| /* |
| * Copyright (C) 2017 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "ProfileData.h" |
| #include "Properties.h" |
| |
| #include <cinttypes> |
| |
| namespace android { |
| namespace uirenderer { |
| |
| static const char* JANK_TYPE_NAMES[] = { |
| "Missed Vsync", "High input latency", "Slow UI thread", |
| "Slow bitmap uploads", "Slow issue draw commands", "Frame deadline missed", |
| "Frame deadline missed (legacy)"}; |
| |
| // The bucketing algorithm controls so to speak |
| // If a frame is <= to this it goes in bucket 0 |
| static const uint32_t kBucketMinThreshold = 5; |
| // If a frame is > this, start counting in increments of 2ms |
| static const uint32_t kBucket2msIntervals = 32; |
| // If a frame is > this, start counting in increments of 4ms |
| static const uint32_t kBucket4msIntervals = 48; |
| |
| // The interval of the slow frame histogram |
| static const uint32_t kSlowFrameBucketIntervalMs = 50; |
| // The start point of the slow frame bucket in ms |
| static const uint32_t kSlowFrameBucketStartMs = 150; |
| |
| // This will be called every frame, performance sensitive |
| // Uses bit twiddling to avoid branching while achieving the packing desired |
| static uint32_t frameCountIndexForFrameTime(nsecs_t frameTime) { |
| uint32_t index = static_cast<uint32_t>(ns2ms(frameTime)); |
| // If index > kBucketMinThreshold mask will be 0xFFFFFFFF as a result |
| // of negating 1 (twos compliment, yaay) else mask will be 0 |
| uint32_t mask = -(index > kBucketMinThreshold); |
| // If index > threshold, this will essentially perform: |
| // amountAboveThreshold = index - threshold; |
| // index = threshold + (amountAboveThreshold / 2) |
| // However if index is <= this will do nothing. It will underflow, do |
| // a right shift by 0 (no-op), then overflow back to the original value |
| index = ((index - kBucket4msIntervals) >> (index > kBucket4msIntervals)) + kBucket4msIntervals; |
| index = ((index - kBucket2msIntervals) >> (index > kBucket2msIntervals)) + kBucket2msIntervals; |
| // If index was < minThreshold at the start of all this it's going to |
| // be a pretty garbage value right now. However, mask is 0 so we'll end |
| // up with the desired result of 0. |
| index = (index - kBucketMinThreshold) & mask; |
| return index; |
| } |
| |
| // Only called when dumping stats, less performance sensitive |
| uint32_t ProfileData::frameTimeForFrameCountIndex(uint32_t index) { |
| index = index + kBucketMinThreshold; |
| if (index > kBucket2msIntervals) { |
| index += (index - kBucket2msIntervals); |
| } |
| if (index > kBucket4msIntervals) { |
| // This works because it was already doubled by the above if |
| // 1 is added to shift slightly more towards the middle of the bucket |
| index += (index - kBucket4msIntervals) + 1; |
| } |
| return index; |
| } |
| |
| uint32_t ProfileData::frameTimeForSlowFrameCountIndex(uint32_t index) { |
| return (index * kSlowFrameBucketIntervalMs) + kSlowFrameBucketStartMs; |
| } |
| |
| void ProfileData::mergeWith(const ProfileData& other) { |
| // Make sure we don't overflow Just In Case |
| uint32_t divider = 0; |
| if (mTotalFrameCount > (1 << 24)) { |
| divider = 4; |
| } |
| for (size_t i = 0; i < other.mJankTypeCounts.size(); i++) { |
| mJankTypeCounts[i] >>= divider; |
| mJankTypeCounts[i] += other.mJankTypeCounts[i]; |
| } |
| for (size_t i = 0; i < other.mFrameCounts.size(); i++) { |
| mFrameCounts[i] >>= divider; |
| mFrameCounts[i] += other.mFrameCounts[i]; |
| } |
| mJankFrameCount >>= divider; |
| mJankFrameCount += other.mJankFrameCount; |
| mJankLegacyFrameCount >>= divider; |
| mJankLegacyFrameCount += other.mJankLegacyFrameCount; |
| mTotalFrameCount >>= divider; |
| mTotalFrameCount += other.mTotalFrameCount; |
| if (mStatStartTime > other.mStatStartTime || mStatStartTime == 0) { |
| mStatStartTime = other.mStatStartTime; |
| } |
| for (size_t i = 0; i < other.mGPUFrameCounts.size(); i++) { |
| mGPUFrameCounts[i] >>= divider; |
| mGPUFrameCounts[i] += other.mGPUFrameCounts[i]; |
| } |
| mPipelineType = other.mPipelineType; |
| } |
| |
| void ProfileData::dump(int fd) const { |
| dprintf(fd, "\nStats since: %" PRIu64 "ns", mStatStartTime); |
| dprintf(fd, "\nTotal frames rendered: %u", mTotalFrameCount); |
| dprintf(fd, "\nJanky frames: %u (%.2f%%)", mJankFrameCount, |
