blob: 07449d4d2bc9fa0148187c49af5da647928ae627 [file] [log] [blame]
#!/usr/bin/env python2.6
#
# Copyright (C) 2011 The Android Open Source Project
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
#
# Plots debug log output from WindowOrientationListener.
# See README.txt for details.
#
import numpy as np
import matplotlib.pyplot as plot
import subprocess
import re
import fcntl
import os
import errno
import bisect
from datetime import datetime, timedelta
# Parameters.
timespan = 15 # seconds total span shown
scrolljump = 5 # seconds jump when scrolling
timeticks = 1 # seconds between each time tick
# Non-blocking stream wrapper.
class NonBlockingStream:
def __init__(self, stream):
fcntl.fcntl(stream, fcntl.F_SETFL, os.O_NONBLOCK)
self.stream = stream
self.buffer = ''
self.pos = 0
def readline(self):
while True:
index = self.buffer.find('\n', self.pos)
if index != -1:
result = self.buffer[self.pos:index]
self.pos = index + 1
return result
self.buffer = self.buffer[self.pos:]
self.pos = 0
try:
chunk = os.read(self.stream.fileno(), 4096)
except OSError, e:
if e.errno == errno.EAGAIN:
return None
raise e
if len(chunk) == 0:
if len(self.buffer) == 0:
raise(EOFError)
else:
result = self.buffer
self.buffer = ''
self.pos = 0
return result
self.buffer += chunk
# Plotter
class Plotter:
def __init__(self, adbout):
self.adbout = adbout
self.fig = plot.figure(1)
self.fig.suptitle('Window Orientation Listener', fontsize=12)
self.fig.set_dpi(96)
self.fig.set_size_inches(16, 12, forward=True)
self.raw_acceleration_x = self._make_timeseries()
self.raw_acceleration_y = self._make_timeseries()
self.raw_acceleration_z = self._make_timeseries()
self.raw_acceleration_axes = self._add_timeseries_axes(
1, 'Raw Acceleration', 'm/s^2', [-20, 20],
yticks=range(-15, 16, 5))
self.raw_acceleration_line_x = self._add_timeseries_line(
self.raw_acceleration_axes, 'x', 'red')
self.raw_acceleration_line_y = self._add_timeseries_line(
self.raw_acceleration_axes, 'y', 'green')
self.raw_acceleration_line_z = self._add_timeseries_line(
self.raw_acceleration_axes, 'z', 'blue')
self._add_timeseries_legend(self.raw_acceleration_axes)
shared_axis = self.raw_acceleration_axes
self.filtered_acceleration_x = self._make_timeseries()
self.filtered_acceleration_y = self._make_timeseries()
self.filtered_acceleration_z = self._make_timeseries()
self.magnitude = self._make_timeseries()
self.filtered_acceleration_axes = self._add_timeseries_axes(
2, 'Filtered Acceleration', 'm/s^2', [-20, 20],
sharex=shared_axis,
yticks=range(-15, 16, 5))
self.filtered_acceleration_line_x = self._add_timeseries_line(
self.filtered_acceleration_axes, 'x', 'red')
self.filtered_acceleration_line_y = self._add_timeseries_line(
self.filtered_acceleration_axes, 'y', 'green')
self.filtered_acceleration_line_z = self._add_timeseries_line(
self.filtered_acceleration_axes, 'z', 'blue')
self.magnitude_line = self._add_timeseries_line(
self.filtered_acceleration_axes, 'magnitude', 'orange', linewidth=2)
self._add_timeseries_legend(self.filtered_acceleration_axes)
self.tilt_angle = self._make_timeseries()
self.tilt_angle_axes = self._add_timeseries_axes(
3, 'Tilt Angle', 'degrees', [-105, 105],
sharex=shared_axis,
yticks=range(-90, 91, 30))
self.tilt_angle_line = self._add_timeseries_line(
self.tilt_angle_axes, 'tilt', 'black')
self._add_timeseries_legend(self.tilt_angle_axes)
self.orientation_angle = self._make_timeseries()
self.orientation_angle_axes = self._add_timeseries_axes(
4, 'Orientation Angle', 'degrees', [-25, 375],
