blob: 23afa6e93016613a44cf08dd900d6fdac5da80bb [file] [log] [blame]
/*
* Copyright (C) 2013-2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <vector>
#include "system/window.h"
#define LOG_TAG "Camera3-Stream"
#define ATRACE_TAG ATRACE_TAG_CAMERA
//#define LOG_NDEBUG 0
#include <utils/Log.h>
#include <utils/Trace.h>
#include <camera/StringUtils.h>
#include "device3/Camera3Stream.h"
#include "device3/StatusTracker.h"
#include "utils/TraceHFR.h"
#include "ui/GraphicBufferMapper.h"
#include <cutils/properties.h>
namespace android {
namespace camera3 {
Camera3Stream::~Camera3Stream() {
sp<StatusTracker> statusTracker = mStatusTracker.promote();
if (statusTracker != 0 && mStatusId != StatusTracker::NO_STATUS_ID) {
statusTracker->removeComponent(mStatusId);
}
}
Camera3Stream* Camera3Stream::cast(camera_stream *stream) {
return static_cast<Camera3Stream*>(stream);
}
const Camera3Stream* Camera3Stream::cast(const camera_stream *stream) {
return static_cast<const Camera3Stream*>(stream);
}
Camera3Stream::Camera3Stream(int id,
camera_stream_type type,
uint32_t width, uint32_t height, size_t maxSize, int format,
android_dataspace dataSpace, camera_stream_rotation_t rotation,
const std::string& physicalCameraId,
const std::unordered_set<int32_t> &sensorPixelModesUsed,
int setId, bool isMultiResolution, int64_t dynamicRangeProfile,
int64_t streamUseCase, bool deviceTimeBaseIsRealtime, int timestampBase,
int32_t colorSpace) :
camera_stream(),
mId(id),
mSetId(setId),
mName(fmt::sprintf("Camera3Stream[%d]", id)),
mMaxSize(maxSize),
mState(STATE_CONSTRUCTED),
mStatusId(StatusTracker::NO_STATUS_ID),
mStreamUnpreparable(true),
mUsage(0),
mOldUsage(0),
mOldMaxBuffers(0),
mOldFormat(-1),
mOldDataSpace(HAL_DATASPACE_UNKNOWN),
mPrepared(false),
mPrepareBlockRequest(true),
mPreparedBufferIdx(0),
mLastMaxCount(Camera3StreamInterface::ALLOCATE_PIPELINE_MAX),
mBufferLimitLatency(kBufferLimitLatencyBinSize),
mFormatOverridden(false),
mOriginalFormat(format),
mDataSpaceOverridden(false),
mOriginalDataSpace(dataSpace),
mPhysicalCameraId(physicalCameraId),
mLastTimestamp(0),
mIsMultiResolution(isMultiResolution),
mDeviceTimeBaseIsRealtime(deviceTimeBaseIsRealtime),
mTimestampBase(timestampBase) {
camera_stream::stream_type = type;
camera_stream::width = width;
camera_stream::height = height;
camera_stream::format = format;
camera_stream::data_space = dataSpace;
camera_stream::rotation = rotation;
camera_stream::max_buffers = 0;
camera_stream::physical_camera_id = mPhysicalCameraId;
camera_stream::sensor_pixel_modes_used = sensorPixelModesUsed;
camera_stream::dynamic_range_profile = dynamicRangeProfile;
camera_stream::use_case = streamUseCase;
camera_stream::color_space = colorSpace;
if ((format == HAL_PIXEL_FORMAT_BLOB || format == HAL_PIXEL_FORMAT_RAW_OPAQUE) &&
maxSize == 0) {
ALOGE("%s: BLOB or RAW_OPAQUE format with size == 0", __FUNCTION__);
mState = STATE_ERROR;
}
}
int Camera3Stream::getId() const {
return mId;
}
int Camera3Stream::getStreamSetId() const {
return mSetId;
}
int Camera3Stream::getHalStreamGroupId() const {
return mIsMultiResolution ? mSetId : -1;
}
bool Camera3Stream::isMultiResolution() const {
return mIsMultiResolution;
}
uint32_t Camera3Stream::getWidth() const {
return camera_stream::width;
}
uint32_t Camera3Stream::getHeight() const {
return camera_stream::height;
}
int Camera3Stream::getFormat() const {
return camera_stream::format;
}
android_dataspace Camera3Stream::getDataSpace() const {
return camera_stream::data_space;
}
int32_t Camera3Stream::getColorSpace() const {
return camera_stream::color_space;
}
uint64_t Camera3Stream::getUsage() const {