| mTotalFrameCount == 0 ? 0.0f |
| : (float)mJankFrameCount / (float)mTotalFrameCount * 100.0f); |
| dprintf(fd, "\nJanky frames (legacy): %u (%.2f%%)", mJankLegacyFrameCount, mTotalFrameCount == 0 |
| ? 0.0f |
| : (float)mJankLegacyFrameCount / (float)mTotalFrameCount * 100.0f); |
| dprintf(fd, "\n50th percentile: %ums", findPercentile(50)); |
| dprintf(fd, "\n90th percentile: %ums", findPercentile(90)); |
| dprintf(fd, "\n95th percentile: %ums", findPercentile(95)); |
| dprintf(fd, "\n99th percentile: %ums", findPercentile(99)); |
| for (int i = 0; i < NUM_BUCKETS; i++) { |
| dprintf(fd, "\nNumber %s: %u", JANK_TYPE_NAMES[i], mJankTypeCounts[i]); |
| } |
| dprintf(fd, "\nHISTOGRAM:"); |
| histogramForEach([fd](HistogramEntry entry) { |
| dprintf(fd, " %ums=%u", entry.renderTimeMs, entry.frameCount); |
| }); |
| dprintf(fd, "\n50th gpu percentile: %ums", findGPUPercentile(50)); |
| dprintf(fd, "\n90th gpu percentile: %ums", findGPUPercentile(90)); |
| dprintf(fd, "\n95th gpu percentile: %ums", findGPUPercentile(95)); |
| dprintf(fd, "\n99th gpu percentile: %ums", findGPUPercentile(99)); |
| dprintf(fd, "\nGPU HISTOGRAM:"); |
| histogramGPUForEach([fd](HistogramEntry entry) { |
| dprintf(fd, " %ums=%u", entry.renderTimeMs, entry.frameCount); |
| }); |
| } |
| |
| uint32_t ProfileData::findPercentile(int percentile) const { |
| int pos = percentile * mTotalFrameCount / 100; |
| int remaining = mTotalFrameCount - pos; |
| for (int i = mSlowFrameCounts.size() - 1; i >= 0; i--) { |
| remaining -= mSlowFrameCounts[i]; |
| if (remaining <= 0) { |
| return (i * kSlowFrameBucketIntervalMs) + kSlowFrameBucketStartMs; |
| } |
| } |
| for (int i = mFrameCounts.size() - 1; i >= 0; i--) { |
| remaining -= mFrameCounts[i]; |
| if (remaining <= 0) { |
| return frameTimeForFrameCountIndex(i); |
| } |
| } |
| return 0; |
| } |
| |
| void ProfileData::reset() { |
| mJankTypeCounts.fill(0); |
| mFrameCounts.fill(0); |
| mGPUFrameCounts.fill(0); |
| mSlowFrameCounts.fill(0); |
| mTotalFrameCount = 0; |
| mJankFrameCount = 0; |
| mJankLegacyFrameCount = 0; |
| mStatStartTime = systemTime(SYSTEM_TIME_MONOTONIC); |
| mPipelineType = Properties::getRenderPipelineType(); |
| } |
| |
| void ProfileData::reportFrame(int64_t duration) { |
| mTotalFrameCount++; |
| uint32_t framebucket = frameCountIndexForFrameTime(duration); |
| if (framebucket <= mFrameCounts.size()) { |
| mFrameCounts[framebucket]++; |
| } else { |
| framebucket = (ns2ms(duration) - kSlowFrameBucketStartMs) / kSlowFrameBucketIntervalMs; |
| framebucket = std::min(framebucket, static_cast<uint32_t>(mSlowFrameCounts.size() - 1)); |
| mSlowFrameCounts[framebucket]++; |
| } |
| } |
| |
| void ProfileData::histogramForEach(const std::function<void(HistogramEntry)>& callback) const { |
| for (size_t i = 0; i < mFrameCounts.size(); i++) { |
| callback(HistogramEntry{frameTimeForFrameCountIndex(i), mFrameCounts[i]}); |
| } |
| for (size_t i = 0; i < mSlowFrameCounts.size(); i++) { |
| callback(HistogramEntry{frameTimeForSlowFrameCountIndex(i), mSlowFrameCounts[i]}); |
| } |
| } |
| |
| uint32_t ProfileData::findGPUPercentile(int percentile) const { |
| uint32_t totalGPUFrameCount = 0; // this is usually mTotalFrameCount - 3. |
| for (int i = mGPUFrameCounts.size() - 1; i >= 0; i--) { |
| totalGPUFrameCount += mGPUFrameCounts[i]; |
| } |
| int pos = percentile * totalGPUFrameCount / 100; |
| int remaining = totalGPUFrameCount - pos; |
| for (int i = mGPUFrameCounts.size() - 1; i >= 0; i--) { |
| remaining -= mGPUFrameCounts[i]; |
| if (remaining <= 0) { |
| return GPUFrameTimeForFrameCountIndex(i); |
| } |
| } |
| return 0; |
| } |
| |
| uint32_t ProfileData::GPUFrameTimeForFrameCountIndex(uint32_t index) { |
| return index != 25 ? index + 1 : 4950; |
| } |
| |
| void ProfileData::reportGPUFrame(int64_t duration) { |
| uint32_t index = static_cast<uint32_t>(ns2ms(duration)); |
| if (index > 25) { |
| index = 25; |
| } |
| |
| mGPUFrameCounts[index]++; |
| } |
| |
| void ProfileData::histogramGPUForEach(const std::function<void(HistogramEntry)>& callback) const { |
| for (size_t i = 0; i < mGPUFrameCounts.size(); i++) { |
| callback(HistogramEntry{GPUFrameTimeForFrameCountIndex(i), mGPUFrameCounts[i]}); |
| } |
| } |
| |
| } /* namespace uirenderer */ |
| } /* namespace android */ |