blob: 8523e6c9e9730d803e867afa5f9aeb35755680fa [file] [log] [blame]
/*
* Copyright (C) 2015 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <gtest/gtest.h>
#include <utils/FatVector.h>
#include <tests/common/TestUtils.h>
using namespace android;
using namespace android::uirenderer;
template <class VectorType>
static bool allocationIsInternal(VectorType& v) {
// allocation array (from &v[0] to &v[0] + v.capacity) is
// located within the vector object itself
return (char*)(&v) <= (char*)(&v[0]) && (char*)(&v + 1) >= (char*)(&v[0] + v.capacity());
}
TEST(FatVector, baseline) {
// Verify allocation behavior FatVector contrasts against - allocations are always external
std::vector<int> v;
for (int i = 0; i < 50; i++) {
v.push_back(i);
EXPECT_FALSE(allocationIsInternal(v));
}
}
TEST(FatVector, simpleAllocate) {
FatVector<int, 4> v;
EXPECT_EQ(4u, v.capacity());
// can insert 4 items into internal buffer
for (int i = 0; i < 4; i++) {
v.push_back(i);
EXPECT_TRUE(allocationIsInternal(v));
}
// then will fall back to external allocation
for (int i = 5; i < 50; i++) {
v.push_back(i);
EXPECT_FALSE(allocationIsInternal(v));
}
}
TEST(FatVector, preSizeConstructor) {
{
FatVector<int, 4> v(32);
EXPECT_EQ(32u, v.capacity());
EXPECT_EQ(32u, v.size());
EXPECT_FALSE(allocationIsInternal(v));
}
{
FatVector<int, 4> v(4);
EXPECT_EQ(4u, v.capacity());
EXPECT_EQ(4u, v.size());
EXPECT_TRUE(allocationIsInternal(v));
}
{
FatVector<int, 4> v(2);
EXPECT_EQ(4u, v.capacity());
EXPECT_EQ(2u, v.size());
EXPECT_TRUE(allocationIsInternal(v));
}
}
TEST(FatVector, shrink) {
FatVector<int, 10> v;
EXPECT_TRUE(allocationIsInternal(v));
// push into external alloc
v.resize(11);
EXPECT_FALSE(allocationIsInternal(v));
// shrinking back to internal alloc succeeds
// note that shrinking further will succeed, but is a waste
v.resize(10);
v.shrink_to_fit();
EXPECT_TRUE(allocationIsInternal(v));
}
TEST(FatVector, destructorInternal) {
int count = 0;
{
// push 1 into external allocation, verify destruction happens once
FatVector<TestUtils::SignalingDtor, 0> v;
v.emplace_back(&count);
EXPECT_FALSE(allocationIsInternal(v));
EXPECT_EQ(0, count) << "Destruction shouldn't have happened yet";
}
EXPECT_EQ(1, count) << "Destruction should happen exactly once";
}
TEST(FatVector, destructorExternal) {
int count = 0;
{
// push 10 into internal allocation, verify 10 destructors called
FatVector<TestUtils::SignalingDtor, 10> v;
for (int i = 0; i < 10; i++) {
v.emplace_back(&count);
EXPECT_TRUE(allocationIsInternal(v));
}
EXPECT_EQ(0, count) << "Destruction shouldn't have happened yet";
}
EXPECT_EQ(10, count) << "Destruction should happen exactly once";
}