return mUsage;
}
void Camera3Stream::setUsage(uint64_t usage) {
mUsage = usage;
}
void Camera3Stream::setFormatOverride(bool formatOverridden) {
mFormatOverridden = formatOverridden;
}
bool Camera3Stream::isFormatOverridden() const {
return mFormatOverridden;
}
int Camera3Stream::getOriginalFormat() const {
return mOriginalFormat;
}
int64_t Camera3Stream::getDynamicRangeProfile() const {
return camera_stream::dynamic_range_profile;
}
void Camera3Stream::setDataSpaceOverride(bool dataSpaceOverridden) {
mDataSpaceOverridden = dataSpaceOverridden;
}
bool Camera3Stream::isDataSpaceOverridden() const {
return mDataSpaceOverridden;
}
android_dataspace Camera3Stream::getOriginalDataSpace() const {
return mOriginalDataSpace;
}
const std::string& Camera3Stream::physicalCameraId() const {
return mPhysicalCameraId;
}
int Camera3Stream::getMaxHalBuffers() const {
return camera_stream::max_buffers;
}
int64_t Camera3Stream::getStreamUseCase() const {
return camera_stream::use_case;
}
int Camera3Stream::getTimestampBase() const {
return mTimestampBase;
}
bool Camera3Stream::isDeviceTimeBaseRealtime() const {
return mDeviceTimeBaseIsRealtime;
}
void Camera3Stream::setOfflineProcessingSupport(bool support) {
mSupportOfflineProcessing = support;
}
bool Camera3Stream::getOfflineProcessingSupport() const {
return mSupportOfflineProcessing;
}
status_t Camera3Stream::forceToIdle() {
ATRACE_CALL();
Mutex::Autolock l(mLock);
status_t res;
switch (mState) {
case STATE_ERROR:
case STATE_CONSTRUCTED:
case STATE_IN_CONFIG:
case STATE_PREPARING:
case STATE_IN_RECONFIG:
ALOGE("%s: Invalid state: %d", __FUNCTION__, mState);
res = NO_INIT;
break;
case STATE_CONFIGURED:
if (hasOutstandingBuffersLocked()) {
sp<StatusTracker> statusTracker = mStatusTracker.promote();
if (statusTracker != 0) {
statusTracker->markComponentIdle(mStatusId, Fence::NO_FENCE);
}
}
mState = STATE_IN_IDLE;
res = OK;
break;
default:
ALOGE("%s: Unknown state %d", __FUNCTION__, mState);
res = NO_INIT;
}
return res;
}
status_t Camera3Stream::restoreConfiguredState() {
ATRACE_CALL();
Mutex::Autolock l(mLock);
status_t res;
switch (mState) {
case STATE_ERROR:
case STATE_CONSTRUCTED:
case STATE_IN_CONFIG:
case STATE_PREPARING:
case STATE_IN_RECONFIG:
case STATE_CONFIGURED:
ALOGE("%s: Invalid state: %d", __FUNCTION__, mState);
res = NO_INIT;
break;
case STATE_IN_IDLE:
if (hasOutstandingBuffersLocked()) {
sp<StatusTracker> statusTracker = mStatusTracker.promote();
if (statusTracker != 0) {
statusTracker->markComponentActive(mStatusId);
}
}
mState = STATE_CONFIGURED;
res = OK;
break;
default:
ALOGE("%s: Unknown state %d", __FUNCTION__, mState);
res = NO_INIT;
}
return res;
}
camera_stream* Camera3Stream::startConfiguration() {
ATRACE_CALL();
Mutex::Autolock l(mLock);
status_t res;
switch (mState) {
case STATE_ERROR:
ALOGE("%s: In error state", __FUNCTION__);
return NULL;
case STATE_CONSTRUCTED:
case STATE_IN_IDLE:
// OK
break;
case STATE_IN_CONFIG:
case STATE_IN_RECONFIG:
// Can start config again with no trouble; but don't redo
// mOldUsage/mOldMaxBuffers
return this;
case STATE_CONFIGURED:
if (hasOutstandingBuffersLocked()) {
ALOGE("%s: Cannot configure stream; has outstanding buffers",
__FUNCTION__);
return NULL;
}
break;
default:
ALOGE("%s: Unknown state %d", __FUNCTION__, mState);
return NULL;
}
mOldUsage = mUsage;
mOldMaxBuffers = camera_stream::max_buffers;
mOldFormat = camera_stream::format;
mOldDataSpace = camera_stream::data_space;
res = getEndpointUsage(&mUsage);
if (res != OK) {
ALOGE("%s: Cannot query consumer endpoint usage!",
__FUNCTION__);
return NULL;
}
if (mState == STATE_IN_IDLE) {
// Skip configuration.
