blob: 8bb22a9105232d5c18f504d8bb552198ffe44d36 [file] [log] [blame]
/*
* Copyright (C) 2020 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "Camera3-RotCropMapper"
#define ATRACE_TAG ATRACE_TAG_CAMERA
//#define LOG_NDEBUG 0
#include <algorithm>
#include <cmath>
#include "device3/RotateAndCropMapper.h"
namespace android {
namespace camera3 {
void RotateAndCropMapper::initRemappedKeys() {
mRemappedKeys.insert(
kMeteringRegionsToCorrect.begin(),
kMeteringRegionsToCorrect.end());
mRemappedKeys.insert(
kResultPointsToCorrectNoClamp.begin(),
kResultPointsToCorrectNoClamp.end());
mRemappedKeys.insert(ANDROID_SCALER_ROTATE_AND_CROP);
mRemappedKeys.insert(ANDROID_SCALER_CROP_REGION);
if (flags::concert_mode()) {
mRemappedKeys.insert(ANDROID_LOGICAL_MULTI_CAMERA_ACTIVE_PHYSICAL_SENSOR_CROP_REGION);
}
}
bool RotateAndCropMapper::isNeeded(const CameraMetadata* deviceInfo) {
auto entry = deviceInfo->find(ANDROID_SCALER_AVAILABLE_ROTATE_AND_CROP_MODES);
for (size_t i = 0; i < entry.count; i++) {
if (entry.data.u8[i] == ANDROID_SCALER_ROTATE_AND_CROP_AUTO) return true;
}
return false;
}
RotateAndCropMapper::RotateAndCropMapper(const CameraMetadata* deviceInfo) {
initRemappedKeys();
auto entry = deviceInfo->find(ANDROID_SENSOR_INFO_ACTIVE_ARRAY_SIZE);
if (entry.count != 4) return;
mArrayWidth = entry.data.i32[2];
mArrayHeight = entry.data.i32[3];
mArrayAspect = static_cast<float>(mArrayWidth) / mArrayHeight;
mRotateAspect = 1.f/mArrayAspect;
}
/**
* Adjust capture request when rotate and crop AUTO is enabled
*/
status_t RotateAndCropMapper::updateCaptureRequest(CameraMetadata *request) {
auto entry = request->find(ANDROID_SCALER_ROTATE_AND_CROP);
if (entry.count == 0) return OK;
uint8_t rotateMode = entry.data.u8[0];
if (rotateMode == ANDROID_SCALER_ROTATE_AND_CROP_NONE) return OK;
int32_t cx = 0;
int32_t cy = 0;
int32_t cw = mArrayWidth;
int32_t ch = mArrayHeight;
entry = request->find(ANDROID_SCALER_CROP_REGION);
if (entry.count == 4) {
cx = entry.data.i32[0];
cy = entry.data.i32[1];
cw = entry.data.i32[2];
ch = entry.data.i32[3];
}
// User inputs are relative to the rotated-and-cropped view, so convert back
// to active array coordinates. To be more specific, the application is
// calculating coordinates based on the crop rectangle and the active array,
// even though the view the user sees is the cropped-and-rotated one. So we
// need to adjust the coordinates so that a point that would be on the
// top-left corner of the crop region is mapped to the top-left corner of
// the rotated-and-cropped fov within the crop region, and the same for the
// bottom-right corner.
//
// Since the zoom ratio control scales everything uniformly (so an app does
// not need to adjust anything if it wants to put a metering region on the
// top-left quadrant of the preview FOV, when changing zoomRatio), it does
// not need to be factored into this calculation at all.
//
// ->+x active array aw
// |+--------------------------------------------------------------------+
// v| |
// +y| a 1 cw 2 b |
// | +=========*HHHHHHHHHHHHHHH*===========+ |
// | I H rw H I |
// | I H H I |
// | I H H I |
//ah | ch I H rh H I crop region |
// | I H H I |
// | I H H I |
// | I H rotate region H I |
// | +=========*HHHHHHHHHHHHHHH*===========+ |
// | d 4 3 c |
// | |
// +--------------------------------------------------------------------+
//
// aw , ah = active array width,height
// cw , ch = crop region width,height
// rw , rh = rotated-and-cropped region width,height
// aw / ah = array aspect = rh / rw = 1 / rotated aspect
// Coordinate mappings:
// ROTATE_AND_CROP_90: point a -> point 2
// point c -> point 4 = +x -> +y, +y -> -x
// ROTATE_AND_CROP_180: point a -> point c
// point c -> point a = +x -> -x, +y -> -y
// ROTATE_AND_CROP_270: point a -> point 4
// point c -> point 2 = +x -> -y, +y -> +x
float cropAspect = static_cast<float>(cw) / ch;
float transformMat[4] = {0, 0,
0, 0};
float xShift = 0;
float yShift = 0;
if (rotateMode == ANDROID_SCALER_ROTATE_AND_CROP_180) {
transformMat[0] = -1;
transformMat[3] = -1;
xShift = cw;
yShift = ch;
} else {
float rw = cropAspect > mRotateAspect ?
