blob: 54dc2bc35ca95c7ca7ef5328fc7534dd7dc70c64 [file] [log] [blame]
/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "system/graphics-base-v1.0.h"
#include "system/graphics-base-v1.1.h"
#define LOG_TAG "CameraProviderManager"
#define ATRACE_TAG ATRACE_TAG_CAMERA
//#define LOG_NDEBUG 0
#include "CameraProviderManager.h"
#include <aidl/android/hardware/camera/device/ICameraDevice.h>
#include <algorithm>
#include <chrono>
#include "common/DepthPhotoProcessor.h"
#include "hidl/HidlProviderInfo.h"
#include "aidl/AidlProviderInfo.h"
#include <dlfcn.h>
#include <future>
#include <inttypes.h>
#include <android/binder_manager.h>
#include <android/hidl/manager/1.2/IServiceManager.h>
#include <hidl/ServiceManagement.h>
#include <com_android_internal_camera_flags.h>
#include <functional>
#include <camera_metadata_hidden.h>
#include <android-base/parseint.h>
#include <android-base/logging.h>
#include <cutils/properties.h>
#include <hwbinder/IPCThreadState.h>
#include <utils/Trace.h>
#include <ui/PublicFormat.h>
#include <camera/StringUtils.h>
#include "api2/HeicCompositeStream.h"
#include "device3/ZoomRatioMapper.h"
namespace android {
using namespace ::android::hardware::camera;
using namespace ::android::camera3;
using android::hardware::camera::common::V1_0::Status;
using namespace camera3::SessionConfigurationUtils;
using std::literals::chrono_literals::operator""s;
using hardware::camera2::utils::CameraIdAndSessionConfiguration;
namespace flags = com::android::internal::camera::flags;
namespace {
const bool kEnableLazyHal(property_get_bool("ro.camera.enableLazyHal", false));
const std::string kExternalProviderName = "external/0";
const std::string kVirtualProviderName = "virtual/0";
} // anonymous namespace
const float CameraProviderManager::kDepthARTolerance = .1f;
const bool CameraProviderManager::kFrameworkJpegRDisabled =
property_get_bool("ro.camera.disableJpegR", false);
CameraProviderManager::HidlServiceInteractionProxyImpl
CameraProviderManager::sHidlServiceInteractionProxy{};
CameraProviderManager::AidlServiceInteractionProxyImpl
CameraProviderManager::sAidlServiceInteractionProxy{};
CameraProviderManager::~CameraProviderManager() {
}
const char* FrameworkTorchStatusToString(const TorchModeStatus& s) {
switch (s) {
case TorchModeStatus::NOT_AVAILABLE:
return "NOT_AVAILABLE";
case TorchModeStatus::AVAILABLE_OFF:
return "AVAILABLE_OFF";
case TorchModeStatus::AVAILABLE_ON:
return "AVAILABLE_ON";
}
ALOGW("Unexpected HAL torch mode status code %d", s);
return "UNKNOWN_STATUS";
}
const char* FrameworkDeviceStatusToString(const CameraDeviceStatus& s) {
switch (s) {
case CameraDeviceStatus::NOT_PRESENT:
return "NOT_PRESENT";
case CameraDeviceStatus::PRESENT:
return "PRESENT";
case CameraDeviceStatus::ENUMERATING:
return "ENUMERATING";
}
ALOGW("Unexpected HAL device status code %d", s);
return "UNKNOWN_STATUS";
}
hardware::hidl_vec<hardware::hidl_string>
CameraProviderManager::HidlServiceInteractionProxyImpl::listServices() {
hardware::hidl_vec<hardware::hidl_string> ret;
auto manager = hardware::defaultServiceManager1_2();
if (manager != nullptr) {
manager->listManifestByInterface(provider::V2_4::ICameraProvider::descriptor,
[&ret](const hardware::hidl_vec<hardware::hidl_string> &registered) {
ret = registered;
});
}
return ret;
}
status_t CameraProviderManager::tryToInitAndAddHidlProvidersLocked(
HidlServiceInteractionProxy *hidlProxy) {
mHidlServiceProxy = hidlProxy;
// Registering will trigger notifications for all already-known providers
bool success = mHidlServiceProxy->registerForNotifications(
/* instance name, empty means no filter */ "",
this);
if (!success) {
ALOGE("%s: Unable to register with hardware service manager for notifications "
"about camera providers", __FUNCTION__);
return INVALID_OPERATION;
}
for (const auto& instance : mHidlServiceProxy->listServices()) {
this->addHidlProviderLocked(instance);
}
return OK;
}
std::shared_ptr<aidl::android::hardware::camera::provider::ICameraProvider>
CameraProviderManager::AidlServiceInteractionProxyImpl::getAidlService(
const std::string& serviceName) {
using aidl::android::hardware::camera::provider::ICameraProvider;
AIBinder* binder = nullptr;
if (flags::lazy_aidl_wait_for_service()) {
binder = AServiceManager_waitForService(serviceName.c_str());
} else {
binder = AServiceManager_getService(serviceName.c_str());
}
if (binder == nullptr) {
ALOGD("%s: AIDL Camera provider HAL '%s' is not actually available", __FUNCTION__,
serviceName.c_str());
return nullptr;
}
std::shared_ptr<ICameraProvider> interface =
ICameraProvider::fromBinder(ndk::SpAIBinder(binder));
return interface;
};
static std::string getFullAidlProviderName(const std::string instance) {
std::string aidlHalServiceDescriptor =
std::string(aidl::android::hardware::camera::provider::ICameraProvider::descriptor);
return aidlHalServiceDescriptor + "/" + instance;
}
status_t CameraProviderManager::tryToAddAidlProvidersLocked() {
const char * aidlHalServiceDescriptor =
aidl::android::hardware::camera::provider::ICameraProvider::descriptor;
auto sm = defaultServiceManager();
auto aidlProviders = sm->getDeclaredInstances(
String16(aidlHalServiceDescriptor));
if (isVirtualCameraHalEnabled()) {
// Virtual Camera provider is not declared in the VINTF manifest so we
// manually add it if the binary is present.
aidlProviders.push_back(String16(kVirtualProviderName.c_str()));
}
for (const auto &aidlInstance : aidlProviders) {
std::string aidlServiceName =
getFullAidlProviderName(toStdString(aidlInstance));
auto res = sm->registerForNotifications(String16(aidlServiceName.c_str()), this);
if (res != OK) {
ALOGE("%s Unable to register for notifications with AIDL service manager",
__FUNCTION__);
return res;
}
addAidlProviderLocked(aidlServiceName);
}
return OK;
}
status_t CameraProviderManager::initialize(wp<CameraProviderManager::StatusListener> listener,
HidlServiceInteractionProxy* hidlProxy, AidlServiceInteractionProxy* aidlProxy) {
std::lock_guard<std::mutex> lock(mInterfaceMutex);
if (hidlProxy == nullptr) {
ALOGE("%s: No valid service Hidl interaction proxy provided", __FUNCTION__);
return BAD_VALUE;
}
if (aidlProxy == nullptr) {
ALOGE("%s: No valid service Aidl interaction proxy provided", __FUNCTION__);
return BAD_VALUE;
}
mAidlServiceProxy = aidlProxy;
mListener = listener;
mDeviceState = 0;
auto res = tryToInitAndAddHidlProvidersLocked(hidlProxy);
if (res != OK) {
// Logging done in called function;
return res;
}
res = tryToAddAidlProvidersLocked();
IPCThreadState::self()->flushCommands();
return res;
}
std::pair<int, int> CameraProviderManager::getCameraCount() const {
std::lock_guard<std::mutex> lock(mInterfaceMutex);
int systemCameraCount = 0;
int publicCameraCount = 0;
for (auto& provider : mProviders) {
for (auto &id : provider->mUniqueCameraIds) {
SystemCameraKind deviceKind = SystemCameraKind::PUBLIC;
if (getSystemCameraKindLocked(id, &deviceKind) != OK) {
ALOGE("%s: Invalid camera id %s, skipping", __FUNCTION__, id.c_str());
continue;
}
switch(deviceKind) {
case SystemCameraKind::PUBLIC:
publicCameraCount++;
break;
case SystemCameraKind::SYSTEM_ONLY_CAMERA:
systemCameraCount++;
break;
default:
break;
}
}
}
return std::make_pair(systemCameraCount, publicCameraCount);
}
std::vector<std::string> CameraProviderManager::getCameraDeviceIds(std::unordered_map<
std::string, std::set<std::string>>* unavailablePhysicalIds) const {
std::lock_guard<std::mutex> lock(mInterfaceMutex);
std::vector<std::string> deviceIds;
for (auto& provider : mProviders) {
for (auto& id : provider->mUniqueCameraIds) {
deviceIds.push_back(id);
if (unavailablePhysicalIds != nullptr &&
provider->mUnavailablePhysicalCameras.count(id) > 0) {
(*unavailablePhysicalIds)[id] = provider->mUnavailablePhysicalCameras.at(id);
}
}
}
return deviceIds;
}
void CameraProviderManager::collectDeviceIdsLocked(const std::vector<std::string> deviceIds,
std::vector<std::string>& publicDeviceIds,
std::vector<std::string>& systemDeviceIds) const {
for (auto &deviceId : deviceIds) {
SystemCameraKind deviceKind = SystemCameraKind::PUBLIC;
if (getSystemCameraKindLocked(deviceId, &deviceKind) != OK) {
ALOGE("%s: Invalid camera id %s, skipping", __FUNCTION__, deviceId.c_str());
continue;
}
if (deviceKind == SystemCameraKind::SYSTEM_ONLY_CAMERA) {
systemDeviceIds.push_back(deviceId);
} else {
publicDeviceIds.push_back(deviceId);
}
}
}
std::vector<std::string> CameraProviderManager::getAPI1CompatibleCameraDeviceIds() const {
std::lock_guard<std::mutex> lock(mInterfaceMutex);
std::vector<std::string> publicDeviceIds;
std::vector<std::string> systemDeviceIds;
std::vector<std::string> deviceIds;
for (auto& provider : mProviders) {
std::vector<std::string> providerDeviceIds = provider->mUniqueAPI1CompatibleCameraIds;
// Secure cameras should not be exposed through camera 1 api
providerDeviceIds.erase(std::remove_if(providerDeviceIds.begin(), providerDeviceIds.end(),
[this](const std::string& s) {
SystemCameraKind deviceKind = SystemCameraKind::PUBLIC;
if (getSystemCameraKindLocked(s, &deviceKind) != OK) {
ALOGE("%s: Invalid camera id %s, skipping", __FUNCTION__, s.c_str());
return true;
}
return deviceKind == SystemCameraKind::HIDDEN_SECURE_CAMERA;}),
providerDeviceIds.end());
// API1 app doesn't handle logical and physical camera devices well. So
// for each camera facing, only take the first id advertised by HAL in
// all [logical, physical1, physical2, ...] id combos, and filter out the rest.
filterLogicalCameraIdsLocked(providerDeviceIds);
collectDeviceIdsLocked(providerDeviceIds, publicDeviceIds, systemDeviceIds);
}
auto sortFunc =
[](const std::string& a, const std::string& b) -> bool {
uint32_t aUint = 0, bUint = 0;
bool aIsUint = base::ParseUint(a, &aUint);
bool bIsUint = base::ParseUint(b, &bUint);
// Uint device IDs first
if (aIsUint && bIsUint) {
return aUint < bUint;
} else if (aIsUint) {
return true;
} else if (bIsUint) {
return false;
}
// Simple string compare if both id are not uint
return a < b;
};
// We put device ids for system cameras at the end since they will be pared
// off for processes not having system camera permissions.