return this;
}
// Stop tracking if currently doing so
if (mStatusId != StatusTracker::NO_STATUS_ID) {
sp<StatusTracker> statusTracker = mStatusTracker.promote();
if (statusTracker != 0) {
statusTracker->removeComponent(mStatusId);
}
mStatusId = StatusTracker::NO_STATUS_ID;
}
if (mState == STATE_CONSTRUCTED) {
mState = STATE_IN_CONFIG;
} else { // mState == STATE_CONFIGURED
LOG_ALWAYS_FATAL_IF(mState != STATE_CONFIGURED, "Invalid state: 0x%x", mState);
mState = STATE_IN_RECONFIG;
}
return this;
}
bool Camera3Stream::isConfiguring() const {
Mutex::Autolock l(mLock);
return (mState == STATE_IN_CONFIG) || (mState == STATE_IN_RECONFIG);
}
status_t Camera3Stream::finishConfiguration(/*out*/bool* streamReconfigured) {
ATRACE_CALL();
if (streamReconfigured != nullptr) {
*streamReconfigured = false;
}
Mutex::Autolock l(mLock);
switch (mState) {
case STATE_ERROR:
ALOGE("%s: In error state", __FUNCTION__);
return INVALID_OPERATION;
case STATE_IN_CONFIG:
case STATE_IN_RECONFIG:
// OK
break;
case STATE_CONSTRUCTED:
case STATE_CONFIGURED:
ALOGE("%s: Cannot finish configuration that hasn't been started",
__FUNCTION__);
return INVALID_OPERATION;
case STATE_IN_IDLE:
//Skip configuration in this state
return OK;
default:
ALOGE("%s: Unknown state", __FUNCTION__);
return INVALID_OPERATION;
}
// Register for idle tracking
sp<StatusTracker> statusTracker = mStatusTracker.promote();
if (statusTracker != 0 && mStatusId == StatusTracker::NO_STATUS_ID) {
std::string name = std::string("Stream ") + std::to_string(mId);
mStatusId = statusTracker->addComponent(name);
}
// Check if the stream configuration is unchanged, and skip reallocation if
// so.
if (mState == STATE_IN_RECONFIG &&
mOldUsage == mUsage &&
mOldMaxBuffers == camera_stream::max_buffers &&
mOldDataSpace == camera_stream::data_space &&
mOldFormat == camera_stream::format) {
mState = STATE_CONFIGURED;
return OK;
}
// Reset prepared state, since buffer config has changed, and existing
// allocations are no longer valid
mPrepared = false;
mPrepareBlockRequest = true;
mStreamUnpreparable = false;
bool reconfiguring = (mState == STATE_IN_RECONFIG);
status_t res;
res = configureQueueLocked();
// configureQueueLocked could return error in case of abandoned surface.
// Treat as non-fatal error.
if (res == NO_INIT || res == DEAD_OBJECT) {
ALOGE("%s: Unable to configure stream %d queue (non-fatal): %s (%d)",
__FUNCTION__, mId, strerror(-res), res);
mState = STATE_ABANDONED;
return res;
} else if (res != OK) {
ALOGE("%s: Unable to configure stream %d queue: %s (%d)",
__FUNCTION__, mId, strerror(-res), res);
mState = STATE_ERROR;
return res;
}
if (reconfiguring && streamReconfigured != nullptr) {
*streamReconfigured = true;
}
mState = STATE_CONFIGURED;
return res;
}
status_t Camera3Stream::cancelConfiguration() {
ATRACE_CALL();
Mutex::Autolock l(mLock);
switch (mState) {
case STATE_ERROR:
ALOGE("%s: In error state", __FUNCTION__);
return INVALID_OPERATION;
case STATE_IN_CONFIG:
case STATE_IN_RECONFIG:
case STATE_IN_IDLE:
// OK
break;
case STATE_CONSTRUCTED:
case STATE_CONFIGURED:
ALOGE("%s: Cannot cancel configuration that hasn't been started",
__FUNCTION__);
return INVALID_OPERATION;
default:
ALOGE("%s: Unknown state", __FUNCTION__);
return INVALID_OPERATION;
}
mUsage = mOldUsage;
camera_stream::max_buffers = mOldMaxBuffers;
mState = ((mState == STATE_IN_RECONFIG) || (mState == STATE_IN_IDLE)) ? STATE_CONFIGURED :
STATE_CONSTRUCTED;
return OK;
}
bool Camera3Stream::isUnpreparable() {
ATRACE_CALL();
Mutex::Autolock l(mLock);
return mStreamUnpreparable;
}
void Camera3Stream::markUnpreparable() {
ATRACE_CALL();
Mutex::Autolock l(mLock);
mStreamUnpreparable = true;
}
status_t Camera3Stream::startPrepare(int maxCount, bool blockRequest) {
ATRACE_CALL();
Mutex::Autolock l(mLock);
if (maxCount < 0) {
ALOGE("%s: Stream %d: Can't prepare stream if max buffer count (%d) is < 0",
__FUNCTION__, mId, maxCount);
return BAD_VALUE;
}
// This function should be only called when the stream is configured already.
if (mState != STATE_CONFIGURED) {
ALOGE("%s: Stream %d: Can't prepare stream if stream is not in CONFIGURED "
"state %d", __FUNCTION__, mId, mState);
return INVALID_OPERATION;
}
// This function can't be called if the stream has already received filled
// buffers
if (mStreamUnpreparable) {
ALOGE("%s: Stream %d: Can't prepare stream that's already in use",
__FUNCTION__, mId);
return INVALID_OPERATION;
}
if (getHandoutOutputBufferCountLocked() > 0) {
ALOGE("%s: Stream %d: Can't prepare stream that has outstanding buffers",
__FUNCTION__, mId);
return INVALID_OPERATION;
}
size_t pipelineMax = getBufferCountLocked();
size_t clampedCount = (pipelineMax < static_cast<size_t>(maxCount)) ?
