blob: dd8439647fd32f6b758e27074ea729ddd8817a6c [file] [log] [blame]
/*
* Copyright (C) 2017 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "ProfileData.h"
#include "Properties.h"
#include <cinttypes>
namespace android {
namespace uirenderer {
static const char* JANK_TYPE_NAMES[] = {
"Missed Vsync", "High input latency", "Slow UI thread",
"Slow bitmap uploads", "Slow issue draw commands", "Frame deadline missed",
"Frame deadline missed (legacy)"};
// The bucketing algorithm controls so to speak
// If a frame is <= to this it goes in bucket 0
static const uint32_t kBucketMinThreshold = 5;
// If a frame is > this, start counting in increments of 2ms
static const uint32_t kBucket2msIntervals = 32;
// If a frame is > this, start counting in increments of 4ms
static const uint32_t kBucket4msIntervals = 48;
// The interval of the slow frame histogram
static const uint32_t kSlowFrameBucketIntervalMs = 50;
// The start point of the slow frame bucket in ms
static const uint32_t kSlowFrameBucketStartMs = 150;
// This will be called every frame, performance sensitive
// Uses bit twiddling to avoid branching while achieving the packing desired
static uint32_t frameCountIndexForFrameTime(nsecs_t frameTime) {
uint32_t index = static_cast<uint32_t>(ns2ms(frameTime));
// If index > kBucketMinThreshold mask will be 0xFFFFFFFF as a result
// of negating 1 (twos compliment, yaay) else mask will be 0
uint32_t mask = -(index > kBucketMinThreshold);
// If index > threshold, this will essentially perform:
// amountAboveThreshold = index - threshold;
// index = threshold + (amountAboveThreshold / 2)
// However if index is <= this will do nothing. It will underflow, do
// a right shift by 0 (no-op), then overflow back to the original value
index = ((index - kBucket4msIntervals) >> (index > kBucket4msIntervals)) + kBucket4msIntervals;
index = ((index - kBucket2msIntervals) >> (index > kBucket2msIntervals)) + kBucket2msIntervals;
// If index was < minThreshold at the start of all this it's going to
// be a pretty garbage value right now. However, mask is 0 so we'll end
// up with the desired result of 0.
index = (index - kBucketMinThreshold) & mask;
return index;
}
// Only called when dumping stats, less performance sensitive
uint32_t ProfileData::frameTimeForFrameCountIndex(uint32_t index) {
index = index + kBucketMinThreshold;
if (index > kBucket2msIntervals) {
index += (index - kBucket2msIntervals);
}
if (index > kBucket4msIntervals) {
// This works because it was already doubled by the above if
// 1 is added to shift slightly more towards the middle of the bucket
index += (index - kBucket4msIntervals) + 1;
}
return index;
}
uint32_t ProfileData::frameTimeForSlowFrameCountIndex(uint32_t index) {
return (index * kSlowFrameBucketIntervalMs) + kSlowFrameBucketStartMs;
}
void ProfileData::mergeWith(const ProfileData& other) {
// Make sure we don't overflow Just In Case
uint32_t divider = 0;
if (mTotalFrameCount > (1 << 24)) {
divider = 4;
}
for (size_t i = 0; i < other.mJankTypeCounts.size(); i++) {
mJankTypeCounts[i] >>= divider;
mJankTypeCounts[i] += other.mJankTypeCounts[i];
}
for (size_t i = 0; i < other.mFrameCounts.size(); i++) {
mFrameCounts[i] >>= divider;
mFrameCounts[i] += other.mFrameCounts[i];
}
mJankFrameCount >>= divider;
mJankFrameCount += other.mJankFrameCount;
mJankLegacyFrameCount >>= divider;
mJankLegacyFrameCount += other.mJankLegacyFrameCount;
mTotalFrameCount >>= divider;
mTotalFrameCount += other.mTotalFrameCount;
if (mStatStartTime > other.mStatStartTime || mStatStartTime == 0) {
mStatStartTime = other.mStatStartTime;
}
for (size_t i = 0; i < other.mGPUFrameCounts.size(); i++) {
mGPUFrameCounts[i] >>= divider;
mGPUFrameCounts[i] += other.mGPUFrameCounts[i];
}
mPipelineType = other.mPipelineType;
}
void ProfileData::dump(int fd) const {
dprintf(fd, "\nStats since: %" PRIu64 "ns", mStatStartTime);
dprintf(fd, "\nTotal frames rendered: %u", mTotalFrameCount);