std::sort(publicDeviceIds.begin(), publicDeviceIds.end(), sortFunc);
std::sort(systemDeviceIds.begin(), systemDeviceIds.end(), sortFunc);
deviceIds.insert(deviceIds.end(), publicDeviceIds.begin(), publicDeviceIds.end());
deviceIds.insert(deviceIds.end(), systemDeviceIds.begin(), systemDeviceIds.end());
return deviceIds;
}
bool CameraProviderManager::isValidDeviceLocked(const std::string &id, uint16_t majorVersion,
IPCTransport transport) const {
for (auto& provider : mProviders) {
IPCTransport providerTransport = provider->getIPCTransport();
for (auto& deviceInfo : provider->mDevices) {
if (deviceInfo->mId == id && deviceInfo->mVersion.get_major() == majorVersion &&
transport == providerTransport) {
return true;
}
}
}
return false;
}
bool CameraProviderManager::hasFlashUnit(const std::string &id) const {
std::lock_guard<std::mutex> lock(mInterfaceMutex);
auto deviceInfo = findDeviceInfoLocked(id);
if (deviceInfo == nullptr) return false;
return deviceInfo->hasFlashUnit();
}
bool CameraProviderManager::supportNativeZoomRatio(const std::string &id) const {
std::lock_guard<std::mutex> lock(mInterfaceMutex);
auto deviceInfo = findDeviceInfoLocked(id);
if (deviceInfo == nullptr) return false;
return deviceInfo->supportNativeZoomRatio();
}
bool CameraProviderManager::isCompositeJpegRDisabled(const std::string &id) const {
std::lock_guard<std::mutex> lock(mInterfaceMutex);
return isCompositeJpegRDisabledLocked(id);
}
bool CameraProviderManager::isCompositeJpegRDisabledLocked(const std::string &id) const {
auto deviceInfo = findDeviceInfoLocked(id);
if (deviceInfo == nullptr) return false;
return deviceInfo->isCompositeJpegRDisabled();
}
status_t CameraProviderManager::getResourceCost(const std::string &id,
CameraResourceCost* cost) const {
std::lock_guard<std::mutex> lock(mInterfaceMutex);
auto deviceInfo = findDeviceInfoLocked(id);
if (deviceInfo == nullptr) return NAME_NOT_FOUND;
*cost = deviceInfo->mResourceCost;
return OK;
}
status_t CameraProviderManager::getCameraInfo(const std::string &id,
bool overrideToPortrait, int *portraitRotation, hardware::CameraInfo* info) const {
std::lock_guard<std::mutex> lock(mInterfaceMutex);
auto deviceInfo = findDeviceInfoLocked(id);
if (deviceInfo == nullptr) return NAME_NOT_FOUND;
return deviceInfo->getCameraInfo(overrideToPortrait, portraitRotation, info);
}
status_t CameraProviderManager::isSessionConfigurationSupported(const std::string& id,
const SessionConfiguration &configuration, bool overrideForPerfClass,
metadataGetter getMetadata, bool *status /*out*/) const {
std::lock_guard<std::mutex> lock(mInterfaceMutex);
auto deviceInfo = findDeviceInfoLocked(id);
if (deviceInfo == nullptr) {
return NAME_NOT_FOUND;
}
return deviceInfo->isSessionConfigurationSupported(configuration,
overrideForPerfClass, getMetadata, status);
}
status_t CameraProviderManager::getCameraIdIPCTransport(const std::string &id,
IPCTransport *providerTransport) const {
std::lock_guard<std::mutex> lock(mInterfaceMutex);
auto deviceInfo = findDeviceInfoLocked(id);
if (deviceInfo == nullptr) {
return NAME_NOT_FOUND;
}
sp<ProviderInfo> parentProvider = deviceInfo->mParentProvider.promote();
if (parentProvider == nullptr) {
return DEAD_OBJECT;
}
*providerTransport = parentProvider->getIPCTransport();
return OK;
}
status_t CameraProviderManager::getCameraCharacteristics(const std::string &id,
bool overrideForPerfClass, CameraMetadata* characteristics,
bool overrideToPortrait) const {
std::lock_guard<std::mutex> lock(mInterfaceMutex);
return getCameraCharacteristicsLocked(id, overrideForPerfClass, characteristics,
overrideToPortrait);
}
status_t CameraProviderManager::getHighestSupportedVersion(const std::string &id,
hardware::hidl_version *v, IPCTransport *transport) {
if (v == nullptr || transport == nullptr) {
return BAD_VALUE;
}
std::lock_guard<std::mutex> lock(mInterfaceMutex);
hardware::hidl_version maxVersion{0,0};
bool found = false;
IPCTransport providerTransport = IPCTransport::INVALID;
for (auto& provider : mProviders) {
for (auto& deviceInfo : provider->mDevices) {
if (deviceInfo->mId == id) {
if (deviceInfo->mVersion > maxVersion) {
maxVersion = deviceInfo->mVersion;
providerTransport = provider->getIPCTransport();
found = true;
}
}
}
}
if (!found || providerTransport == IPCTransport::INVALID) {
return NAME_NOT_FOUND;
}
*v = maxVersion;
*transport = providerTransport;
return OK;
}
status_t CameraProviderManager::getTorchStrengthLevel(const std::string &id,
int32_t* torchStrength /*out*/) {
std::lock_guard<std::mutex> lock(mInterfaceMutex);
auto deviceInfo = findDeviceInfoLocked(id);
if (deviceInfo == nullptr) return NAME_NOT_FOUND;
return deviceInfo->getTorchStrengthLevel(torchStrength);
}
status_t CameraProviderManager::turnOnTorchWithStrengthLevel(const std::string &id,
int32_t torchStrength) {
std::lock_guard<std::mutex> lock(mInterfaceMutex);
auto deviceInfo = findDeviceInfoLocked(id);
if (deviceInfo == nullptr) return NAME_NOT_FOUND;
return deviceInfo->turnOnTorchWithStrengthLevel(torchStrength);
}
bool CameraProviderManager::shouldSkipTorchStrengthUpdate(const std::string &id,
int32_t torchStrength) const {
std::lock_guard<std::mutex> lock(mInterfaceMutex);
auto deviceInfo = findDeviceInfoLocked(id);
if (deviceInfo == nullptr) return NAME_NOT_FOUND;
if (deviceInfo->mTorchStrengthLevel == torchStrength) {
ALOGV("%s: Skipping torch strength level updates prev_level: %d, new_level: %d",
__FUNCTION__, deviceInfo->mTorchStrengthLevel, torchStrength);
return true;
}
return false;
}
int32_t CameraProviderManager::getTorchDefaultStrengthLevel(const std::string &id) const {
std::lock_guard<std::mutex> lock(mInterfaceMutex);
auto deviceInfo = findDeviceInfoLocked(id);
if (deviceInfo == nullptr) return NAME_NOT_FOUND;
return deviceInfo->mTorchDefaultStrengthLevel;
}
bool CameraProviderManager::supportSetTorchMode(const std::string &id) const {
std::lock_guard<std::mutex> lock(mInterfaceMutex);
for (auto& provider : mProviders) {
for (auto& deviceInfo : provider->mDevices) {
if (deviceInfo->mId == id) {
return provider->mSetTorchModeSupported;
}
}
}
return false;
}
template <class ProviderInfoType, class HalCameraProviderType>
status_t CameraProviderManager::setTorchModeT(sp<ProviderInfo> &parentProvider,
std::shared_ptr<HalCameraProvider> *halCameraProvider) {
if (halCameraProvider == nullptr) {
return BAD_VALUE;
}
ProviderInfoType *idlProviderInfo = static_cast<ProviderInfoType *>(parentProvider.get());
auto idlInterface = idlProviderInfo->startProviderInterface();
if (idlInterface == nullptr) {
return DEAD_OBJECT;
}
*halCameraProvider =
std::make_shared<HalCameraProviderType>(idlInterface, idlInterface->descriptor);
return OK;
}
status_t CameraProviderManager::setTorchMode(const std::string &id, bool enabled) {
std::lock_guard<std::mutex> lock(mInterfaceMutex);
auto deviceInfo = findDeviceInfoLocked(id);
if (deviceInfo == nullptr) return NAME_NOT_FOUND;
// Pass the camera ID to start interface so that it will save it to the map of ICameraProviders
// that are currently in use.
sp<ProviderInfo> parentProvider = deviceInfo->mParentProvider.promote();
if (parentProvider == nullptr) {
return DEAD_OBJECT;
}
std::shared_ptr<HalCameraProvider> halCameraProvider = nullptr;
IPCTransport providerTransport = parentProvider->getIPCTransport();
status_t res = OK;
if (providerTransport == IPCTransport::HIDL) {
res = setTorchModeT<HidlProviderInfo, HidlHalCameraProvider>(parentProvider,
&halCameraProvider);
if (res != OK) {
return res;
}
} else if (providerTransport == IPCTransport::AIDL) {
res = setTorchModeT<AidlProviderInfo, AidlHalCameraProvider>(parentProvider,
&halCameraProvider);
if (res != OK) {
return res;
}
} else {
ALOGE("%s Invalid provider transport", __FUNCTION__);
return INVALID_OPERATION;
}
saveRef(DeviceMode::TORCH, deviceInfo->mId, halCameraProvider);
return deviceInfo->setTorchMode(enabled);
}
status_t CameraProviderManager::setUpVendorTags() {
sp<VendorTagDescriptorCache> tagCache = new VendorTagDescriptorCache();
for (auto& provider : mProviders) {
tagCache->addVendorDescriptor(provider->mProviderTagid, provider->mVendorTagDescriptor);
}
VendorTagDescriptorCache::setAsGlobalVendorTagCache(tagCache);
return OK;
}
sp<CameraProviderManager::ProviderInfo> CameraProviderManager::startExternalLazyProvider() const {
std::lock_guard<std::mutex> providerLock(mProviderLifecycleLock);
std::lock_guard<std::mutex> lock(mInterfaceMutex);
for (const auto& providerInfo : mProviders) {
if (providerInfo->isExternalLazyHAL()) {
if (!providerInfo->successfullyStartedProviderInterface()) {
return nullptr;
} else {
return providerInfo;
}
}
}
return nullptr;
}
status_t CameraProviderManager::notifyUsbDeviceEvent(int32_t eventId,
const std::string& usbDeviceId) {
if (!kEnableLazyHal) {
return OK;
}
ALOGV("notifySystemEvent: %d usbDeviceId : %s", eventId, usbDeviceId.c_str());
if (eventId == android::hardware::ICameraService::EVENT_USB_DEVICE_ATTACHED) {
sp<ProviderInfo> externalProvider = startExternalLazyProvider();
if (externalProvider != nullptr) {
auto usbDevices = mExternalUsbDevicesForProvider.first;
usbDevices.push_back(usbDeviceId);
mExternalUsbDevicesForProvider = {usbDevices, externalProvider};
}
} else if (eventId
== android::hardware::ICameraService::EVENT_USB_DEVICE_DETACHED) {
usbDeviceDetached(usbDeviceId);
}
return OK;
}
status_t CameraProviderManager::usbDeviceDetached(const std::string &usbDeviceId) {
std::lock_guard<std::mutex> providerLock(mProviderLifecycleLock);
std::lock_guard<std::mutex> interfaceLock(mInterfaceMutex);
auto usbDevices = mExternalUsbDevicesForProvider.first;
auto foundId = std::find(usbDevices.begin(), usbDevices.end(), usbDeviceId);
if (foundId != usbDevices.end()) {
sp<ProviderInfo> providerInfo = mExternalUsbDevicesForProvider.second;
if (providerInfo == nullptr) {
ALOGE("%s No valid external provider for USB device: %s",
__FUNCTION__,
usbDeviceId.c_str());
mExternalUsbDevicesForProvider = {std::vector<std::string>(), nullptr};
return DEAD_OBJECT;
} else {
mInterfaceMutex.unlock();
providerInfo->removeAllDevices();
mInterfaceMutex.lock();
mExternalUsbDevicesForProvider = {std::vector<std::string>(), nullptr};
}
} else {
return DEAD_OBJECT;
}
return OK;
}
status_t CameraProviderManager::notifyDeviceStateChange(int64_t newState) {
std::lock_guard<std::mutex> lock(mInterfaceMutex);
mDeviceState = newState;
status_t res = OK;
// Make a copy of mProviders because we unlock mInterfaceMutex temporarily
// within the loop. It's possible that during the time mInterfaceMutex is
// unlocked, mProviders has changed.