pipelineMax : static_cast<size_t>(maxCount);
size_t bufferCount = (maxCount == Camera3StreamInterface::ALLOCATE_PIPELINE_MAX) ?
pipelineMax : clampedCount;
mPrepared = bufferCount <= mLastMaxCount;
mPrepareBlockRequest = blockRequest;
if (mPrepared) return OK;
mLastMaxCount = bufferCount;
mPreparedBuffers.insertAt(camera_stream_buffer_t(), /*index*/0, bufferCount);
mPreparedBufferIdx = 0;
mState = STATE_PREPARING;
return NOT_ENOUGH_DATA;
}
bool Camera3Stream::isBlockedByPrepare() const {
Mutex::Autolock l(mLock);
return mState == STATE_PREPARING && mPrepareBlockRequest;
}
bool Camera3Stream::isAbandoned() const {
Mutex::Autolock l(mLock);
return mState == STATE_ABANDONED;
}
status_t Camera3Stream::prepareNextBuffer() {
ATRACE_CALL();
Mutex::Autolock l(mLock);
status_t res = OK;
// This function should be only called when the stream is preparing
if (mState != STATE_PREPARING) {
ALOGE("%s: Stream %d: Can't prepare buffer if stream is not in PREPARING "
"state %d", __FUNCTION__, mId, mState);
return INVALID_OPERATION;
}
// Get next buffer - this may allocate, and take a while for large buffers
res = getBufferLocked( &mPreparedBuffers.editItemAt(mPreparedBufferIdx) );
if (res != OK) {
ALOGE("%s: Stream %d: Unable to allocate buffer %zu during preparation",
__FUNCTION__, mId, mPreparedBufferIdx);
return NO_INIT;
}
mPreparedBufferIdx++;
// Check if we still have buffers left to allocate
if (mPreparedBufferIdx < mPreparedBuffers.size()) {
return NOT_ENOUGH_DATA;
}
// Done with prepare - mark stream as such, and return all buffers
// via cancelPrepare
mPrepared = true;
return cancelPrepareLocked();
}
status_t Camera3Stream::cancelPrepare() {
ATRACE_CALL();
Mutex::Autolock l(mLock);
return cancelPrepareLocked();
}
status_t Camera3Stream::cancelPrepareLocked() {
status_t res = OK;
// This function should be only called when the stream is mid-preparing.
if (mState != STATE_PREPARING) {
ALOGE("%s: Stream %d: Can't cancel prepare stream if stream is not in "
"PREPARING state %d", __FUNCTION__, mId, mState);
return INVALID_OPERATION;
}
// Return all valid buffers to stream, in ERROR state to indicate
// they weren't filled.
for (size_t i = 0; i < mPreparedBufferIdx; i++) {
mPreparedBuffers.editItemAt(i).release_fence = -1;
mPreparedBuffers.editItemAt(i).status = CAMERA_BUFFER_STATUS_ERROR;
returnBufferLocked(mPreparedBuffers[i], /*timestamp*/0, /*readoutTimestamp*/0,
/*transform*/ -1);
}
mPreparedBuffers.clear();
mPreparedBufferIdx = 0;
mState = STATE_CONFIGURED;
return res;
}
status_t Camera3Stream::tearDown() {
ATRACE_CALL();
Mutex::Autolock l(mLock);
status_t res = OK;
// This function should be only called when the stream is configured.
if (mState != STATE_CONFIGURED) {
ALOGE("%s: Stream %d: Can't tear down stream if stream is not in "
"CONFIGURED state %d", __FUNCTION__, mId, mState);
return INVALID_OPERATION;
}
// If any buffers have been handed to the HAL, the stream cannot be torn down.
if (getHandoutOutputBufferCountLocked() > 0) {
ALOGE("%s: Stream %d: Can't tear down a stream that has outstanding buffers",
__FUNCTION__, mId);
return INVALID_OPERATION;
}
// Free buffers by disconnecting and then reconnecting to the buffer queue
// Only unused buffers will be dropped immediately; buffers that have been filled
// and are waiting to be acquired by the consumer and buffers that are currently
// acquired will be freed once they are released by the consumer.
res = disconnectLocked();
if (res != OK) {
if (res == -ENOTCONN) {
// queue has been disconnected, nothing left to do, so exit with success
return OK;
}
ALOGE("%s: Stream %d: Unable to disconnect to tear down buffers: %s (%d)",
__FUNCTION__, mId, strerror(-res), res);
return res;
}
mState = STATE_IN_CONFIG;
res = configureQueueLocked();
if (res != OK) {
ALOGE("%s: Unable to configure stream %d queue: %s (%d)",
__FUNCTION__, mId, strerror(-res), res);
mState = STATE_ERROR;
return res;
}
// Reset prepared state, since we've reconnected to the queue and can prepare again.
