.Flatten(&val);
const uint32_t flattened_data = util::DeviceToHost32(val.data);
// Always allow references.
const uint32_t actual_type = ResourceUtils::AndroidTypeToAttributeTypeMask(val.dataType);
// Only one type must match between the actual and expected.
if ((actual_type & (type_mask | TYPE_REFERENCE)) == 0) {
if (out_msg) {
BuildAttributeMismatchMessage(*this, item, out_msg);
}
return false;
}
// Enums and flags are encoded as integers, so check them first before doing any range checks.
if ((type_mask & TYPE_ENUM) != 0 && (actual_type & TYPE_ENUM) != 0) {
for (const Symbol& s : symbols) {
if (flattened_data == s.value) {
return true;
}
}
// If the attribute accepts integers, we can't fail here.
if ((type_mask & TYPE_INTEGER) == 0) {
if (out_msg) {
*out_msg << item << " is not a valid enum";
}
return false;
}
}
if ((type_mask & TYPE_FLAGS) != 0 && (actual_type & TYPE_FLAGS) != 0) {
uint32_t mask = 0u;
for (const Symbol& s : symbols) {
mask |= s.value;
}
// Check if the flattened data is covered by the flag bit mask.
// If the attribute accepts integers, we can't fail here.
if ((mask & flattened_data) == flattened_data) {
return true;
} else if ((type_mask & TYPE_INTEGER) == 0) {
if (out_msg) {
*out_msg << item << " is not a valid flag";
}
return false;
}
}
// Finally check the integer range of the value.
if ((type_mask & TYPE_INTEGER) != 0 && (actual_type & TYPE_INTEGER) != 0) {
if (static_cast<int32_t>(flattened_data) < min_int) {
if (out_msg) {
*out_msg << item << " is less than minimum integer " << min_int;
}
return false;
} else if (static_cast<int32_t>(flattened_data) > max_int) {
if (out_msg) {
*out_msg << item << " is greater than maximum integer " << max_int;
}
return false;
}
}
return true;
}
std::ostream& operator<<(std::ostream& out, const Style::Entry& entry) {
if (entry.key.name) {
out << entry.key.name.value();
} else if (entry.key.id) {
out << entry.key.id.value();
} else {
out << "???";
}
out << " = " << entry.value;
return out;
}
template <typename T>
std::vector<T*> ToPointerVec(std::vector<T>& src) {
std::vector<T*> dst;
dst.reserve(src.size());
for (T& in : src) {
dst.push_back(&in);
}
return dst;
}
template <typename T>
std::vector<const T*> ToPointerVec(const std::vector<T>& src) {
std::vector<const T*> dst;
dst.reserve(src.size());
for (const T& in : src) {
dst.push_back(&in);
}
return dst;
}
static bool KeyNameComparator(const Style::Entry* a, const Style::Entry* b) {
return a->key.name < b->key.name;
}
bool Style::Equals(const Value* value) const {
const Style* other = ValueCast<Style>(value);
if (!other) {
return false;
}
if (bool(parent) != bool(other->parent) ||
(parent && other->parent && !parent.value().Equals(&other->parent.value()))) {
return false;
}
if (entries.size() != other->entries.size()) {
return false;
}
std::vector<const Entry*> sorted_a = ToPointerVec(entries);
std::sort(sorted_a.begin(), sorted_a.end(), KeyNameComparator);
std::vector<const Entry*> sorted_b = ToPointerVec(other->entries);
std::sort(sorted_b.begin(), sorted_b.end(), KeyNameComparator);
return std::equal(sorted_a.begin(), sorted_a.end(), sorted_b.begin(),
[](const Entry* a, const Entry* b) -> bool {
return a->key.Equals(&b->key) && a->value->Equals(b->value.get());
});
}
void Style::Print(std::ostream* out) const {
*out << "(style) ";
if (parent && parent.value().name) {
const Reference& parent_ref = parent.value();
if (parent_ref.private_reference) {
*out << "*";
}
*out << parent_ref.name.value();
}
*out << " [" << util::Joiner(entries, ", ") << "]";
}
Style::Entry CloneEntry(const Style::Entry& entry, StringPool* pool) {
Style::Entry cloned_entry{entry.key};
if (entry.value != nullptr) {
CloningValueTransformer cloner(pool);
cloned_entry.value = entry.value->Transform(cloner);
}
return cloned_entry;
}
void Style::MergeWith(Style* other, StringPool* pool) {
if (other->parent) {
parent = other->parent;
}
// We can't assume that the entries are sorted alphabetically since they're supposed to be
// sorted by Resource Id. Not all Resource Ids may be set though, so we can't sort and merge
// them keying off that.