auto providers = mProviders;
for (auto& provider : providers) {
ALOGV("%s: Notifying %s for new state 0x%" PRIx64,
__FUNCTION__, provider->mProviderName.c_str(), newState);
// b/199240726 Camera providers can for example try to add/remove
// camera devices as part of the state change notification. Holding
// 'mInterfaceMutex' while calling 'notifyDeviceStateChange' can
// result in a recursive deadlock.
mInterfaceMutex.unlock();
status_t singleRes = provider->notifyDeviceStateChange(mDeviceState);
mInterfaceMutex.lock();
if (singleRes != OK) {
ALOGE("%s: Unable to notify provider %s about device state change",
__FUNCTION__,
provider->mProviderName.c_str());
res = singleRes;
// continue to do the rest of the providers instead of returning now
}
provider->notifyDeviceInfoStateChangeLocked(mDeviceState);
}
return res;
}
status_t CameraProviderManager::openAidlSession(const std::string &id,
const std::shared_ptr<
aidl::android::hardware::camera::device::ICameraDeviceCallback>& callback,
/*out*/
std::shared_ptr<aidl::android::hardware::camera::device::ICameraDeviceSession> *session) {
std::lock_guard<std::mutex> lock(mInterfaceMutex);
auto deviceInfo = findDeviceInfoLocked(id);
if (deviceInfo == nullptr) return NAME_NOT_FOUND;
auto *aidlDeviceInfo3 = static_cast<AidlProviderInfo::AidlDeviceInfo3*>(deviceInfo);
sp<ProviderInfo> parentProvider = deviceInfo->mParentProvider.promote();
if (parentProvider == nullptr) {
return DEAD_OBJECT;
}
auto provider =
static_cast<AidlProviderInfo *>(parentProvider.get())->startProviderInterface();
if (provider == nullptr) {
return DEAD_OBJECT;
}
std::shared_ptr<HalCameraProvider> halCameraProvider =
std::make_shared<AidlHalCameraProvider>(provider, provider->descriptor);
saveRef(DeviceMode::CAMERA, id, halCameraProvider);
auto interface = aidlDeviceInfo3->startDeviceInterface();
if (interface == nullptr) {
removeRef(DeviceMode::CAMERA, id);
return DEAD_OBJECT;
}
auto ret = interface->open(callback, session);
if (!ret.isOk()) {
removeRef(DeviceMode::CAMERA, id);
ALOGE("%s: Transaction error opening a session for camera device %s: %s",
__FUNCTION__, id.c_str(), ret.getMessage());
return AidlProviderInfo::mapToStatusT(ret);
}
return OK;
}
status_t CameraProviderManager::openAidlInjectionSession(const std::string &id,
const std::shared_ptr<
aidl::android::hardware::camera::device::ICameraDeviceCallback>& callback,
/*out*/
std::shared_ptr<
aidl::android::hardware::camera::device::ICameraInjectionSession> *session) {
std::lock_guard<std::mutex> lock(mInterfaceMutex);
auto deviceInfo = findDeviceInfoLocked(id);
if (deviceInfo == nullptr) return NAME_NOT_FOUND;
auto *aidlDeviceInfo3 = static_cast<AidlProviderInfo::AidlDeviceInfo3*>(deviceInfo);
sp<ProviderInfo> parentProvider = deviceInfo->mParentProvider.promote();
if (parentProvider == nullptr) {
return DEAD_OBJECT;
}
auto provider =
static_cast<AidlProviderInfo *>(parentProvider.get())->startProviderInterface();
if (provider == nullptr) {
return DEAD_OBJECT;
}
std::shared_ptr<HalCameraProvider> halCameraProvider =
std::make_shared<AidlHalCameraProvider>(provider, provider->descriptor);
saveRef(DeviceMode::CAMERA, id, halCameraProvider);
auto interface = aidlDeviceInfo3->startDeviceInterface();
if (interface == nullptr) {
return DEAD_OBJECT;
}
auto ret = interface->openInjectionSession(callback, session);
if (!ret.isOk()) {
removeRef(DeviceMode::CAMERA, id);
ALOGE("%s: Transaction error opening a session for camera device %s: %s",
__FUNCTION__, id.c_str(), ret.getMessage());
return DEAD_OBJECT;
}
return OK;
}
status_t CameraProviderManager::openHidlSession(const std::string &id,
const sp<device::V3_2::ICameraDeviceCallback>& callback,
/*out*/
sp<device::V3_2::ICameraDeviceSession> *session) {
std::lock_guard<std::mutex> lock(mInterfaceMutex);
auto deviceInfo = findDeviceInfoLocked(id);
if (deviceInfo == nullptr) return NAME_NOT_FOUND;
auto *hidlDeviceInfo3 = static_cast<HidlProviderInfo::HidlDeviceInfo3*>(deviceInfo);
sp<ProviderInfo> parentProvider = deviceInfo->mParentProvider.promote();
if (parentProvider == nullptr) {
return DEAD_OBJECT;
}
const sp<provider::V2_4::ICameraProvider> provider =
static_cast<HidlProviderInfo *>(parentProvider.get())->startProviderInterface();
if (provider == nullptr) {
return DEAD_OBJECT;
}
std::shared_ptr<HalCameraProvider> halCameraProvider =
std::make_shared<HidlHalCameraProvider>(provider, provider->descriptor);
saveRef(DeviceMode::CAMERA, id, halCameraProvider);
Status status;
hardware::Return<void> ret;
auto interface = hidlDeviceInfo3->startDeviceInterface();
if (interface == nullptr) {
return DEAD_OBJECT;
}
ret = interface->open(callback, [&status, &session]
(Status s, const sp<device::V3_2::ICameraDeviceSession>& cameraSession) {
status = s;
if (status == Status::OK) {
*session = cameraSession;
}
});
if (!ret.isOk()) {
removeRef(DeviceMode::CAMERA, id);
ALOGE("%s: Transaction error opening a session for camera device %s: %s",
__FUNCTION__, id.c_str(), ret.description().c_str());
return DEAD_OBJECT;
}
return HidlProviderInfo::mapToStatusT(status);
}
void CameraProviderManager::saveRef(DeviceMode usageType, const std::string &cameraId,
std::shared_ptr<HalCameraProvider> provider) {
if (!kEnableLazyHal) {
return;
}
ALOGV("Saving camera provider %s for camera device %s", provider->mDescriptor.c_str(),
cameraId.c_str());
std::lock_guard<std::mutex> lock(mProviderInterfaceMapLock);
std::unordered_map<std::string, std::shared_ptr<HalCameraProvider>> *primaryMap, *alternateMap;
if (usageType == DeviceMode::TORCH) {
primaryMap = &mTorchProviderByCameraId;
alternateMap = &mCameraProviderByCameraId;
} else {
primaryMap = &mCameraProviderByCameraId;
alternateMap = &mTorchProviderByCameraId;
}
(*primaryMap)[cameraId] = provider;
auto search = alternateMap->find(cameraId);
if (search != alternateMap->end()) {
ALOGW("%s: Camera device %s is using both torch mode and camera mode simultaneously. "
"That should not be possible", __FUNCTION__, cameraId.c_str());
}
ALOGV("%s: Camera device %s connected", __FUNCTION__, cameraId.c_str());
}
void CameraProviderManager::removeRef(DeviceMode usageType, const std::string &cameraId) {
if (!kEnableLazyHal) {
return;
}
ALOGV("Removing camera device %s", cameraId.c_str());
std::unordered_map<std::string, std::shared_ptr<HalCameraProvider>> *providerMap;
if (usageType == DeviceMode::TORCH) {
providerMap = &mTorchProviderByCameraId;
} else {
providerMap = &mCameraProviderByCameraId;
}
std::lock_guard<std::mutex> lock(mProviderInterfaceMapLock);
auto search = providerMap->find(cameraId);
if (search != providerMap->end()) {
// Drop the reference to this ICameraProvider. This is safe to do immediately (without an
// added delay) because hwservicemanager guarantees to hold the reference for at least five
// more seconds. We depend on this behavior so that if the provider is unreferenced and
// then referenced again quickly, we do not let the HAL exit and then need to immediately
// restart it. An example when this could happen is switching from a front-facing to a
// rear-facing camera. If the HAL were to exit during the camera switch, the camera could
// appear janky to the user.
providerMap->erase(cameraId);
IPCThreadState::self()->flushCommands();
} else {
ALOGE("%s: Asked to remove reference for camera %s, but no reference to it was found. This "
"could mean removeRef was called twice for the same camera ID.", __FUNCTION__,
cameraId.c_str());
}
}
// We ignore sp<IBinder> param here since we need std::shared_ptr<...> which
// will be retrieved through the ndk api through addAidlProviderLocked ->
// tryToInitializeAidlProvider.