mPrepared = false;
mStreamUnpreparable = false;
mState = STATE_CONFIGURED;
return OK;
}
status_t Camera3Stream::getBuffer(camera_stream_buffer *buffer,
nsecs_t waitBufferTimeout,
const std::vector<size_t>& surface_ids) {
ATRACE_HFR_CALL();
Mutex::Autolock l(mLock);
status_t res = OK;
// This function should be only called when the stream is configured already.
if (mState != STATE_CONFIGURED) {
ALOGE("%s: Stream %d: Can't get buffers if stream is not in CONFIGURED state %d",
__FUNCTION__, mId, mState);
if (mState == STATE_ABANDONED) {
return DEAD_OBJECT;
} else {
return INVALID_OPERATION;
}
}
// Wait for new buffer returned back if we are running into the limit. There
// are 2 limits:
// 1. The number of HAL buffers is greater than max_buffers
// 2. The number of HAL buffers + cached buffers is greater than max_buffers
// + maxCachedBuffers
size_t numOutstandingBuffers = getHandoutOutputBufferCountLocked();
size_t numCachedBuffers = getCachedOutputBufferCountLocked();
size_t maxNumCachedBuffers = getMaxCachedOutputBuffersLocked();
while (numOutstandingBuffers == camera_stream::max_buffers ||
numOutstandingBuffers + numCachedBuffers ==
camera_stream::max_buffers + maxNumCachedBuffers) {
ALOGV("%s: Already dequeued max output buffers (%d(+%zu)), wait for next returned one.",
__FUNCTION__, camera_stream::max_buffers, maxNumCachedBuffers);
nsecs_t waitStart = systemTime(SYSTEM_TIME_MONOTONIC);
if (waitBufferTimeout < kWaitForBufferDuration) {
waitBufferTimeout = kWaitForBufferDuration;
}
res = mOutputBufferReturnedSignal.waitRelative(mLock, waitBufferTimeout);
nsecs_t waitEnd = systemTime(SYSTEM_TIME_MONOTONIC);
mBufferLimitLatency.add(waitStart, waitEnd);
if (res != OK) {
if (res == TIMED_OUT) {
ALOGE("%s: wait for output buffer return timed out after %lldms (max_buffers %d)",
__FUNCTION__, waitBufferTimeout / 1000000LL,
camera_stream::max_buffers);
}
return res;
}
size_t updatedNumOutstandingBuffers = getHandoutOutputBufferCountLocked();
size_t updatedNumCachedBuffers = getCachedOutputBufferCountLocked();
if (updatedNumOutstandingBuffers >= numOutstandingBuffers &&
updatedNumCachedBuffers == numCachedBuffers) {
ALOGE("%s: outstanding buffer count goes from %zu to %zu, "
"getBuffer(s) call must not run in parallel!", __FUNCTION__,
numOutstandingBuffers, updatedNumOutstandingBuffers);
return INVALID_OPERATION;
}
numOutstandingBuffers = updatedNumOutstandingBuffers;
numCachedBuffers = updatedNumCachedBuffers;
}
res = getBufferLocked(buffer, surface_ids);
if (res == OK) {
fireBufferListenersLocked(*buffer, /*acquired*/true, /*output*/true);
if (buffer->buffer) {
Mutex::Autolock l(mOutstandingBuffersLock);
mOutstandingBuffers.push_back(*buffer->buffer);
}
}
return res;
}
bool Camera3Stream::isOutstandingBuffer(const camera_stream_buffer &buffer) const{
if (buffer.buffer == nullptr) {
return false;
}
Mutex::Autolock l(mOutstandingBuffersLock);
for (auto b : mOutstandingBuffers) {
if (b == *buffer.buffer) {
return true;
}
}
return false;
}
void Camera3Stream::removeOutstandingBuffer(const camera_stream_buffer &buffer) {
if (buffer.buffer == nullptr) {
return;
}
Mutex::Autolock l(mOutstandingBuffersLock);
for (auto b = mOutstandingBuffers.begin(); b != mOutstandingBuffers.end(); b++) {
if (*b == *buffer.buffer) {
mOutstandingBuffers.erase(b);
return;
}
}
}
status_t Camera3Stream::returnBuffer(const camera_stream_buffer &buffer,
nsecs_t timestamp, nsecs_t readoutTimestamp, bool timestampIncreasing,
const std::vector<size_t>& surface_ids, uint64_t frameNumber, int32_t transform) {
ATRACE_HFR_CALL();
Mutex::Autolock l(mLock);
// Check if this buffer is outstanding.
if (!isOutstandingBuffer(buffer)) {
ALOGE("%s: Stream %d: Returning an unknown buffer.", __FUNCTION__, mId);
return BAD_VALUE;
}
removeOutstandingBuffer(buffer);
// Buffer status may be changed, so make a copy of the stream_buffer struct.
camera_stream_buffer b = buffer;
if (timestampIncreasing && timestamp != 0 && timestamp <= mLastTimestamp) {
ALOGE("%s: Stream %d: timestamp %" PRId64 " is not increasing. Prev timestamp %" PRId64,
__FUNCTION__, mId, timestamp, mLastTimestamp);
b.status = CAMERA_BUFFER_STATUS_ERROR;
}
mLastTimestamp = timestamp;
/**
* TODO: Check that the state is valid first.