sharex=shared_axis,
yticks=range(0, 361, 45))
self.orientation_angle_line = self._add_timeseries_line(
self.orientation_angle_axes, 'orientation', 'black')
self._add_timeseries_legend(self.orientation_angle_axes)
self.actual_orientation = self._make_timeseries()
self.proposed_orientation = self._make_timeseries()
self.orientation_axes = self._add_timeseries_axes(
5, 'Actual / Proposed Orientation and Confidence', 'rotation', [-1, 4],
sharex=shared_axis,
yticks=range(0, 4))
self.actual_orientation_line = self._add_timeseries_line(
self.orientation_axes, 'actual', 'black', linewidth=2)
self.proposed_orientation_line = self._add_timeseries_line(
self.orientation_axes, 'proposed', 'purple', linewidth=3)
self._add_timeseries_legend(self.orientation_axes)
self.confidence = [[self._make_timeseries(), self._make_timeseries()] for i in range(0, 4)]
self.confidence_polys = []
self.combined_confidence = self._make_timeseries()
self.orientation_confidence = self._make_timeseries()
self.tilt_confidence = self._make_timeseries()
self.magnitude_confidence = self._make_timeseries()
self.confidence_axes = self._add_timeseries_axes(
6, 'Proposed Orientation Confidence Factors', 'confidence', [-0.1, 1.1],
sharex=shared_axis,
yticks=[0.0, 0.2, 0.4, 0.6, 0.8, 1.0])
self.combined_confidence_line = self._add_timeseries_line(
self.confidence_axes, 'combined', 'purple', linewidth=2)
self.orientation_confidence_line = self._add_timeseries_line(
self.confidence_axes, 'orientation', 'black')
self.tilt_confidence_line = self._add_timeseries_line(
self.confidence_axes, 'tilt', 'brown')
self.magnitude_confidence_line = self._add_timeseries_line(
self.confidence_axes, 'magnitude', 'orange')
self._add_timeseries_legend(self.confidence_axes)
self.sample_latency = self._make_timeseries()
self.sample_latency_axes = self._add_timeseries_axes(
7, 'Accelerometer Sampling Latency', 'ms', [-10, 500],
sharex=shared_axis,
yticks=range(0, 500, 100))
self.sample_latency_line = self._add_timeseries_line(
self.sample_latency_axes, 'latency', 'black')
self._add_timeseries_legend(self.sample_latency_axes)
self.timer = self.fig.canvas.new_timer(interval=100)
self.timer.add_callback(lambda: self.update())
self.timer.start()
self.timebase = None
self._reset_parse_state()
# Initialize a time series.
def _make_timeseries(self):
return [[], []]
# Add a subplot to the figure for a time series.
def _add_timeseries_axes(self, index, title, ylabel, ylim, yticks, sharex=None):
num_graphs = 7
height = 0.9 / num_graphs
top = 0.95 - height * index
axes = self.fig.add_axes([0.1, top, 0.8, height],
xscale='linear',
xlim=[0, timespan],
ylabel=ylabel,
yscale='linear',
ylim=ylim,
sharex=sharex)
axes.text(0.02, 0.02, title, transform=axes.transAxes, fontsize=10, fontweight='bold')
axes.set_xlabel('time (s)', fontsize=10, fontweight='bold')
axes.set_ylabel(ylabel, fontsize=10, fontweight='bold')
axes.set_xticks(range(0, timespan + 1, timeticks))
axes.set_yticks(yticks)
axes.grid(True)
for label in axes.get_xticklabels():
label.set_fontsize(9)
for label in axes.get_yticklabels():
label.set_fontsize(9)
return axes
# Add a line to the axes for a time series.
def _add_timeseries_line(self, axes, label, color, linewidth=1):
return axes.plot([], label=label, color=color, linewidth=linewidth)[0]
# Add a legend to a time series.
def _add_timeseries_legend(self, axes):
axes.legend(
loc='upper left',
bbox_to_anchor=(1.01, 1),
borderpad=0.1,
borderaxespad=0.1,
prop={'size': 10})
# Resets the parse state.
def _reset_parse_state(self):