void CameraProviderManager::onServiceRegistration(const String16 &name, const sp<IBinder>&) {
status_t res = OK;
std::lock_guard<std::mutex> providerLock(mProviderLifecycleLock);
{
std::lock_guard<std::mutex> lock(mInterfaceMutex);
res = addAidlProviderLocked(toStdString(name));
}
sp<StatusListener> listener = getStatusListener();
if (nullptr != listener.get() && res == OK) {
listener->onNewProviderRegistered();
}
IPCThreadState::self()->flushCommands();
}
hardware::Return<void> CameraProviderManager::onRegistration(
const hardware::hidl_string& /*fqName*/,
const hardware::hidl_string& name,
bool preexisting) {
status_t res = OK;
std::lock_guard<std::mutex> providerLock(mProviderLifecycleLock);
{
std::lock_guard<std::mutex> lock(mInterfaceMutex);
res = addHidlProviderLocked(name, preexisting);
}
sp<StatusListener> listener = getStatusListener();
if (nullptr != listener.get() && res == OK) {
listener->onNewProviderRegistered();
}
IPCThreadState::self()->flushCommands();
return hardware::Return<void>();
}
status_t CameraProviderManager::dump(int fd, const Vector<String16>& args) {
std::lock_guard<std::mutex> lock(mInterfaceMutex);
for (auto& provider : mProviders) {
provider->dump(fd, args);
}
return OK;
}
void CameraProviderManager::ProviderInfo::initializeProviderInfoCommon(
const std::vector<std::string> &devices) {
for (auto& device : devices) {
std::string id;
status_t res = addDevice(device, CameraDeviceStatus::PRESENT, &id);
if (res != OK) {
ALOGE("%s: Unable to enumerate camera device '%s': %s (%d)",
__FUNCTION__, device.c_str(), strerror(-res), res);
continue;
}
}
ALOGI("Camera provider %s ready with %zu camera devices",
mProviderName.c_str(), mDevices.size());
// Process cached status callbacks
{
std::lock_guard<std::mutex> lock(mInitLock);
for (auto& statusInfo : mCachedStatus) {
std::string id, physicalId;
if (statusInfo.isPhysicalCameraStatus) {
physicalCameraDeviceStatusChangeLocked(&id, &physicalId,
statusInfo.cameraId, statusInfo.physicalCameraId, statusInfo.status);
} else {
cameraDeviceStatusChangeLocked(&id, statusInfo.cameraId, statusInfo.status);
}
}
mCachedStatus.clear();
mInitialized = true;
}
}
CameraProviderManager::ProviderInfo::DeviceInfo* CameraProviderManager::findDeviceInfoLocked(
const std::string& id) const {
for (auto& provider : mProviders) {
using hardware::hidl_version;
IPCTransport transport = provider->getIPCTransport();
// AIDL min version starts at major: 1 minor: 1
hidl_version minVersion =
(transport == IPCTransport::HIDL) ? hidl_version{3, 2} : hidl_version{1, 1} ;
hidl_version maxVersion =
(transport == IPCTransport::HIDL) ? hidl_version{3, 7} : hidl_version{1000, 0};
for (auto& deviceInfo : provider->mDevices) {
if (deviceInfo->mId == id &&
minVersion <= deviceInfo->mVersion && maxVersion >= deviceInfo->mVersion) {
return deviceInfo.get();
}
}
}
return nullptr;
}
metadata_vendor_id_t CameraProviderManager::getProviderTagIdLocked(
const std::string& id) const {
metadata_vendor_id_t ret = CAMERA_METADATA_INVALID_VENDOR_ID;
std::lock_guard<std::mutex> lock(mInterfaceMutex);
for (auto& provider : mProviders) {
for (auto& deviceInfo : provider->mDevices) {
if (deviceInfo->mId == id) {
return provider->mProviderTagid;
}
}
}
return ret;
}
void CameraProviderManager::ProviderInfo::DeviceInfo3::queryPhysicalCameraIds() {
camera_metadata_entry_t entryCap;
entryCap = mCameraCharacteristics.find(ANDROID_REQUEST_AVAILABLE_CAPABILITIES);
for (size_t i = 0; i < entryCap.count; ++i) {
uint8_t capability = entryCap.data.u8[i];
if (capability == ANDROID_REQUEST_AVAILABLE_CAPABILITIES_LOGICAL_MULTI_CAMERA) {
mIsLogicalCamera = true;
break;
}
}
if (!mIsLogicalCamera) {
return;
}
camera_metadata_entry_t entryIds = mCameraCharacteristics.find(
ANDROID_LOGICAL_MULTI_CAMERA_PHYSICAL_IDS);
const uint8_t* ids = entryIds.data.u8;
size_t start = 0;
for (size_t i = 0; i < entryIds.count; ++i) {
if (ids[i] == '\0') {
if (start != i) {
mPhysicalIds.push_back((const char*)ids+start);
}
start = i+1;
}
}
}
SystemCameraKind CameraProviderManager::ProviderInfo::DeviceInfo3::getSystemCameraKind() {
camera_metadata_entry_t entryCap;
entryCap = mCameraCharacteristics.find(ANDROID_REQUEST_AVAILABLE_CAPABILITIES);
if (entryCap.count == 1 &&
entryCap.data.u8[0] == ANDROID_REQUEST_AVAILABLE_CAPABILITIES_SECURE_IMAGE_DATA) {
return SystemCameraKind::HIDDEN_SECURE_CAMERA;
}
// Go through the capabilities and check if it has
// ANDROID_REQUEST_AVAILABLE_CAPABILITIES_SYSTEM_CAMERA
for (size_t i = 0; i < entryCap.count; ++i) {
uint8_t capability = entryCap.data.u8[i];
if (capability == ANDROID_REQUEST_AVAILABLE_CAPABILITIES_SYSTEM_CAMERA) {
return SystemCameraKind::SYSTEM_ONLY_CAMERA;
}
}
return SystemCameraKind::PUBLIC;
}
void CameraProviderManager::ProviderInfo::DeviceInfo3::getSupportedSizes(
const CameraMetadata& ch, uint32_t tag, android_pixel_format_t format,
std::vector<std::tuple<size_t, size_t>> *sizes/*out*/) {
if (sizes == nullptr) {
return;
}
auto scalerDims = ch.find(tag);
if (scalerDims.count > 0) {
// Scaler entry contains 4 elements (format, width, height, type)
for (size_t i = 0; i < scalerDims.count; i += 4) {
if ((scalerDims.data.i32[i] == format) &&
(scalerDims.data.i32[i+3] ==
ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS_OUTPUT)) {
sizes->push_back(std::make_tuple(scalerDims.data.i32[i+1],
scalerDims.data.i32[i+2]));
}
}
}
}
void CameraProviderManager::ProviderInfo::DeviceInfo3::getSupportedDurations(
const CameraMetadata& ch, uint32_t tag, android_pixel_format_t format,
const std::vector<std::tuple<size_t, size_t>>& sizes,
std::vector<int64_t> *durations/*out*/) {
if (durations == nullptr) {
return;
}
auto availableDurations = ch.find(tag);
if (availableDurations.count > 0) {
// Duration entry contains 4 elements (format, width, height, duration)
for (const auto& size : sizes) {
int64_t width = std::get<0>(size);
int64_t height = std::get<1>(size);
for (size_t i = 0; i < availableDurations.count; i += 4) {
if ((availableDurations.data.i64[i] == format) &&
(availableDurations.data.i64[i+1] == width) &&
(availableDurations.data.i64[i+2] == height)) {
durations->push_back(availableDurations.data.i64[i+3]);
break;
}
}
}
}
}
void CameraProviderManager::ProviderInfo::DeviceInfo3::getSupportedDynamicDepthDurations(
const std::vector<int64_t>& depthDurations, const std::vector<int64_t>& blobDurations,
std::vector<int64_t> *dynamicDepthDurations /*out*/) {
if ((dynamicDepthDurations == nullptr) || (depthDurations.size() != blobDurations.size())) {
return;
}
// Unfortunately there is no direct way to calculate the dynamic depth stream duration.
// Processing time on camera service side can vary greatly depending on multiple
// variables which are not under our control. Make a guesstimate by taking the maximum
// corresponding duration value from depth and blob.
auto depthDuration = depthDurations.begin();
auto blobDuration = blobDurations.begin();
dynamicDepthDurations->reserve(depthDurations.size());
while ((depthDuration != depthDurations.end()) && (blobDuration != blobDurations.end())) {
dynamicDepthDurations->push_back(std::max(*depthDuration, *blobDuration));
depthDuration++; blobDuration++;
}
}
void CameraProviderManager::ProviderInfo::DeviceInfo3::getSupportedDynamicDepthSizes(
const std::vector<std::tuple<size_t, size_t>>& blobSizes,
const std::vector<std::tuple<size_t, size_t>>& depthSizes,
std::vector<std::tuple<size_t, size_t>> *dynamicDepthSizes /*out*/,
std::vector<std::tuple<size_t, size_t>> *internalDepthSizes /*out*/) {
if (dynamicDepthSizes == nullptr || internalDepthSizes == nullptr) {
return;
}
// The dynamic depth spec. does not mention how close the AR ratio should be.
// Try using something appropriate.
float ARTolerance = kDepthARTolerance;
for (const auto& blobSize : blobSizes) {
float jpegAR = static_cast<float> (std::get<0>(blobSize)) /
static_cast<float>(std::get<1>(blobSize));
bool found = false;
for (const auto& depthSize : depthSizes) {
if (depthSize == blobSize) {
internalDepthSizes->push_back(depthSize);
found = true;
break;
} else {
float depthAR = static_cast<float> (std::get<0>(depthSize)) /
static_cast<float>(std::get<1>(depthSize));
if (std::fabs(jpegAR - depthAR) <= ARTolerance) {
internalDepthSizes->push_back(depthSize);
found = true;
break;
}
}
}
if (found) {
dynamicDepthSizes->push_back(blobSize);
}
}
}
bool CameraProviderManager::isConcurrentDynamicRangeCaptureSupported(
const CameraMetadata& deviceInfo, int64_t profile, int64_t concurrentProfile) {
auto entry = deviceInfo.find(ANDROID_REQUEST_AVAILABLE_CAPABILITIES);
if (entry.count == 0) {
return false;
}
const auto it = std::find(entry.data.u8, entry.data.u8 + entry.count,
ANDROID_REQUEST_AVAILABLE_CAPABILITIES_DYNAMIC_RANGE_TEN_BIT);
if (it == entry.data.u8 + entry.count) {
return false;
}
entry = deviceInfo.find(ANDROID_REQUEST_AVAILABLE_DYNAMIC_RANGE_PROFILES_MAP);
if (entry.count == 0 || ((entry.count % 3) != 0)) {
return false;
}
for (size_t i = 0; i < entry.count; i += 3) {
if (entry.data.i64[i] == profile) {
if ((entry.data.i64[i+1] == 0) || (entry.data.i64[i+1] & concurrentProfile)) {
return true;
}
}
}
return false;
}
status_t CameraProviderManager::ProviderInfo::DeviceInfo3::deriveJpegRTags(bool maxResolution) {
if (kFrameworkJpegRDisabled || mCompositeJpegRDisabled) {
return OK;
}
const int32_t scalerSizesTag =
SessionConfigurationUtils::getAppropriateModeTag(
ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS, maxResolution);
const int32_t scalerMinFrameDurationsTag = SessionConfigurationUtils::getAppropriateModeTag(
ANDROID_SCALER_AVAILABLE_MIN_FRAME_DURATIONS, maxResolution);
const int32_t scalerStallDurationsTag =
SessionConfigurationUtils::getAppropriateModeTag(
ANDROID_SCALER_AVAILABLE_STALL_DURATIONS, maxResolution);
const int32_t jpegRSizesTag =
SessionConfigurationUtils::getAppropriateModeTag(
ANDROID_JPEGR_AVAILABLE_JPEG_R_STREAM_CONFIGURATIONS, maxResolution);
const int32_t jpegRStallDurationsTag =
SessionConfigurationUtils::getAppropriateModeTag(
ANDROID_JPEGR_AVAILABLE_JPEG_R_STALL_DURATIONS, maxResolution);
const int32_t jpegRMinFrameDurationsTag =
SessionConfigurationUtils::getAppropriateModeTag(
ANDROID_JPEGR_AVAILABLE_JPEG_R_MIN_FRAME_DURATIONS, maxResolution);
auto& c = mCameraCharacteristics;
std::vector<int32_t> supportedChTags;
auto chTags = c.find(ANDROID_REQUEST_AVAILABLE_CHARACTERISTICS_KEYS);
if (chTags.count == 0) {
ALOGE("%s: No supported camera characteristics keys!", __FUNCTION__);
return BAD_VALUE;
}
std::vector<std::tuple<size_t, size_t>> supportedP010Sizes, supportedBlobSizes;
auto capabilities = c.find(ANDROID_REQUEST_AVAILABLE_CAPABILITIES);
if (capabilities.count == 0) {
ALOGE("%s: Supported camera capabilities is empty!", __FUNCTION__);
return BAD_VALUE;
}
auto end = capabilities.data.u8 + capabilities.count;
bool isTenBitOutputSupported = std::find(capabilities.data.u8, end,
ANDROID_REQUEST_AVAILABLE_CAPABILITIES_DYNAMIC_RANGE_TEN_BIT) != end;
if (!isTenBitOutputSupported) {
// No 10-bit support, nothing more to do.
return OK;
}
if (!isConcurrentDynamicRangeCaptureSupported(c,
ANDROID_REQUEST_AVAILABLE_DYNAMIC_RANGE_PROFILES_MAP_HLG10,
ANDROID_REQUEST_AVAILABLE_DYNAMIC_RANGE_PROFILES_MAP_STANDARD) &&
!property_get_bool("ro.camera.enableCompositeAPI0JpegR", false)) {
// API0, P010 only Jpeg/R support is meant to be used only as a reference due to possible
// impact on quality and performance.