*
* <HAL3.2 IN_CONFIG and IN_RECONFIG in addition to CONFIGURED.
* >= HAL3.2 CONFIGURED only
*
* Do this for getBuffer as well.
*/
status_t res = returnBufferLocked(b, timestamp, readoutTimestamp, transform, surface_ids);
if (res == OK) {
fireBufferListenersLocked(b, /*acquired*/false, /*output*/true, timestamp, frameNumber);
}
// Even if returning the buffer failed, we still want to signal whoever is waiting for the
// buffer to be returned.
mOutputBufferReturnedSignal.signal();
return res;
}
status_t Camera3Stream::getInputBuffer(camera_stream_buffer *buffer,
Size* size, bool respectHalLimit) {
ATRACE_CALL();
Mutex::Autolock l(mLock);
status_t res = OK;
if (size == nullptr) {
ALOGE("%s: size must not be null", __FUNCTION__);
return BAD_VALUE;
}
// This function should be only called when the stream is configured already.
if (mState != STATE_CONFIGURED) {
ALOGE("%s: Stream %d: Can't get input buffers if stream is not in CONFIGURED state %d",
__FUNCTION__, mId, mState);
return INVALID_OPERATION;
}
// Wait for new buffer returned back if we are running into the limit.
if (getHandoutInputBufferCountLocked() == camera_stream::max_buffers && respectHalLimit) {
ALOGV("%s: Already dequeued max input buffers (%d), wait for next returned one.",
__FUNCTION__, camera_stream::max_buffers);
res = mInputBufferReturnedSignal.waitRelative(mLock, kWaitForBufferDuration);
if (res != OK) {
if (res == TIMED_OUT) {
ALOGE("%s: wait for input buffer return timed out after %lldms", __FUNCTION__,
kWaitForBufferDuration / 1000000LL);
}
return res;
}
}
res = getInputBufferLocked(buffer, size);
if (res == OK) {
fireBufferListenersLocked(*buffer, /*acquired*/true, /*output*/false);
if (buffer->buffer) {
Mutex::Autolock l(mOutstandingBuffersLock);
mOutstandingBuffers.push_back(*buffer->buffer);
}
}
return res;
}
status_t Camera3Stream::returnInputBuffer(const camera_stream_buffer &buffer) {
ATRACE_CALL();
Mutex::Autolock l(mLock);
// Check if this buffer is outstanding.
if (!isOutstandingBuffer(buffer)) {
ALOGE("%s: Stream %d: Returning an unknown buffer.", __FUNCTION__, mId);
return BAD_VALUE;
}
removeOutstandingBuffer(buffer);
status_t res = returnInputBufferLocked(buffer);
if (res == OK) {
fireBufferListenersLocked(buffer, /*acquired*/false, /*output*/false);
mInputBufferReturnedSignal.signal();
}
return res;
}
status_t Camera3Stream::getInputBufferProducer(sp<IGraphicBufferProducer> *producer) {
ATRACE_CALL();
Mutex::Autolock l(mLock);
return getInputBufferProducerLocked(producer);
}
void Camera3Stream::fireBufferRequestForFrameNumber(uint64_t frameNumber,
const CameraMetadata& settings) {
ATRACE_CALL();
Mutex::Autolock l(mLock);
for (auto &it : mBufferListenerList) {
sp<Camera3StreamBufferListener> listener = it.promote();
if (listener.get() != nullptr) {
listener->onBufferRequestForFrameNumber(frameNumber, getId(), settings);
}
}
}
void Camera3Stream::fireBufferListenersLocked(
const camera_stream_buffer& buffer, bool acquired, bool output, nsecs_t timestamp,
uint64_t frameNumber) {
List<wp<Camera3StreamBufferListener> >::iterator it, end;
// TODO: finish implementing
Camera3StreamBufferListener::BufferInfo info =
Camera3StreamBufferListener::BufferInfo();
info.mOutput = output;
info.mError = (buffer.status == CAMERA_BUFFER_STATUS_ERROR);
info.mFrameNumber = frameNumber;
info.mTimestamp = timestamp;
info.mStreamId = getId();
// TODO: rest of fields
for (it = mBufferListenerList.begin(), end = mBufferListenerList.end();
it != end;
++it) {
sp<Camera3StreamBufferListener> listener = it->promote();
if (listener != 0) {
if (acquired) {
listener->onBufferAcquired(info);
} else {
listener->onBufferReleased(info);
}
}
}
}
bool Camera3Stream::hasOutstandingBuffers() const {
ATRACE_CALL();
Mutex::Autolock l(mLock);
return hasOutstandingBuffersLocked();
}
size_t Camera3Stream::getOutstandingBuffersCount() const {
ATRACE_CALL();
Mutex::Autolock l(mLock);
return getHandoutOutputBufferCountLocked();