self.parse_raw_acceleration_x = None
self.parse_raw_acceleration_y = None
self.parse_raw_acceleration_z = None
self.parse_filtered_acceleration_x = None
self.parse_filtered_acceleration_y = None
self.parse_filtered_acceleration_z = None
self.parse_magnitude = None
self.parse_tilt_angle = None
self.parse_orientation_angle = None
self.parse_proposed_orientation = None
self.parse_combined_confidence = None
self.parse_orientation_confidence = None
self.parse_tilt_confidence = None
self.parse_magnitude_confidence = None
self.parse_actual_orientation = None
self.parse_confidence = None
self.parse_sample_latency = None
# Update samples.
def update(self):
timeindex = 0
while True:
try:
line = self.adbout.readline()
except EOFError:
plot.close()
return
if line is None:
break
print line
try:
timestamp = self._parse_timestamp(line)
except ValueError, e:
continue
if self.timebase is None:
self.timebase = timestamp
delta = timestamp - self.timebase
timeindex = delta.seconds + delta.microseconds * 0.000001
if line.find('Raw acceleration vector:') != -1:
self.parse_raw_acceleration_x = self._get_following_number(line, 'x=')
self.parse_raw_acceleration_y = self._get_following_number(line, 'y=')
self.parse_raw_acceleration_z = self._get_following_number(line, 'z=')
if line.find('Filtered acceleration vector:') != -1:
self.parse_filtered_acceleration_x = self._get_following_number(line, 'x=')
self.parse_filtered_acceleration_y = self._get_following_number(line, 'y=')
self.parse_filtered_acceleration_z = self._get_following_number(line, 'z=')
if line.find('magnitude=') != -1:
self.parse_magnitude = self._get_following_number(line, 'magnitude=')
if line.find('tiltAngle=') != -1:
self.parse_tilt_angle = self._get_following_number(line, 'tiltAngle=')
if line.find('orientationAngle=') != -1:
self.parse_orientation_angle = self._get_following_number(line, 'orientationAngle=')
if line.find('Proposal:') != -1:
self.parse_proposed_orientation = self._get_following_number(line, 'proposedOrientation=')
self.parse_combined_confidence = self._get_following_number(line, 'combinedConfidence=')
self.parse_orientation_confidence = self._get_following_number(line, 'orientationConfidence=')
self.parse_tilt_confidence = self._get_following_number(line, 'tiltConfidence=')
self.parse_magnitude_confidence = self._get_following_number(line, 'magnitudeConfidence=')
if line.find('Result:') != -1:
self.parse_actual_orientation = self._get_following_number(line, 'rotation=')
self.parse_confidence = self._get_following_array_of_numbers(line, 'confidence=')
self.parse_sample_latency = self._get_following_number(line, 'timeDeltaMS=')
for i in range(0, 4):
if self.parse_confidence is not None:
self._append(self.confidence[i][0], timeindex, i)
self._append(self.confidence[i][1], timeindex, i + self.parse_confidence[i])
else:
self._append(self.confidence[i][0], timeindex, None)
self._append(self.confidence[i][1], timeindex, None)
self._append(self.raw_acceleration_x, timeindex, self.parse_raw_acceleration_x)
self._append(self.raw_acceleration_y, timeindex, self.parse_raw_acceleration_y)
self._append(self.raw_acceleration_z, timeindex, self.parse_raw_acceleration_z)
self._append(self.filtered_acceleration_x, timeindex, self.parse_filtered_acceleration_x)
self._append(self.filtered_acceleration_y, timeindex, self.parse_filtered_acceleration_y)
self._append(self.filtered_acceleration_z, timeindex, self.parse_filtered_acceleration_z)
self._append(self.magnitude, timeindex, self.parse_magnitude)
self._append(self.tilt_angle, timeindex, self.parse_tilt_angle)
self._append(self.orientation_angle, timeindex, self.parse_orientation_angle)
self._append(self.actual_orientation, timeindex, self.parse_actual_orientation)
self._append(self.proposed_orientation, timeindex, self.parse_proposed_orientation)
self._append(self.combined_confidence, timeindex, self.parse_combined_confidence)
self._append(self.orientation_confidence, timeindex, self.parse_orientation_confidence)
self._append(self.tilt_confidence, timeindex, self.parse_tilt_confidence)
self._append(self.magnitude_confidence, timeindex, self.parse_magnitude_confidence)
self._append(self.sample_latency, timeindex, self.parse_sample_latency)
self._reset_parse_state()