// This data path will be turned off by default and individual device builds must enable
// 'ro.camera.enableCompositeAPI0JpegR' in order to experiment using it.
mCompositeJpegRDisabled = true;
return OK;
}
getSupportedSizes(c, scalerSizesTag,
static_cast<android_pixel_format_t>(HAL_PIXEL_FORMAT_BLOB), &supportedBlobSizes);
getSupportedSizes(c, scalerSizesTag,
static_cast<android_pixel_format_t>(HAL_PIXEL_FORMAT_YCBCR_P010), &supportedP010Sizes);
auto it = supportedP010Sizes.begin();
while (it != supportedP010Sizes.end()) {
if (std::find(supportedBlobSizes.begin(), supportedBlobSizes.end(), *it) ==
supportedBlobSizes.end()) {
it = supportedP010Sizes.erase(it);
} else {
it++;
}
}
if (supportedP010Sizes.empty()) {
// Nothing to do in this case.
return OK;
}
std::vector<int32_t> jpegREntries;
for (const auto& it : supportedP010Sizes) {
int32_t entry[4] = {HAL_PIXEL_FORMAT_BLOB, static_cast<int32_t> (std::get<0>(it)),
static_cast<int32_t> (std::get<1>(it)),
ANDROID_JPEGR_AVAILABLE_JPEG_R_STREAM_CONFIGURATIONS_OUTPUT };
jpegREntries.insert(jpegREntries.end(), entry, entry + 4);
}
std::vector<int64_t> blobMinDurations, blobStallDurations;
std::vector<int64_t> jpegRMinDurations, jpegRStallDurations;
// We use the jpeg stall and min frame durations to approximate the respective jpeg/r
// durations.
getSupportedDurations(c, scalerMinFrameDurationsTag, HAL_PIXEL_FORMAT_BLOB,
supportedP010Sizes, &blobMinDurations);
getSupportedDurations(c, scalerStallDurationsTag, HAL_PIXEL_FORMAT_BLOB,
supportedP010Sizes, &blobStallDurations);
if (blobStallDurations.empty() || blobMinDurations.empty() ||
supportedP010Sizes.size() != blobMinDurations.size() ||
blobMinDurations.size() != blobStallDurations.size()) {
ALOGE("%s: Unexpected number of available blob durations! %zu vs. %zu with "
"supportedP010Sizes size: %zu", __FUNCTION__, blobMinDurations.size(),
blobStallDurations.size(), supportedP010Sizes.size());
return BAD_VALUE;
}
auto itDuration = blobMinDurations.begin();
auto itSize = supportedP010Sizes.begin();
while (itDuration != blobMinDurations.end()) {
int64_t entry[4] = {HAL_PIXEL_FORMAT_BLOB, static_cast<int32_t> (std::get<0>(*itSize)),
static_cast<int32_t> (std::get<1>(*itSize)), *itDuration};
jpegRMinDurations.insert(jpegRMinDurations.end(), entry, entry + 4);
itDuration++; itSize++;
}
itDuration = blobStallDurations.begin();
itSize = supportedP010Sizes.begin();
while (itDuration != blobStallDurations.end()) {
int64_t entry[4] = {HAL_PIXEL_FORMAT_BLOB, static_cast<int32_t> (std::get<0>(*itSize)),
static_cast<int32_t> (std::get<1>(*itSize)), *itDuration};
jpegRStallDurations.insert(jpegRStallDurations.end(), entry, entry + 4);
itDuration++; itSize++;
}
supportedChTags.reserve(chTags.count + 3);
supportedChTags.insert(supportedChTags.end(), chTags.data.i32,
chTags.data.i32 + chTags.count);
supportedChTags.push_back(jpegRSizesTag);
supportedChTags.push_back(jpegRMinFrameDurationsTag);
supportedChTags.push_back(jpegRStallDurationsTag);
c.update(jpegRSizesTag, jpegREntries.data(), jpegREntries.size());
c.update(jpegRMinFrameDurationsTag, jpegRMinDurations.data(), jpegRMinDurations.size());
c.update(jpegRStallDurationsTag, jpegRStallDurations.data(), jpegRStallDurations.size());
c.update(ANDROID_REQUEST_AVAILABLE_CHARACTERISTICS_KEYS, supportedChTags.data(),
supportedChTags.size());
auto colorSpaces = c.find(ANDROID_REQUEST_AVAILABLE_COLOR_SPACE_PROFILES_MAP);
if (colorSpaces.count > 0 && !maxResolution) {
bool displayP3Support = false;
int64_t dynamicRange = ANDROID_REQUEST_AVAILABLE_DYNAMIC_RANGE_PROFILES_MAP_STANDARD;
for (size_t i = 0; i < colorSpaces.count; i += 3) {
auto colorSpace = colorSpaces.data.i64[i];
auto format = colorSpaces.data.i64[i+1];
bool formatMatch = (format == static_cast<int64_t>(PublicFormat::JPEG)) ||
(format == static_cast<int64_t>(PublicFormat::UNKNOWN));
bool colorSpaceMatch =
colorSpace == ANDROID_REQUEST_AVAILABLE_COLOR_SPACE_PROFILES_MAP_DISPLAY_P3;
if (formatMatch && colorSpaceMatch) {
displayP3Support = true;
}
// Jpeg/R will support the same dynamic range profiles as P010
if (format == static_cast<int64_t>(PublicFormat::YCBCR_P010)) {
dynamicRange |= colorSpaces.data.i64[i+2];
}
}
if (displayP3Support) {
std::vector<int64_t> supportedColorSpaces;
// Jpeg/R must support the default system as well ase display P3 color space
supportedColorSpaces.reserve(colorSpaces.count + 3*2);
supportedColorSpaces.insert(supportedColorSpaces.end(), colorSpaces.data.i64,
colorSpaces.data.i64 + colorSpaces.count);
supportedColorSpaces.push_back(static_cast<int64_t>(
ANDROID_REQUEST_AVAILABLE_COLOR_SPACE_PROFILES_MAP_SRGB));
supportedColorSpaces.push_back(static_cast<int64_t>(PublicFormat::JPEG_R));
supportedColorSpaces.push_back(dynamicRange);
supportedColorSpaces.push_back(static_cast<int64_t>(
ANDROID_REQUEST_AVAILABLE_COLOR_SPACE_PROFILES_MAP_DISPLAY_P3));
supportedColorSpaces.push_back(static_cast<int64_t>(PublicFormat::JPEG_R));
supportedColorSpaces.push_back(dynamicRange);
c.update(ANDROID_REQUEST_AVAILABLE_COLOR_SPACE_PROFILES_MAP,
supportedColorSpaces.data(), supportedColorSpaces.size());
}
}
return OK;
}
status_t CameraProviderManager::ProviderInfo::DeviceInfo3::addDynamicDepthTags(
bool maxResolution) {
const int32_t depthExclTag = ANDROID_DEPTH_DEPTH_IS_EXCLUSIVE;
const int32_t scalerSizesTag =
SessionConfigurationUtils::getAppropriateModeTag(
ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS, maxResolution);
const int32_t scalerMinFrameDurationsTag =
ANDROID_SCALER_AVAILABLE_MIN_FRAME_DURATIONS;
const int32_t scalerStallDurationsTag =
SessionConfigurationUtils::getAppropriateModeTag(
ANDROID_SCALER_AVAILABLE_STALL_DURATIONS, maxResolution);
const int32_t depthSizesTag =
SessionConfigurationUtils::getAppropriateModeTag(
ANDROID_DEPTH_AVAILABLE_DEPTH_STREAM_CONFIGURATIONS, maxResolution);
const int32_t depthStallDurationsTag =
SessionConfigurationUtils::getAppropriateModeTag(
ANDROID_DEPTH_AVAILABLE_DEPTH_STALL_DURATIONS, maxResolution);
const int32_t depthMinFrameDurationsTag =
SessionConfigurationUtils::getAppropriateModeTag(
ANDROID_DEPTH_AVAILABLE_DEPTH_MIN_FRAME_DURATIONS, maxResolution);
const int32_t dynamicDepthSizesTag =
SessionConfigurationUtils::getAppropriateModeTag(
ANDROID_DEPTH_AVAILABLE_DYNAMIC_DEPTH_STREAM_CONFIGURATIONS, maxResolution);
const int32_t dynamicDepthStallDurationsTag =
SessionConfigurationUtils::getAppropriateModeTag(
ANDROID_DEPTH_AVAILABLE_DYNAMIC_DEPTH_STALL_DURATIONS, maxResolution);
const int32_t dynamicDepthMinFrameDurationsTag =
SessionConfigurationUtils::getAppropriateModeTag(
ANDROID_DEPTH_AVAILABLE_DYNAMIC_DEPTH_MIN_FRAME_DURATIONS, maxResolution);
auto& c = mCameraCharacteristics;
std::vector<std::tuple<size_t, size_t>> supportedBlobSizes, supportedDepthSizes,
supportedDynamicDepthSizes, internalDepthSizes;
auto chTags = c.find(ANDROID_REQUEST_AVAILABLE_CHARACTERISTICS_KEYS);
if (chTags.count == 0) {
ALOGE("%s: Supported camera characteristics is empty!", __FUNCTION__);
return BAD_VALUE;
}
bool isDepthExclusivePresent = std::find(chTags.data.i32, chTags.data.i32 + chTags.count,
depthExclTag) != (chTags.data.i32 + chTags.count);
bool isDepthSizePresent = std::find(chTags.data.i32, chTags.data.i32 + chTags.count,
depthSizesTag) != (chTags.data.i32 + chTags.count);
if (!(isDepthExclusivePresent && isDepthSizePresent)) {
// No depth support, nothing more to do.
return OK;
}
auto depthExclusiveEntry = c.find(depthExclTag);
if (depthExclusiveEntry.count > 0) {
if (depthExclusiveEntry.data.u8[0] != ANDROID_DEPTH_DEPTH_IS_EXCLUSIVE_FALSE) {
// Depth support is exclusive, nothing more to do.
return OK;
}
} else {
ALOGE("%s: Advertised depth exclusive tag but value is not present!", __FUNCTION__);
return BAD_VALUE;
}
getSupportedSizes(c, scalerSizesTag, HAL_PIXEL_FORMAT_BLOB,
&supportedBlobSizes);
getSupportedSizes(c, depthSizesTag, HAL_PIXEL_FORMAT_Y16, &supportedDepthSizes);
if (supportedBlobSizes.empty() || supportedDepthSizes.empty()) {
// Nothing to do in this case.
return OK;
}
getSupportedDynamicDepthSizes(supportedBlobSizes, supportedDepthSizes,
&supportedDynamicDepthSizes, &internalDepthSizes);
if (supportedDynamicDepthSizes.empty()) {
// Nothing more to do.