}
status_t Camera3Stream::setStatusTracker(sp<StatusTracker> statusTracker) {
Mutex::Autolock l(mLock);
sp<StatusTracker> oldTracker = mStatusTracker.promote();
if (oldTracker != 0 && mStatusId != StatusTracker::NO_STATUS_ID) {
oldTracker->removeComponent(mStatusId);
}
mStatusId = StatusTracker::NO_STATUS_ID;
mStatusTracker = statusTracker;
return OK;
}
status_t Camera3Stream::disconnect() {
ATRACE_CALL();
Mutex::Autolock l(mLock);
ALOGV("%s: Stream %d: Disconnecting...", __FUNCTION__, mId);
status_t res = disconnectLocked();
mBufferLimitLatency.log("Stream %d latency histogram for wait on max_buffers", mId);
mBufferLimitLatency.reset();
if (res == -ENOTCONN) {
// "Already disconnected" -- not an error
return OK;
} else {
return res;
}
}
void Camera3Stream::dump(int fd, [[maybe_unused]] const Vector<String16> &args) const
{
mBufferLimitLatency.dump(fd,
" Latency histogram for wait on max_buffers");
}
status_t Camera3Stream::getBufferLocked(camera_stream_buffer *,
const std::vector<size_t>&) {
ALOGE("%s: This type of stream does not support output", __FUNCTION__);
return INVALID_OPERATION;
}
status_t Camera3Stream::getBuffersLocked(std::vector<OutstandingBuffer>*) {
ALOGE("%s: This type of stream does not support output", __FUNCTION__);
return INVALID_OPERATION;
}
status_t Camera3Stream::returnBufferLocked(const camera_stream_buffer &,
nsecs_t, nsecs_t, int32_t, const std::vector<size_t>&) {
ALOGE("%s: This type of stream does not support output", __FUNCTION__);
return INVALID_OPERATION;
}
status_t Camera3Stream::getInputBufferLocked(camera_stream_buffer *, Size *) {
ALOGE("%s: This type of stream does not support input", __FUNCTION__);
return INVALID_OPERATION;
}
status_t Camera3Stream::returnInputBufferLocked(
const camera_stream_buffer &) {
ALOGE("%s: This type of stream does not support input", __FUNCTION__);
return INVALID_OPERATION;
}
status_t Camera3Stream::getInputBufferProducerLocked(sp<IGraphicBufferProducer>*) {
ALOGE("%s: This type of stream does not support input", __FUNCTION__);
return INVALID_OPERATION;
}
void Camera3Stream::addBufferListener(
wp<Camera3StreamBufferListener> listener) {
Mutex::Autolock l(mLock);
List<wp<Camera3StreamBufferListener> >::iterator it, end;
for (it = mBufferListenerList.begin(), end = mBufferListenerList.end();
it != end;
) {
if (*it == listener) {
ALOGE("%s: Try to add the same listener twice, ignoring...", __FUNCTION__);
return;
}
it++;
}
mBufferListenerList.push_back(listener);
}
void Camera3Stream::removeBufferListener(
const sp<Camera3StreamBufferListener>& listener) {
Mutex::Autolock l(mLock);
bool erased = true;
List<wp<Camera3StreamBufferListener> >::iterator it, end;
for (it = mBufferListenerList.begin(), end = mBufferListenerList.end();
it != end;
) {
if (*it == listener) {
it = mBufferListenerList.erase(it);
erased = true;
} else {
++it;
}
}
if (!erased) {
ALOGW("%s: Could not find listener to remove, already removed",
__FUNCTION__);
}
}
void Camera3Stream::setBufferFreedListener(
wp<Camera3StreamBufferFreedListener> listener) {
Mutex::Autolock l(mLock);
// Only allow set listener during stream configuration because stream is guaranteed to be IDLE
// at this state, so setBufferFreedListener won't collide with onBufferFreed callbacks
if (mState != STATE_IN_CONFIG && mState != STATE_IN_RECONFIG) {
ALOGE("%s: listener must be set during stream configuration!",__FUNCTION__);
return;
}
mBufferFreedListener = listener;
}
status_t Camera3Stream::getBuffers(std::vector<OutstandingBuffer>* buffers,
nsecs_t waitBufferTimeout) {
ATRACE_CALL();
Mutex::Autolock l(mLock);
status_t res = OK;
if (buffers == nullptr) {
ALOGI("%s: buffers must not be null!", __FUNCTION__);
return BAD_VALUE;
}
size_t numBuffersRequested = buffers->size();
if (numBuffersRequested == 0) {
ALOGE("%s: 0 buffers are requested!", __FUNCTION__);
return BAD_VALUE;
}
// This function should be only called when the stream is configured already.