//
// Instead, sort the entries of each Style by their name in a separate structure. Then merge
// those.
std::vector<Entry*> this_sorted = ToPointerVec(entries);
std::sort(this_sorted.begin(), this_sorted.end(), KeyNameComparator);
std::vector<Entry*> other_sorted = ToPointerVec(other->entries);
std::sort(other_sorted.begin(), other_sorted.end(), KeyNameComparator);
auto this_iter = this_sorted.begin();
const auto this_end = this_sorted.end();
auto other_iter = other_sorted.begin();
const auto other_end = other_sorted.end();
std::vector<Entry> merged_entries;
while (this_iter != this_end) {
if (other_iter != other_end) {
if ((*this_iter)->key.name < (*other_iter)->key.name) {
merged_entries.push_back(std::move(**this_iter));
++this_iter;
} else {
// The other overrides.
merged_entries.push_back(CloneEntry(**other_iter, pool));
if ((*this_iter)->key.name == (*other_iter)->key.name) {
++this_iter;
}
++other_iter;
}
} else {
merged_entries.push_back(std::move(**this_iter));
++this_iter;
}
}
while (other_iter != other_end) {
merged_entries.push_back(CloneEntry(**other_iter, pool));
++other_iter;
}
entries = std::move(merged_entries);
}
bool Array::Equals(const Value* value) const {
const Array* other = ValueCast<Array>(value);
if (!other) {
return false;
}
if (elements.size() != other->elements.size()) {
return false;
}
return std::equal(elements.begin(), elements.end(), other->elements.begin(),
[](const std::unique_ptr<Item>& a, const std::unique_ptr<Item>& b) -> bool {
return a->Equals(b.get());
});
}
void Array::Print(std::ostream* out) const {
*out << "(array) [" << util::Joiner(elements, ", ") << "]";
}
bool Plural::Equals(const Value* value) const {
const Plural* other = ValueCast<Plural>(value);
if (!other) {
return false;
}
auto one_iter = values.begin();
auto one_end_iter = values.end();
auto two_iter = other->values.begin();
for (; one_iter != one_end_iter; ++one_iter, ++two_iter) {
const std::unique_ptr<Item>& a = *one_iter;
const std::unique_ptr<Item>& b = *two_iter;
if (a != nullptr && b != nullptr) {
if (!a->Equals(b.get())) {
return false;
}
} else if (a != b) {
return false;
}
}
return true;
}
void Plural::Print(std::ostream* out) const {
*out << "(plural)";
if (values[Zero]) {
*out << " zero=" << *values[Zero];
}
if (values[One]) {
*out << " one=" << *values[One];
}
if (values[Two]) {
*out << " two=" << *values[Two];
}
if (values[Few]) {
*out << " few=" << *values[Few];
}
if (values[Many]) {
*out << " many=" << *values[Many];
}
if (values[Other]) {
*out << " other=" << *values[Other];
}
}
bool Styleable::Equals(const Value* value) const {
const Styleable* other = ValueCast<Styleable>(value);
if (!other) {
return false;
}
if (entries.size() != other->entries.size()) {
return false;
}
return std::equal(entries.begin(), entries.end(), other->entries.begin(),
[](const Reference& a, const Reference& b) -> bool {
return a.Equals(&b);
});
}
void Styleable::Print(std::ostream* out) const {
*out << "(styleable) "
<< " [" << util::Joiner(entries, ", ") << "]";
}
bool Macro::Equals(const Value* value) const {
const Macro* other = ValueCast<Macro>(value);
if (!other) {
return false;
}
return other->raw_value == raw_value && other->style_string.spans == style_string.spans &&
other->style_string.str == style_string.str &&
other->untranslatable_sections == untranslatable_sections &&
other->alias_namespaces == alias_namespaces;
}
void Macro::Print(std::ostream* out) const {
*out << "(macro) ";
}
bool operator<(const Reference& a, const Reference& b) {
int cmp = a.name.value_or(ResourceName{}).compare(b.name.value_or(ResourceName{}));
if (cmp != 0) return cmp < 0;
return a.id < b.id;
}
bool operator==(const Reference& a, const Reference& b) {
return a.name == b.name && a.id == b.id;
}
bool operator!=(const Reference& a, const Reference& b) {
return a.name != b.name || a.id != b.id;
}
struct NameOnlyComparator {
bool operator()(const Reference& a, const Reference& b) const {
return a.name < b.name;
}
};
void Styleable::MergeWith(Styleable* other) {
// Compare only names, because some References may already have their IDs
// assigned (framework IDs that don't change).