return OK;
}
std::vector<int32_t> dynamicDepthEntries;
for (const auto& it : supportedDynamicDepthSizes) {
int32_t entry[4] = {HAL_PIXEL_FORMAT_BLOB, static_cast<int32_t> (std::get<0>(it)),
static_cast<int32_t> (std::get<1>(it)),
ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS_OUTPUT };
dynamicDepthEntries.insert(dynamicDepthEntries.end(), entry, entry + 4);
}
std::vector<int64_t> depthMinDurations, depthStallDurations;
std::vector<int64_t> blobMinDurations, blobStallDurations;
std::vector<int64_t> dynamicDepthMinDurations, dynamicDepthStallDurations;
getSupportedDurations(c, depthMinFrameDurationsTag, HAL_PIXEL_FORMAT_Y16, internalDepthSizes,
&depthMinDurations);
getSupportedDurations(c, scalerMinFrameDurationsTag, HAL_PIXEL_FORMAT_BLOB,
supportedDynamicDepthSizes, &blobMinDurations);
if (blobMinDurations.empty() || depthMinDurations.empty() ||
(depthMinDurations.size() != blobMinDurations.size())) {
ALOGE("%s: Unexpected number of available depth min durations! %zu vs. %zu",
__FUNCTION__, depthMinDurations.size(), blobMinDurations.size());
return BAD_VALUE;
}
getSupportedDurations(c, depthStallDurationsTag, HAL_PIXEL_FORMAT_Y16, internalDepthSizes,
&depthStallDurations);
getSupportedDurations(c, scalerStallDurationsTag, HAL_PIXEL_FORMAT_BLOB,
supportedDynamicDepthSizes, &blobStallDurations);
if (blobStallDurations.empty() || depthStallDurations.empty() ||
(depthStallDurations.size() != blobStallDurations.size())) {
ALOGE("%s: Unexpected number of available depth stall durations! %zu vs. %zu",
__FUNCTION__, depthStallDurations.size(), blobStallDurations.size());
return BAD_VALUE;
}
getSupportedDynamicDepthDurations(depthMinDurations, blobMinDurations,
&dynamicDepthMinDurations);
getSupportedDynamicDepthDurations(depthStallDurations, blobStallDurations,
&dynamicDepthStallDurations);
if (dynamicDepthMinDurations.empty() || dynamicDepthStallDurations.empty() ||
(dynamicDepthMinDurations.size() != dynamicDepthStallDurations.size())) {
ALOGE("%s: Unexpected number of dynamic depth stall/min durations! %zu vs. %zu",
__FUNCTION__, dynamicDepthMinDurations.size(), dynamicDepthStallDurations.size());
return BAD_VALUE;
}
std::vector<int64_t> dynamicDepthMinDurationEntries;
auto itDuration = dynamicDepthMinDurations.begin();
auto itSize = supportedDynamicDepthSizes.begin();
while (itDuration != dynamicDepthMinDurations.end()) {
int64_t entry[4] = {HAL_PIXEL_FORMAT_BLOB, static_cast<int32_t> (std::get<0>(*itSize)),
static_cast<int32_t> (std::get<1>(*itSize)), *itDuration};
dynamicDepthMinDurationEntries.insert(dynamicDepthMinDurationEntries.end(), entry,
entry + 4);
itDuration++; itSize++;
}
std::vector<int64_t> dynamicDepthStallDurationEntries;
itDuration = dynamicDepthStallDurations.begin();
itSize = supportedDynamicDepthSizes.begin();
while (itDuration != dynamicDepthStallDurations.end()) {
int64_t entry[4] = {HAL_PIXEL_FORMAT_BLOB, static_cast<int32_t> (std::get<0>(*itSize)),
static_cast<int32_t> (std::get<1>(*itSize)), *itDuration};
dynamicDepthStallDurationEntries.insert(dynamicDepthStallDurationEntries.end(), entry,
entry + 4);
itDuration++; itSize++;
}
std::vector<int32_t> supportedChTags;
supportedChTags.reserve(chTags.count + 3);
supportedChTags.insert(supportedChTags.end(), chTags.data.i32,
chTags.data.i32 + chTags.count);
supportedChTags.push_back(dynamicDepthSizesTag);
supportedChTags.push_back(dynamicDepthMinFrameDurationsTag);
supportedChTags.push_back(dynamicDepthStallDurationsTag);
c.update(dynamicDepthSizesTag, dynamicDepthEntries.data(), dynamicDepthEntries.size());
c.update(dynamicDepthMinFrameDurationsTag, dynamicDepthMinDurationEntries.data(),
dynamicDepthMinDurationEntries.size());
c.update(dynamicDepthStallDurationsTag, dynamicDepthStallDurationEntries.data(),
dynamicDepthStallDurationEntries.size());
c.update(ANDROID_REQUEST_AVAILABLE_CHARACTERISTICS_KEYS, supportedChTags.data(),
supportedChTags.size());
return OK;
}
status_t CameraProviderManager::ProviderInfo::DeviceInfo3::fixupTorchStrengthTags() {
status_t res = OK;
auto& c = mCameraCharacteristics;
auto flashInfoStrengthDefaultLevelEntry = c.find(ANDROID_FLASH_INFO_STRENGTH_DEFAULT_LEVEL);
if (flashInfoStrengthDefaultLevelEntry.count == 0) {
int32_t flashInfoStrengthDefaultLevel = 1;
res = c.update(ANDROID_FLASH_INFO_STRENGTH_DEFAULT_LEVEL,
&flashInfoStrengthDefaultLevel, 1);
if (res != OK) {
ALOGE("%s: Failed to update ANDROID_FLASH_INFO_STRENGTH_DEFAULT_LEVEL: %s (%d)",
__FUNCTION__,strerror(-res), res);
return res;
}
}
auto flashInfoStrengthMaximumLevelEntry = c.find(ANDROID_FLASH_INFO_STRENGTH_MAXIMUM_LEVEL);
if (flashInfoStrengthMaximumLevelEntry.count == 0) {
int32_t flashInfoStrengthMaximumLevel = 1;
res = c.update(ANDROID_FLASH_INFO_STRENGTH_MAXIMUM_LEVEL,
&flashInfoStrengthMaximumLevel, 1);
if (res != OK) {
ALOGE("%s: Failed to update ANDROID_FLASH_INFO_STRENGTH_MAXIMUM_LEVEL: %s (%d)",
__FUNCTION__,strerror(-res), res);
return res;
}
}
return res;
}
status_t CameraProviderManager::ProviderInfo::DeviceInfo3::fixupManualFlashStrengthControlTags(
CameraMetadata& ch) {
status_t res = OK;
auto flashSingleStrengthMaxLevelEntry = ch.find(ANDROID_FLASH_SINGLE_STRENGTH_MAX_LEVEL);
if (flashSingleStrengthMaxLevelEntry.count == 0) {
int32_t flashSingleStrengthMaxLevel = 1;
res = ch.update(ANDROID_FLASH_SINGLE_STRENGTH_MAX_LEVEL,
&flashSingleStrengthMaxLevel, 1);
if (res != OK) {
ALOGE("%s: Failed to update ANDROID_FLASH_SINGLE_STRENGTH_MAX_LEVEL: %s (%d)",
__FUNCTION__,strerror(-res), res);
return res;
}
}
auto flashSingleStrengthDefaultLevelEntry = ch.find(
ANDROID_FLASH_SINGLE_STRENGTH_DEFAULT_LEVEL);
if (flashSingleStrengthDefaultLevelEntry.count == 0) {
int32_t flashSingleStrengthDefaultLevel = 1;
res = ch.update(ANDROID_FLASH_SINGLE_STRENGTH_DEFAULT_LEVEL,
&flashSingleStrengthDefaultLevel, 1);
if (res != OK) {
ALOGE("%s: Failed to update ANDROID_FLASH_SINGLE_STRENGTH_DEFAULT_LEVEL: %s (%d)",
__FUNCTION__,strerror(-res), res);
return res;
}
}
auto flashTorchStrengthMaxLevelEntry = ch.find(ANDROID_FLASH_TORCH_STRENGTH_MAX_LEVEL);
if (flashTorchStrengthMaxLevelEntry.count == 0) {
int32_t flashTorchStrengthMaxLevel = 1;
res = ch.update(ANDROID_FLASH_TORCH_STRENGTH_MAX_LEVEL,
&flashTorchStrengthMaxLevel, 1);
if (res != OK) {
ALOGE("%s: Failed to update ANDROID_FLASH_TORCH_STRENGTH_MAX_LEVEL: %s (%d)",
__FUNCTION__,strerror(-res), res);
return res;
}
}
auto flashTorchStrengthDefaultLevelEntry = ch.find(ANDROID_FLASH_TORCH_STRENGTH_DEFAULT_LEVEL);
if (flashTorchStrengthDefaultLevelEntry.count == 0) {
int32_t flashTorchStrengthDefaultLevel = 1;
res = ch.update(ANDROID_FLASH_TORCH_STRENGTH_DEFAULT_LEVEL,
&flashTorchStrengthDefaultLevel, 1);
if (res != OK) {
ALOGE("%s: Failed to update ANDROID_FLASH_TORCH_STRENGTH_DEFAULT_LEVEL: %s (%d)",
__FUNCTION__,strerror(-res), res);
return res;
}
}
return res;
}
status_t CameraProviderManager::ProviderInfo::DeviceInfo3::fixupMonochromeTags() {
status_t res = OK;
auto& c = mCameraCharacteristics;
sp<ProviderInfo> parentProvider = mParentProvider.promote();
if (parentProvider == nullptr) {
return DEAD_OBJECT;
}
IPCTransport ipcTransport = parentProvider->getIPCTransport();
// Override static metadata for MONOCHROME camera with older device version
if (ipcTransport == IPCTransport::HIDL &&
(mVersion.get_major() == 3 && mVersion.get_minor() < 5)) {
camera_metadata_entry cap = c.find(ANDROID_REQUEST_AVAILABLE_CAPABILITIES);
for (size_t i = 0; i < cap.count; i++) {
if (cap.data.u8[i] == ANDROID_REQUEST_AVAILABLE_CAPABILITIES_MONOCHROME) {
// ANDROID_SENSOR_INFO_COLOR_FILTER_ARRANGEMENT
uint8_t cfa = ANDROID_SENSOR_INFO_COLOR_FILTER_ARRANGEMENT_MONO;
res = c.update(ANDROID_SENSOR_INFO_COLOR_FILTER_ARRANGEMENT, &cfa, 1);
if (res != OK) {
ALOGE("%s: Failed to update COLOR_FILTER_ARRANGEMENT: %s (%d)",
__FUNCTION__, strerror(-res), res);
return res;
}
// ANDROID_REQUEST_AVAILABLE_CHARACTERISTICS_KEYS
const std::vector<uint32_t> sKeys = {
ANDROID_SENSOR_REFERENCE_ILLUMINANT1,
ANDROID_SENSOR_REFERENCE_ILLUMINANT2,
ANDROID_SENSOR_CALIBRATION_TRANSFORM1,
ANDROID_SENSOR_CALIBRATION_TRANSFORM2,
ANDROID_SENSOR_COLOR_TRANSFORM1,
ANDROID_SENSOR_COLOR_TRANSFORM2,
ANDROID_SENSOR_FORWARD_MATRIX1,
ANDROID_SENSOR_FORWARD_MATRIX2,
};
res = removeAvailableKeys(c, sKeys,
ANDROID_REQUEST_AVAILABLE_CHARACTERISTICS_KEYS);
if (res != OK) {
ALOGE("%s: Failed to update REQUEST_AVAILABLE_CHARACTERISTICS_KEYS: %s (%d)",
__FUNCTION__, strerror(-res), res);
return res;
}
// ANDROID_REQUEST_AVAILABLE_REQUEST_KEYS
const std::vector<uint32_t> reqKeys = {
ANDROID_COLOR_CORRECTION_MODE,
ANDROID_COLOR_CORRECTION_TRANSFORM,
ANDROID_COLOR_CORRECTION_GAINS,
};
res = removeAvailableKeys(c, reqKeys, ANDROID_REQUEST_AVAILABLE_REQUEST_KEYS);
if (res != OK) {