ch * mRotateAspect : // pillarbox, not full width
cw; // letterbox or 1:1, full width
float rh = cropAspect >= mRotateAspect ?
ch : // pillarbox or 1:1, full height
cw / mRotateAspect; // letterbox, not full height
switch (rotateMode) {
case ANDROID_SCALER_ROTATE_AND_CROP_270:
transformMat[1] = -rw / ch; // +y -> -x
transformMat[2] = rh / cw; // +x -> +y
xShift = (cw + rw) / 2; // left edge of crop to right edge of rotated
yShift = (ch - rh) / 2; // top edge of crop to top edge of rotated
break;
case ANDROID_SCALER_ROTATE_AND_CROP_90:
transformMat[1] = rw / ch; // +y -> +x
transformMat[2] = -rh / cw; // +x -> -y
xShift = (cw - rw) / 2; // left edge of crop to left edge of rotated
yShift = (ch + rh) / 2; // top edge of crop to bottom edge of rotated
break;
default:
ALOGE("%s: Unexpected rotate mode: %d", __FUNCTION__, rotateMode);
return BAD_VALUE;
}
}
for (auto regionTag : kMeteringRegionsToCorrect) {
entry = request->find(regionTag);
for (size_t i = 0; i < entry.count; i += 5) {
int32_t weight = entry.data.i32[i + 4];
if (weight == 0) {
continue;
}
transformPoints(entry.data.i32 + i, 2, transformMat, xShift, yShift, cx, cy);
swapRectToMinFirst(entry.data.i32 + i);
}
}
return OK;
}
/**
* Adjust capture result when rotate and crop AUTO is enabled
*/
status_t RotateAndCropMapper::updateCaptureResult(CameraMetadata *result) {
auto entry = result->find(ANDROID_SCALER_ROTATE_AND_CROP);
if (entry.count == 0) return OK;
uint8_t rotateMode = entry.data.u8[0];
if (rotateMode == ANDROID_SCALER_ROTATE_AND_CROP_NONE) return OK;
int32_t cx = 0;
int32_t cy = 0;
int32_t cw = mArrayWidth;
int32_t ch = mArrayHeight;
entry = result->find(ANDROID_SCALER_CROP_REGION);
if (entry.count == 4) {
cx = entry.data.i32[0];
cy = entry.data.i32[1];
cw = entry.data.i32[2];
ch = entry.data.i32[3];
}
// HAL inputs are relative to the full active array, so convert back to
// rotated-and-cropped coordinates for apps. To be more specific, the
// application is calculating coordinates based on the crop rectangle and
// the active array, even though the view the user sees is the
// cropped-and-rotated one. So we need to adjust the coordinates so that a
// point that would be on the top-left corner of the rotate-and-cropped
// region is mapped to the top-left corner of the crop region, and the same
// for the bottom-right corner.
//
// Since the zoom ratio control scales everything uniformly (so an app does
// not need to adjust anything if it wants to put a metering region on the
// top-left quadrant of the preview FOV, when changing zoomRatio), it does
// not need to be factored into this calculation at all.
//
// Also note that round-tripping between original request and final result
// fields can't be perfect, since the intermediate values have to be
// integers on a smaller range than the original crop region range. That
// means that multiple input values map to a single output value in
// adjusting a request, so when adjusting a result, the original answer may
// not be obtainable. Given that aspect ratios are rarely > 16/9, the
// round-trip values should generally only be off by 1 at most.