std::set<Reference, NameOnlyComparator> references;
references.insert(entries.begin(), entries.end());
references.insert(other->entries.begin(), other->entries.end());
entries.clear();
entries.reserve(references.size());
entries.insert(entries.end(), references.begin(), references.end());
}
template <typename T>
std::unique_ptr<T> CopyValueFields(std::unique_ptr<T> new_value, const T* value) {
new_value->SetSource(value->GetSource());
new_value->SetComment(value->GetComment());
return new_value;
}
CloningValueTransformer::CloningValueTransformer(StringPool* new_pool)
: ValueTransformer(new_pool) {
}
std::unique_ptr<Reference> CloningValueTransformer::TransformDerived(const Reference* value) {
return std::make_unique<Reference>(*value);
}
std::unique_ptr<Id> CloningValueTransformer::TransformDerived(const Id* value) {
return std::make_unique<Id>(*value);
}
std::unique_ptr<RawString> CloningValueTransformer::TransformDerived(const RawString* value) {
auto new_value = std::make_unique<RawString>(pool_->MakeRef(value->value));
return CopyValueFields(std::move(new_value), value);
}
std::unique_ptr<String> CloningValueTransformer::TransformDerived(const String* value) {
auto new_value = std::make_unique<String>(pool_->MakeRef(value->value));
new_value->untranslatable_sections = value->untranslatable_sections;
return CopyValueFields(std::move(new_value), value);
}
std::unique_ptr<StyledString> CloningValueTransformer::TransformDerived(const StyledString* value) {
auto new_value = std::make_unique<StyledString>(pool_->MakeRef(value->value));
new_value->untranslatable_sections = value->untranslatable_sections;
return CopyValueFields(std::move(new_value), value);
}
std::unique_ptr<FileReference> CloningValueTransformer::TransformDerived(
const FileReference* value) {
auto new_value = std::make_unique<FileReference>(pool_->MakeRef(value->path));
new_value->file = value->file;
new_value->type = value->type;
return CopyValueFields(std::move(new_value), value);
}
std::unique_ptr<BinaryPrimitive> CloningValueTransformer::TransformDerived(
const BinaryPrimitive* value) {
return std::make_unique<BinaryPrimitive>(*value);
}
std::unique_ptr<Attribute> CloningValueTransformer::TransformDerived(const Attribute* value) {
auto new_value = std::make_unique<Attribute>();
new_value->type_mask = value->type_mask;
new_value->min_int = value->min_int;
new_value->max_int = value->max_int;
for (const Attribute::Symbol& s : value->symbols) {
new_value->symbols.emplace_back(Attribute::Symbol{
.symbol = *s.symbol.Transform(*this),
.value = s.value,
.type = s.type,
});
}
return CopyValueFields(std::move(new_value), value);
}
std::unique_ptr<Style> CloningValueTransformer::TransformDerived(const Style* value) {
auto new_value = std::make_unique<Style>();
new_value->parent = value->parent;
new_value->parent_inferred = value->parent_inferred;
for (auto& entry : value->entries) {
new_value->entries.push_back(Style::Entry{entry.key, entry.value->Transform(*this)});
}
return CopyValueFields(std::move(new_value), value);
}
std::unique_ptr<Array> CloningValueTransformer::TransformDerived(const Array* value) {
auto new_value = std::make_unique<Array>();
for (auto& item : value->elements) {
new_value->elements.emplace_back(item->Transform(*this));
}
return CopyValueFields(std::move(new_value), value);
}
std::unique_ptr<Plural> CloningValueTransformer::TransformDerived(const Plural* value) {
auto new_value = std::make_unique<Plural>();
const size_t count = value->values.size();
for (size_t i = 0; i < count; i++) {
if (value->values[i]) {
new_value->values[i] = value->values[i]->Transform(*this);
}
}
return CopyValueFields(std::move(new_value), value);
}
std::unique_ptr<Styleable> CloningValueTransformer::TransformDerived(const Styleable* value) {
auto new_value = std::make_unique<Styleable>();
for (const Reference& s : value->entries) {
new_value->entries.emplace_back(*s.Transform(*this));
}
return CopyValueFields(std::move(new_value), value);
}
std::unique_ptr<Macro> CloningValueTransformer::TransformDerived(const Macro* value) {
auto new_value = std::make_unique<Macro>(*value);
return CopyValueFields(std::move(new_value), value);
}
} // namespace aapt