ALOGE("%s: Failed to update REQUEST_AVAILABLE_REQUEST_KEYS: %s (%d)",
__FUNCTION__, strerror(-res), res);
return res;
}
// ANDROID_REQUEST_AVAILABLE_RESULT_KEYS
const std::vector<uint32_t> resKeys = {
ANDROID_SENSOR_GREEN_SPLIT,
ANDROID_SENSOR_NEUTRAL_COLOR_POINT,
ANDROID_COLOR_CORRECTION_MODE,
ANDROID_COLOR_CORRECTION_TRANSFORM,
ANDROID_COLOR_CORRECTION_GAINS,
};
res = removeAvailableKeys(c, resKeys, ANDROID_REQUEST_AVAILABLE_RESULT_KEYS);
if (res != OK) {
ALOGE("%s: Failed to update REQUEST_AVAILABLE_RESULT_KEYS: %s (%d)",
__FUNCTION__, strerror(-res), res);
return res;
}
// ANDROID_SENSOR_BLACK_LEVEL_PATTERN
camera_metadata_entry blEntry = c.find(ANDROID_SENSOR_BLACK_LEVEL_PATTERN);
for (size_t j = 1; j < blEntry.count; j++) {
blEntry.data.i32[j] = blEntry.data.i32[0];
}
}
}
}
return res;
}
status_t CameraProviderManager::ProviderInfo::DeviceInfo3::addRotateCropTags() {
status_t res = OK;
auto& c = mCameraCharacteristics;
auto availableRotateCropEntry = c.find(ANDROID_SCALER_AVAILABLE_ROTATE_AND_CROP_MODES);
if (availableRotateCropEntry.count == 0) {
uint8_t defaultAvailableRotateCropEntry = ANDROID_SCALER_ROTATE_AND_CROP_NONE;
res = c.update(ANDROID_SCALER_AVAILABLE_ROTATE_AND_CROP_MODES,
&defaultAvailableRotateCropEntry, 1);
}
return res;
}
status_t CameraProviderManager::ProviderInfo::DeviceInfo3::addAutoframingTags() {
status_t res = OK;
auto& c = mCameraCharacteristics;
auto availableAutoframingEntry = c.find(ANDROID_CONTROL_AUTOFRAMING_AVAILABLE);
if (availableAutoframingEntry.count == 0) {
uint8_t defaultAutoframingEntry = ANDROID_CONTROL_AUTOFRAMING_AVAILABLE_FALSE;
res = c.update(ANDROID_CONTROL_AUTOFRAMING_AVAILABLE,
&defaultAutoframingEntry, 1);
}
return res;
}
status_t CameraProviderManager::ProviderInfo::DeviceInfo3::addPreCorrectionActiveArraySize() {
status_t res = OK;
auto& c = mCameraCharacteristics;
auto activeArraySize = c.find(ANDROID_SENSOR_INFO_ACTIVE_ARRAY_SIZE);
auto preCorrectionActiveArraySize = c.find(
ANDROID_SENSOR_INFO_PRE_CORRECTION_ACTIVE_ARRAY_SIZE);
if (activeArraySize.count == 4 && preCorrectionActiveArraySize.count == 0) {
std::vector<int32_t> preCorrectionArray(
activeArraySize.data.i32, activeArraySize.data.i32+4);
res = c.update(ANDROID_SENSOR_INFO_PRE_CORRECTION_ACTIVE_ARRAY_SIZE,
preCorrectionArray.data(), 4);
if (res != OK) {
ALOGE("%s: Failed to add ANDROID_SENSOR_INFO_PRE_CORRECTION_ACTIVE_ARRAY_SIZE: %s(%d)",
__FUNCTION__, strerror(-res), res);
return res;
}
} else {
return res;
}
auto charTags = c.find(ANDROID_REQUEST_AVAILABLE_CHARACTERISTICS_KEYS);
bool hasPreCorrectionActiveArraySize = std::find(charTags.data.i32,
charTags.data.i32 + charTags.count,
ANDROID_SENSOR_INFO_PRE_CORRECTION_ACTIVE_ARRAY_SIZE) !=
(charTags.data.i32 + charTags.count);
if (!hasPreCorrectionActiveArraySize) {
std::vector<int32_t> supportedCharTags;
supportedCharTags.reserve(charTags.count + 1);
supportedCharTags.insert(supportedCharTags.end(), charTags.data.i32,
charTags.data.i32 + charTags.count);
supportedCharTags.push_back(ANDROID_SENSOR_INFO_PRE_CORRECTION_ACTIVE_ARRAY_SIZE);
res = c.update(ANDROID_REQUEST_AVAILABLE_CHARACTERISTICS_KEYS, supportedCharTags.data(),
supportedCharTags.size());
if (res != OK) {
ALOGE("%s: Failed to update ANDROID_REQUEST_AVAILABLE_CHARACTERISTICS_KEYS: %s(%d)",
__FUNCTION__, strerror(-res), res);
return res;
}
}
return res;
}
status_t CameraProviderManager::ProviderInfo::DeviceInfo3::addReadoutTimestampTag(
bool readoutTimestampSupported) {
status_t res = OK;
auto& c = mCameraCharacteristics;
auto entry = c.find(ANDROID_SENSOR_READOUT_TIMESTAMP);
if (entry.count != 0) {
ALOGE("%s: CameraCharacteristics must not contain ANDROID_SENSOR_READOUT_TIMESTAMP!",
__FUNCTION__);
}
uint8_t readoutTimestamp = ANDROID_SENSOR_READOUT_TIMESTAMP_NOT_SUPPORTED;
if (readoutTimestampSupported) {
readoutTimestamp = ANDROID_SENSOR_READOUT_TIMESTAMP_HARDWARE;
}
res = c.update(ANDROID_SENSOR_READOUT_TIMESTAMP, &readoutTimestamp, 1);
return res;
}
status_t CameraProviderManager::ProviderInfo::DeviceInfo3::removeAvailableKeys(
CameraMetadata& c, const std::vector<uint32_t>& keys, uint32_t keyTag) {
status_t res = OK;
camera_metadata_entry keysEntry = c.find(keyTag);
if (keysEntry.count == 0) {
ALOGE("%s: Failed to find tag %u: %s (%d)", __FUNCTION__, keyTag, strerror(-res), res);
return res;
}
std::vector<int32_t> vKeys;
vKeys.reserve(keysEntry.count);
for (size_t i = 0; i < keysEntry.count; i++) {
if (std::find(keys.begin(), keys.end(), keysEntry.data.i32[i]) == keys.end()) {
vKeys.push_back(keysEntry.data.i32[i]);
}
}
res = c.update(keyTag, vKeys.data(), vKeys.size());
return res;
}
status_t CameraProviderManager::ProviderInfo::DeviceInfo3::fillHeicStreamCombinations(
std::vector<int32_t>* outputs,
std::vector<int64_t>* durations,
std::vector<int64_t>* stallDurations,
const camera_metadata_entry& halStreamConfigs,
const camera_metadata_entry& halStreamDurations) {
if (outputs == nullptr || durations == nullptr || stallDurations == nullptr) {
return BAD_VALUE;
}
static bool supportInMemoryTempFile =
camera3::HeicCompositeStream::isInMemoryTempFileSupported();
if (!supportInMemoryTempFile) {
ALOGI("%s: No HEIC support due to absence of in memory temp file support",
__FUNCTION__);
return OK;
}
for (size_t i = 0; i < halStreamConfigs.count; i += 4) {
int32_t format = halStreamConfigs.data.i32[i];
// Only IMPLEMENTATION_DEFINED and YUV_888 can be used to generate HEIC
// image.
if (format != HAL_PIXEL_FORMAT_IMPLEMENTATION_DEFINED &&
format != HAL_PIXEL_FORMAT_YCBCR_420_888) {
continue;
}
bool sizeAvail = false;
for (size_t j = 0; j < outputs->size(); j+= 4) {
if ((*outputs)[j+1] == halStreamConfigs.data.i32[i+1] &&
(*outputs)[j+2] == halStreamConfigs.data.i32[i+2]) {
sizeAvail = true;
break;
}
}
if (sizeAvail) continue;
int64_t stall = 0;
bool useHeic = false;
bool useGrid = false;
if (camera3::HeicCompositeStream::isSizeSupportedByHeifEncoder(
halStreamConfigs.data.i32[i+1], halStreamConfigs.data.i32[i+2],
&useHeic, &useGrid, &stall)) {
if (useGrid != (format == HAL_PIXEL_FORMAT_YCBCR_420_888)) {
continue;
}
// HEIC configuration
int32_t config[] = {HAL_PIXEL_FORMAT_BLOB, halStreamConfigs.data.i32[i+1],
halStreamConfigs.data.i32[i+2], 0 /*isInput*/};
outputs->insert(outputs->end(), config, config + 4);
// HEIC minFrameDuration
for (size_t j = 0; j < halStreamDurations.count; j += 4) {
if (halStreamDurations.data.i64[j] == format &&
halStreamDurations.data.i64[j+1] == halStreamConfigs.data.i32[i+1] &&
halStreamDurations.data.i64[j+2] == halStreamConfigs.data.i32[i+2]) {
int64_t duration[] = {HAL_PIXEL_FORMAT_BLOB, halStreamConfigs.data.i32[i+1],
halStreamConfigs.data.i32[i+2], halStreamDurations.data.i64[j+3]};
durations->insert(durations->end(), duration, duration+4);
break;
}
}
// HEIC stallDuration
int64_t stallDuration[] = {HAL_PIXEL_FORMAT_BLOB, halStreamConfigs.data.i32[i+1],
halStreamConfigs.data.i32[i+2], stall};
stallDurations->insert(stallDurations->end(), stallDuration, stallDuration+4);
}
}
return OK;
}
status_t CameraProviderManager::ProviderInfo::DeviceInfo3::deriveHeicTags(bool maxResolution) {
int32_t scalerStreamSizesTag =
SessionConfigurationUtils::getAppropriateModeTag(
ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS, maxResolution);
int32_t scalerMinFrameDurationsTag =
SessionConfigurationUtils::getAppropriateModeTag(
ANDROID_SCALER_AVAILABLE_MIN_FRAME_DURATIONS, maxResolution);
int32_t heicStreamSizesTag =
SessionConfigurationUtils::getAppropriateModeTag(
ANDROID_HEIC_AVAILABLE_HEIC_STREAM_CONFIGURATIONS, maxResolution);
int32_t heicMinFrameDurationsTag =
SessionConfigurationUtils::getAppropriateModeTag(
ANDROID_HEIC_AVAILABLE_HEIC_MIN_FRAME_DURATIONS, maxResolution);
int32_t heicStallDurationsTag =
SessionConfigurationUtils::getAppropriateModeTag(
ANDROID_HEIC_AVAILABLE_HEIC_STALL_DURATIONS, maxResolution);
auto& c = mCameraCharacteristics;
camera_metadata_entry halHeicSupport = c.find(ANDROID_HEIC_INFO_SUPPORTED);
if (halHeicSupport.count > 1) {
ALOGE("%s: Invalid entry count %zu for ANDROID_HEIC_INFO_SUPPORTED",
__FUNCTION__, halHeicSupport.count);
return BAD_VALUE;
} else if (halHeicSupport.count == 0 ||
halHeicSupport.data.u8[0] == ANDROID_HEIC_INFO_SUPPORTED_FALSE) {
// Camera HAL doesn't support mandatory stream combinations for HEIC.
return OK;
}
camera_metadata_entry maxJpegAppsSegments =
c.find(ANDROID_HEIC_INFO_MAX_JPEG_APP_SEGMENTS_COUNT);
if (maxJpegAppsSegments.count != 1 || maxJpegAppsSegments.data.u8[0] == 0 ||
maxJpegAppsSegments.data.u8[0] > 16) {
ALOGE("%s: ANDROID_HEIC_INFO_MAX_JPEG_APP_SEGMENTS_COUNT must be within [1, 16]",
__FUNCTION__);
return BAD_VALUE;
}
// Populate HEIC output configurations and its related min frame duration
// and stall duration.