dprintf(fd, "\nJanky frames: %u (%.2f%%)", mJankFrameCount,
mTotalFrameCount == 0 ? 0.0f
: (float)mJankFrameCount / (float)mTotalFrameCount * 100.0f);
dprintf(fd, "\nJanky frames (legacy): %u (%.2f%%)", mJankLegacyFrameCount, mTotalFrameCount == 0
? 0.0f
: (float)mJankLegacyFrameCount / (float)mTotalFrameCount * 100.0f);
dprintf(fd, "\n50th percentile: %ums", findPercentile(50));
dprintf(fd, "\n90th percentile: %ums", findPercentile(90));
dprintf(fd, "\n95th percentile: %ums", findPercentile(95));
dprintf(fd, "\n99th percentile: %ums", findPercentile(99));
for (int i = 0; i < NUM_BUCKETS; i++) {
dprintf(fd, "\nNumber %s: %u", JANK_TYPE_NAMES[i], mJankTypeCounts[i]);
}
dprintf(fd, "\nHISTOGRAM:");
histogramForEach([fd](HistogramEntry entry) {
dprintf(fd, " %ums=%u", entry.renderTimeMs, entry.frameCount);
});
dprintf(fd, "\n50th gpu percentile: %ums", findGPUPercentile(50));
dprintf(fd, "\n90th gpu percentile: %ums", findGPUPercentile(90));
dprintf(fd, "\n95th gpu percentile: %ums", findGPUPercentile(95));
dprintf(fd, "\n99th gpu percentile: %ums", findGPUPercentile(99));
dprintf(fd, "\nGPU HISTOGRAM:");
histogramGPUForEach([fd](HistogramEntry entry) {
dprintf(fd, " %ums=%u", entry.renderTimeMs, entry.frameCount);
});
}
uint32_t ProfileData::findPercentile(int percentile) const {
int pos = percentile * mTotalFrameCount / 100;
int remaining = mTotalFrameCount - pos;
for (int i = mSlowFrameCounts.size() - 1; i >= 0; i--) {
remaining -= mSlowFrameCounts[i];
if (remaining <= 0) {
return (i * kSlowFrameBucketIntervalMs) + kSlowFrameBucketStartMs;
}
}
for (int i = mFrameCounts.size() - 1; i >= 0; i--) {
remaining -= mFrameCounts[i];
if (remaining <= 0) {
return frameTimeForFrameCountIndex(i);
}
}
return 0;
}
void ProfileData::reset() {
mJankTypeCounts.fill(0);
mFrameCounts.fill(0);
mGPUFrameCounts.fill(0);
mSlowFrameCounts.fill(0);
mTotalFrameCount = 0;
mJankFrameCount = 0;
mJankLegacyFrameCount = 0;
mStatStartTime = systemTime(SYSTEM_TIME_MONOTONIC);
mPipelineType = Properties::getRenderPipelineType();
}
void ProfileData::reportFrame(int64_t duration) {
mTotalFrameCount++;
uint32_t framebucket = frameCountIndexForFrameTime(duration);
if (framebucket <= mFrameCounts.size()) {
mFrameCounts[framebucket]++;
} else {
framebucket = (ns2ms(duration) - kSlowFrameBucketStartMs) / kSlowFrameBucketIntervalMs;
framebucket = std::min(framebucket, static_cast<uint32_t>(mSlowFrameCounts.size() - 1));
mSlowFrameCounts[framebucket]++;
}
}
void ProfileData::histogramForEach(const std::function<void(HistogramEntry)>& callback) const {
for (size_t i = 0; i < mFrameCounts.size(); i++) {
callback(HistogramEntry{frameTimeForFrameCountIndex(i), mFrameCounts[i]});
}
for (size_t i = 0; i < mSlowFrameCounts.size(); i++) {
callback(HistogramEntry{frameTimeForSlowFrameCountIndex(i), mSlowFrameCounts[i]});
}
}
uint32_t ProfileData::findGPUPercentile(int percentile) const {
uint32_t totalGPUFrameCount = 0; // this is usually mTotalFrameCount - 3.
for (int i = mGPUFrameCounts.size() - 1; i >= 0; i--) {
totalGPUFrameCount += mGPUFrameCounts[i];
}
int pos = percentile * totalGPUFrameCount / 100;
int remaining = totalGPUFrameCount - pos;
for (int i = mGPUFrameCounts.size() - 1; i >= 0; i--) {
remaining -= mGPUFrameCounts[i];
if (remaining <= 0) {
return GPUFrameTimeForFrameCountIndex(i);
}
}
return 0;
}
uint32_t ProfileData::GPUFrameTimeForFrameCountIndex(uint32_t index) {
return index != 25 ? index + 1 : 4950;
}
void ProfileData::reportGPUFrame(int64_t duration) {
uint32_t index = static_cast<uint32_t>(ns2ms(duration));
if (index > 25) {
index = 25;
}
mGPUFrameCounts[index]++;
}
void ProfileData::histogramGPUForEach(const std::function<void(HistogramEntry)>& callback) const {
for (size_t i = 0; i < mGPUFrameCounts.size(); i++) {
callback(HistogramEntry{GPUFrameTimeForFrameCountIndex(i), mGPUFrameCounts[i]});
}
}
} /* namespace uirenderer */
} /* namespace android */