if (mState != STATE_CONFIGURED) {
ALOGE("%s: Stream %d: Can't get buffers if stream is not in CONFIGURED state %d",
__FUNCTION__, mId, mState);
if (mState == STATE_ABANDONED) {
return DEAD_OBJECT;
} else {
return INVALID_OPERATION;
}
}
size_t numOutstandingBuffers = getHandoutOutputBufferCountLocked();
size_t numCachedBuffers = getCachedOutputBufferCountLocked();
size_t maxNumCachedBuffers = getMaxCachedOutputBuffersLocked();
// Wait for new buffer returned back if we are running into the limit. There
// are 2 limits:
// 1. The number of HAL buffers is greater than max_buffers
// 2. The number of HAL buffers + cached buffers is greater than max_buffers
// + maxCachedBuffers
while (numOutstandingBuffers + numBuffersRequested > camera_stream::max_buffers ||
numOutstandingBuffers + numCachedBuffers + numBuffersRequested >
camera_stream::max_buffers + maxNumCachedBuffers) {
ALOGV("%s: Already dequeued %zu(+%zu) output buffers and requesting %zu "
"(max is %d(+%zu)), waiting.", __FUNCTION__, numOutstandingBuffers,
numCachedBuffers, numBuffersRequested, camera_stream::max_buffers,
maxNumCachedBuffers);
nsecs_t waitStart = systemTime(SYSTEM_TIME_MONOTONIC);
if (waitBufferTimeout < kWaitForBufferDuration) {
waitBufferTimeout = kWaitForBufferDuration;
}
res = mOutputBufferReturnedSignal.waitRelative(mLock, waitBufferTimeout);
nsecs_t waitEnd = systemTime(SYSTEM_TIME_MONOTONIC);
mBufferLimitLatency.add(waitStart, waitEnd);
if (res != OK) {
if (res == TIMED_OUT) {
ALOGE("%s: wait for output buffer return timed out after %lldms (max_buffers %d)",
__FUNCTION__, waitBufferTimeout / 1000000LL,
camera_stream::max_buffers);
}
return res;
}
size_t updatedNumOutstandingBuffers = getHandoutOutputBufferCountLocked();
size_t updatedNumCachedBuffers = getCachedOutputBufferCountLocked();
if (updatedNumOutstandingBuffers >= numOutstandingBuffers &&
updatedNumCachedBuffers == numCachedBuffers) {
ALOGE("%s: outstanding buffer count goes from %zu to %zu, "
"getBuffer(s) call must not run in parallel!", __FUNCTION__,
numOutstandingBuffers, updatedNumOutstandingBuffers);
return INVALID_OPERATION;
}
numOutstandingBuffers = updatedNumOutstandingBuffers;
numCachedBuffers = updatedNumCachedBuffers;
}
res = getBuffersLocked(buffers);
if (res == OK) {
for (auto& outstandingBuffer : *buffers) {
camera_stream_buffer* buffer = outstandingBuffer.outBuffer;
fireBufferListenersLocked(*buffer, /*acquired*/true, /*output*/true);
if (buffer->buffer) {
Mutex::Autolock l(mOutstandingBuffersLock);
mOutstandingBuffers.push_back(*buffer->buffer);
}
}
}
return res;
}
void Camera3Stream::queueHDRMetadata(buffer_handle_t buffer, sp<ANativeWindow>& anw,
int64_t dynamicRangeProfile) {
auto& mapper = GraphicBufferMapper::get();
switch (dynamicRangeProfile) {
case ANDROID_REQUEST_AVAILABLE_DYNAMIC_RANGE_PROFILES_MAP_HDR10: {
std::optional<ui::Smpte2086> smpte2086;
auto res = mapper.getSmpte2086(buffer, &smpte2086);
if ((res == OK) && smpte2086.has_value()) {
const auto& metaValue = smpte2086.value();
android_smpte2086_metadata meta = {
.displayPrimaryRed.x = metaValue.primaryRed.x,
.displayPrimaryRed.y = metaValue.primaryRed.y,
.displayPrimaryGreen.x = metaValue.primaryGreen.x,
.displayPrimaryGreen.y = metaValue.primaryGreen.y,
.displayPrimaryBlue.x = metaValue.primaryBlue.x,
.displayPrimaryBlue.y = metaValue.primaryBlue.y,
.whitePoint.x = metaValue.whitePoint.x,
.whitePoint.y = metaValue.whitePoint.y,
.maxLuminance = metaValue.maxLuminance,
.minLuminance = metaValue.minLuminance};
native_window_set_buffers_smpte2086_metadata(anw.get(), &meta);
} else {
ALOGE("%s Couldn't retrieve Smpte2086 metadata %s (%d)",
__FUNCTION__, strerror(-res), res);
}
break;
}
case ANDROID_REQUEST_AVAILABLE_DYNAMIC_RANGE_PROFILES_MAP_HDR10_PLUS: {
std::optional<std::vector<uint8_t>> smpte2094_40;
auto res = mapper.getSmpte2094_40(buffer, &smpte2094_40);
if ((res == OK) && smpte2094_40.has_value()) {
native_window_set_buffers_hdr10_plus_metadata(anw.get(),
smpte2094_40.value().size(), smpte2094_40.value().data());
} else {
ALOGE("%s Couldn't retrieve Smpte2094_40 metadata %s (%d)",
__FUNCTION__, strerror(-res), res);
}
break;
}
default:
// No-op
break;
}
}
}; // namespace camera3
}; // namespace android