# Scroll the plots.
if timeindex > timespan:
bottom = int(timeindex) - timespan + scrolljump
self.timebase += timedelta(seconds=bottom)
self._scroll(self.raw_acceleration_x, bottom)
self._scroll(self.raw_acceleration_y, bottom)
self._scroll(self.raw_acceleration_z, bottom)
self._scroll(self.filtered_acceleration_x, bottom)
self._scroll(self.filtered_acceleration_y, bottom)
self._scroll(self.filtered_acceleration_z, bottom)
self._scroll(self.magnitude, bottom)
self._scroll(self.tilt_angle, bottom)
self._scroll(self.orientation_angle, bottom)
self._scroll(self.actual_orientation, bottom)
self._scroll(self.proposed_orientation, bottom)
self._scroll(self.combined_confidence, bottom)
self._scroll(self.orientation_confidence, bottom)
self._scroll(self.tilt_confidence, bottom)
self._scroll(self.magnitude_confidence, bottom)
self._scroll(self.sample_latency, bottom)
for i in range(0, 4):
self._scroll(self.confidence[i][0], bottom)
self._scroll(self.confidence[i][1], bottom)
# Redraw the plots.
self.raw_acceleration_line_x.set_data(self.raw_acceleration_x)
self.raw_acceleration_line_y.set_data(self.raw_acceleration_y)
self.raw_acceleration_line_z.set_data(self.raw_acceleration_z)
self.filtered_acceleration_line_x.set_data(self.filtered_acceleration_x)
self.filtered_acceleration_line_y.set_data(self.filtered_acceleration_y)
self.filtered_acceleration_line_z.set_data(self.filtered_acceleration_z)
self.magnitude_line.set_data(self.magnitude)
self.tilt_angle_line.set_data(self.tilt_angle)
self.orientation_angle_line.set_data(self.orientation_angle)
self.actual_orientation_line.set_data(self.actual_orientation)
self.proposed_orientation_line.set_data(self.proposed_orientation)
self.combined_confidence_line.set_data(self.combined_confidence)
self.orientation_confidence_line.set_data(self.orientation_confidence)
self.tilt_confidence_line.set_data(self.tilt_confidence)
self.magnitude_confidence_line.set_data(self.magnitude_confidence)
self.sample_latency_line.set_data(self.sample_latency)
for poly in self.confidence_polys:
poly.remove()
self.confidence_polys = []
for i in range(0, 4):
self.confidence_polys.append(self.orientation_axes.fill_between(self.confidence[i][0][0],
self.confidence[i][0][1], self.confidence[i][1][1],
facecolor='goldenrod', edgecolor='goldenrod'))
self.fig.canvas.draw_idle()
# Scroll a time series.
def _scroll(self, timeseries, bottom):
bottom_index = bisect.bisect_left(timeseries[0], bottom)
del timeseries[0][:bottom_index]
del timeseries[1][:bottom_index]
for i, timeindex in enumerate(timeseries[0]):
timeseries[0][i] = timeindex - bottom
# Extract a word following the specified prefix.
def _get_following_word(self, line, prefix):
prefix_index = line.find(prefix)
if prefix_index == -1:
return None
start_index = prefix_index + len(prefix)
delim_index = line.find(',', start_index)
if delim_index == -1:
return line[start_index:]
else:
return line[start_index:delim_index]
# Extract a number following the specified prefix.
def _get_following_number(self, line, prefix):
word = self._get_following_word(line, prefix)
if word is None:
return None
return float(word)
# Extract an array of numbers following the specified prefix.
def _get_following_array_of_numbers(self, line, prefix):
prefix_index = line.find(prefix + '[')
if prefix_index == -1:
return None
start_index = prefix_index + len(prefix) + 1
delim_index = line.find(']', start_index)
if delim_index == -1:
return None
result = []
while start_index < delim_index:
comma_index = line.find(', ', start_index, delim_index)
if comma_index == -1:
result.append(float(line[start_index:delim_index]))
break;
result.append(float(line[start_index:comma_index]))
start_index = comma_index + 2
return result
# Add a value to a time series.
def _append(self, timeseries, timeindex, number):
timeseries[0].append(timeindex)
timeseries[1].append(number)
# Parse the logcat timestamp.
# Timestamp has the form '01-21 20:42:42.930'
def _parse_timestamp(self, line):
return datetime.strptime(line[0:18], '%m-%d %H:%M:%S.%f')
# Notice
print "Window Orientation Listener plotting tool"
print "-----------------------------------------\n"
print "Please turn on the Window Orientation Listener logging in Development Settings."
# Start adb.
print "Starting adb logcat.\n"
adb = subprocess.Popen(['adb', 'logcat', '-s', '-v', 'time', 'WindowOrientationListener:V'],
stdout=subprocess.PIPE)
adbout = NonBlockingStream(adb.stdout)
# Prepare plotter.
plotter = Plotter(adbout)
plotter.update()
# Main loop.
plot.show()