//
// ->+x active array aw
// |+--------------------------------------------------------------------+
// v| |
// +y| a 1 cw 2 b |
// | +=========*HHHHHHHHHHHHHHH*===========+ |
// | I H rw H I |
// | I H H I |
// | I H H I |
//ah | ch I H rh H I crop region |
// | I H H I |
// | I H H I |
// | I H rotate region H I |
// | +=========*HHHHHHHHHHHHHHH*===========+ |
// | d 4 3 c |
// | |
// +--------------------------------------------------------------------+
//
// aw , ah = active array width,height
// cw , ch = crop region width,height
// rw , rh = rotated-and-cropped region width,height
// aw / ah = array aspect = rh / rw = 1 / rotated aspect
// Coordinate mappings:
// ROTATE_AND_CROP_90: point 2 -> point a
// point 4 -> point c = +x -> -y, +y -> +x
// ROTATE_AND_CROP_180: point c -> point a
// point a -> point c = +x -> -x, +y -> -y
// ROTATE_AND_CROP_270: point 4 -> point a
// point 2 -> point c = +x -> +y, +y -> -x
float cropAspect = static_cast<float>(cw) / ch;
float transformMat[4] = {0, 0,
0, 0};
float xShift = 0;
float yShift = 0;
float rx = 0; // top-left corner of rotated region
float ry = 0;
if (rotateMode == ANDROID_SCALER_ROTATE_AND_CROP_180) {
transformMat[0] = -1;
transformMat[3] = -1;
xShift = cw;
yShift = ch;
rx = cx;
ry = cy;
} else {
float rw = cropAspect > mRotateAspect ?
ch * mRotateAspect : // pillarbox, not full width
cw; // letterbox or 1:1, full width
float rh = cropAspect >= mRotateAspect ?
ch : // pillarbox or 1:1, full height
cw / mRotateAspect; // letterbox, not full height
rx = cx + (cw - rw) / 2;
ry = cy + (ch - rh) / 2;
switch (rotateMode) {
case ANDROID_SCALER_ROTATE_AND_CROP_270:
transformMat[1] = ch / rw; // +y -> +x
transformMat[2] = -cw / rh; // +x -> -y
xShift = -(cw - rw) / 2; // left edge of rotated to left edge of cropped
yShift = ry - cy + ch; // top edge of rotated to bottom edge of cropped
break;
case ANDROID_SCALER_ROTATE_AND_CROP_90:
transformMat[1] = -ch / rw; // +y -> -x
transformMat[2] = cw / rh; // +x -> +y
xShift = (cw + rw) / 2; // left edge of rotated to left edge of cropped
yShift = (ch - rh) / 2; // top edge of rotated to bottom edge of cropped
break;
default:
ALOGE("%s: Unexpected rotate mode: %d", __FUNCTION__, rotateMode);
return BAD_VALUE;
}
}
for (auto regionTag : kMeteringRegionsToCorrect) {
entry = result->find(regionTag);
for (size_t i = 0; i < entry.count; i += 5) {
int32_t weight = entry.data.i32[i + 4];
if (weight == 0) {
continue;
}
transformPoints(entry.data.i32 + i, 2, transformMat, xShift, yShift, rx, ry);
swapRectToMinFirst(entry.data.i32 + i);
}
}
for (auto pointsTag: kResultPointsToCorrectNoClamp) {
entry = result->find(pointsTag);
transformPoints(entry.data.i32, entry.count / 2, transformMat, xShift, yShift, rx, ry);
if (pointsTag == ANDROID_STATISTICS_FACE_RECTANGLES) {
for (size_t i = 0; i < entry.count; i += 4) {
swapRectToMinFirst(entry.data.i32 + i);
}
}
}
return OK;
}
void RotateAndCropMapper::transformPoints(int32_t* pts, size_t count, float transformMat[4],
float xShift, float yShift, float ox, float oy) {
for (size_t i = 0; i < count * 2; i += 2) {
float x0 = pts[i] - ox;
float y0 = pts[i + 1] - oy;
int32_t nx = std::round(transformMat[0] * x0 + transformMat[1] * y0 + xShift + ox);
int32_t ny = std::round(transformMat[2] * x0 + transformMat[3] * y0 + yShift + oy);
pts[i] = std::min(std::max(nx, 0), mArrayWidth);
pts[i + 1] = std::min(std::max(ny, 0), mArrayHeight);
}
}
void RotateAndCropMapper::swapRectToMinFirst(int32_t* rect) {
if (rect[0] > rect[2]) {
auto tmp = rect[0];
rect[0] = rect[2];
rect[2] = tmp;
}
if (rect[1] > rect[3]) {
auto tmp = rect[1];
rect[1] = rect[3];
rect[3] = tmp;
}
}
} // namespace camera3
} // namespace android