std::vector<int32_t> heicOutputs;
std::vector<int64_t> heicDurations;
std::vector<int64_t> heicStallDurations;
camera_metadata_entry halStreamConfigs = c.find(scalerStreamSizesTag);
camera_metadata_entry minFrameDurations = c.find(scalerMinFrameDurationsTag);
status_t res = fillHeicStreamCombinations(&heicOutputs, &heicDurations, &heicStallDurations,
halStreamConfigs, minFrameDurations);
if (res != OK) {
ALOGE("%s: Failed to fill HEIC stream combinations: %s (%d)", __FUNCTION__,
strerror(-res), res);
return res;
}
c.update(heicStreamSizesTag, heicOutputs.data(), heicOutputs.size());
c.update(heicMinFrameDurationsTag, heicDurations.data(), heicDurations.size());
c.update(heicStallDurationsTag, heicStallDurations.data(), heicStallDurations.size());
return OK;
}
bool CameraProviderManager::isLogicalCameraLocked(const std::string& id,
std::vector<std::string>* physicalCameraIds) {
auto deviceInfo = findDeviceInfoLocked(id);
if (deviceInfo == nullptr) return false;
if (deviceInfo->mIsLogicalCamera && physicalCameraIds != nullptr) {
*physicalCameraIds = deviceInfo->mPhysicalIds;
}
return deviceInfo->mIsLogicalCamera;
}
bool CameraProviderManager::isLogicalCamera(const std::string& id,
std::vector<std::string>* physicalCameraIds) {
std::lock_guard<std::mutex> lock(mInterfaceMutex);
return isLogicalCameraLocked(id, physicalCameraIds);
}
status_t CameraProviderManager::getSystemCameraKind(const std::string& id,
SystemCameraKind *kind) const {
std::lock_guard<std::mutex> lock(mInterfaceMutex);
return getSystemCameraKindLocked(id, kind);
}
status_t CameraProviderManager::getSystemCameraKindLocked(const std::string& id,
SystemCameraKind *kind) const {
auto deviceInfo = findDeviceInfoLocked(id);
if (deviceInfo != nullptr) {
*kind = deviceInfo->mSystemCameraKind;
return OK;
}
// If this is a hidden physical camera, we should return what kind of
// camera the enclosing logical camera is.
auto isHiddenAndParent = isHiddenPhysicalCameraInternal(id);
if (isHiddenAndParent.first) {
LOG_ALWAYS_FATAL_IF(id == isHiddenAndParent.second->mId,
"%s: hidden physical camera id %s and enclosing logical camera id %s are the same",
__FUNCTION__, id.c_str(), isHiddenAndParent.second->mId.c_str());
return getSystemCameraKindLocked(isHiddenAndParent.second->mId, kind);
}
// Neither a hidden physical camera nor a logical camera
return NAME_NOT_FOUND;
}
bool CameraProviderManager::isHiddenPhysicalCamera(const std::string& cameraId) const {
std::lock_guard<std::mutex> lock(mInterfaceMutex);
return isHiddenPhysicalCameraInternal(cameraId).first;
}
status_t CameraProviderManager::filterSmallJpegSizes(const std::string& cameraId) {
std::lock_guard<std::mutex> lock(mInterfaceMutex);
for (auto& provider : mProviders) {
for (auto& deviceInfo : provider->mDevices) {
if (deviceInfo->mId == cameraId) {
return deviceInfo->filterSmallJpegSizes();
}
}
}
return NAME_NOT_FOUND;
}
std::pair<bool, CameraProviderManager::ProviderInfo::DeviceInfo *>
CameraProviderManager::isHiddenPhysicalCameraInternal(const std::string& cameraId) const {
auto falseRet = std::make_pair(false, nullptr);
for (auto& provider : mProviders) {
for (auto& deviceInfo : provider->mDevices) {
if (deviceInfo->mId == cameraId) {
// cameraId is found in public camera IDs advertised by the
// provider.
return falseRet;
}
}
}
for (auto& provider : mProviders) {
IPCTransport transport = provider->getIPCTransport();
for (auto& deviceInfo : provider->mDevices) {
std::vector<std::string> physicalIds;
if (deviceInfo->mIsLogicalCamera) {
if (std::find(deviceInfo->mPhysicalIds.begin(), deviceInfo->mPhysicalIds.end(),
cameraId) != deviceInfo->mPhysicalIds.end()) {
int deviceVersion = HARDWARE_DEVICE_API_VERSION(
deviceInfo->mVersion.get_major(), deviceInfo->mVersion.get_minor());
if (transport == IPCTransport::HIDL &&
deviceVersion < CAMERA_DEVICE_API_VERSION_3_5) {
ALOGE("%s: Wrong deviceVersion %x for hiddenPhysicalCameraId %s",
__FUNCTION__, deviceVersion, cameraId.c_str());
return falseRet;
} else {
return std::make_pair(true, deviceInfo.get());
}
}
}
}
}
return falseRet;
}
status_t CameraProviderManager::tryToInitializeAidlProviderLocked(
const std::string& providerName, const sp<ProviderInfo>& providerInfo) {
using aidl::android::hardware::camera::provider::ICameraProvider;
std::shared_ptr<ICameraProvider> interface =
mAidlServiceProxy->getAidlService(providerName.c_str());
if (interface == nullptr) {
ALOGW("%s: AIDL Camera provider HAL '%s' is not actually available", __FUNCTION__,
providerName.c_str());
return BAD_VALUE;
}
AidlProviderInfo *aidlProviderInfo = static_cast<AidlProviderInfo *>(providerInfo.get());
return aidlProviderInfo->initializeAidlProvider(interface, mDeviceState);
}
status_t CameraProviderManager::tryToInitializeHidlProviderLocked(
const std::string& providerName, const sp<ProviderInfo>& providerInfo) {
sp<provider::V2_4::ICameraProvider> interface;
interface = mHidlServiceProxy->tryGetService(providerName);
if (interface == nullptr) {
// The interface may not be started yet. In that case, this is not a
// fatal error.
ALOGW("%s: HIDL Camera provider HAL '%s' is not actually available", __FUNCTION__,
providerName.c_str());
return BAD_VALUE;
}
HidlProviderInfo *hidlProviderInfo = static_cast<HidlProviderInfo *>(providerInfo.get());
return hidlProviderInfo->initializeHidlProvider(interface, mDeviceState);
}
status_t CameraProviderManager::addAidlProviderLocked(const std::string& newProvider) {
// Several camera provider instances can be temporarily present.
// Defer initialization of a new instance until the older instance is properly removed.
auto providerInstance = newProvider + "-" + std::to_string(mProviderInstanceId);
bool providerPresent = false;
bool preexisting =
(mAidlProviderWithBinders.find(newProvider) != mAidlProviderWithBinders.end());
using aidl::android::hardware::camera::provider::ICameraProvider;
std::string providerNameUsed =
newProvider.substr(std::string(ICameraProvider::descriptor).size() + 1);
if (flags::lazy_aidl_wait_for_service()) {
// 'newProvider' has the fully qualified name of the provider service in case of AIDL.
// ProviderInfo::mProviderName also has the fully qualified name - so we just compare them
// here.
providerNameUsed = newProvider;
}
for (const auto& providerInfo : mProviders) {
if (providerInfo->mProviderName == providerNameUsed) {
ALOGW("%s: Camera provider HAL with name '%s' already registered",
__FUNCTION__, newProvider.c_str());
// Do not add new instances for lazy HAL external provider or aidl
// binders previously seen.
if (preexisting || providerInfo->isExternalLazyHAL()) {
return ALREADY_EXISTS;
} else {
ALOGW("%s: The new provider instance will get initialized immediately after the"
" currently present instance is removed!", __FUNCTION__);
providerPresent = true;
break;
}
}
}
sp<AidlProviderInfo> providerInfo =
new AidlProviderInfo(providerNameUsed, providerInstance, this);
if (!providerPresent) {
status_t res = tryToInitializeAidlProviderLocked(newProvider, providerInfo);
if (res != OK) {
return res;
}
mAidlProviderWithBinders.emplace(newProvider);
}
mProviders.push_back(providerInfo);
mProviderInstanceId++;
return OK;
}
status_t CameraProviderManager::addHidlProviderLocked(const std::string& newProvider,
bool preexisting) {
// Several camera provider instances can be temporarily present.
// Defer initialization of a new instance until the older instance is properly removed.
auto providerInstance = newProvider + "-" + std::to_string(mProviderInstanceId);
bool providerPresent = false;
for (const auto& providerInfo : mProviders) {
if (providerInfo->mProviderName == newProvider) {
ALOGW("%s: Camera provider HAL with name '%s' already registered",
__FUNCTION__, newProvider.c_str());
// Do not add new instances for lazy HAL external provider
if (preexisting || providerInfo->isExternalLazyHAL()) {
return ALREADY_EXISTS;
} else {
ALOGW("%s: The new provider instance will get initialized immediately after the"
" currently present instance is removed!", __FUNCTION__);
providerPresent = true;
break;
}
}
}
sp<HidlProviderInfo> providerInfo = new HidlProviderInfo(newProvider, providerInstance, this);
if (!providerPresent) {
status_t res = tryToInitializeHidlProviderLocked(newProvider, providerInfo);
if (res != OK) {
return res;
}
}
mProviders.push_back(providerInfo);
mProviderInstanceId++;
return OK;
}
status_t CameraProviderManager::removeProvider(const std::string& provider) {
std::lock_guard<std::mutex> providerLock(mProviderLifecycleLock);
std::unique_lock<std::mutex> lock(mInterfaceMutex);
std::vector<std::string> removedDeviceIds;
status_t res = NAME_NOT_FOUND;
std::string removedProviderName;
for (auto it = mProviders.begin(); it != mProviders.end(); it++) {
if ((*it)->mProviderInstance == provider) {
removedDeviceIds.reserve((*it)->mDevices.size());
for (auto& deviceInfo : (*it)->mDevices) {
removedDeviceIds.push_back(deviceInfo->mId);
}
removedProviderName = (*it)->mProviderName;
mProviders.erase(it);
res = OK;
break;
}
}
if (res != OK) {
ALOGW("%s: Camera provider HAL with name '%s' is not registered", __FUNCTION__,
provider.c_str());
} else {
// Check if there are any newer camera instances from the same provider and try to
// initialize.
for (const auto& providerInfo : mProviders) {
if (providerInfo->mProviderName == removedProviderName) {
IPCTransport providerTransport = providerInfo->getIPCTransport();
std::string removedAidlProviderName = getFullAidlProviderName(removedProviderName);
if (flags::lazy_aidl_wait_for_service()) {
removedAidlProviderName = removedProviderName;
}
switch(providerTransport) {
case IPCTransport::HIDL:
return tryToInitializeHidlProviderLocked(removedProviderName, providerInfo);
case IPCTransport::AIDL:
return tryToInitializeAidlProviderLocked(removedAidlProviderName,
providerInfo);
default:
ALOGE("%s Unsupported Transport %d", __FUNCTION__, providerTransport);
}
}
}
// Inform camera service of loss of presence for all the devices from this provider,
// without lock held for reentrancy
sp<StatusListener> listener = getStatusListener();
if (listener != nullptr) {
lock.unlock();
for (auto& id : removedDeviceIds) {
listener->onDeviceStatusChanged(id, CameraDeviceStatus::NOT_PRESENT);
}
lock.lock();
}
}
return res;
}
sp<CameraProviderManager::StatusListener> CameraProviderManager::getStatusListener() const {
return mListener.promote();
}
/**** Methods for ProviderInfo ****/
CameraProviderManager::ProviderInfo::ProviderInfo(
const std::string &providerName,
const std::string &providerInstance,
[[maybe_unused]] CameraProviderManager *manager) :
mProviderName(providerName),
mProviderInstance(providerInstance),
mProviderTagid(generateVendorTagId(providerName)),
mUniqueDeviceCount(0),
mManager(manager) {
}
const std::string& CameraProviderManager::ProviderInfo::getType() const {
return mType;
}
status_t CameraProviderManager::ProviderInfo::addDevice(
const std::string& name, CameraDeviceStatus initialStatus,
/*out*/ std::string* parsedId) {
ALOGI("Enumerating new camera device: %s", name.c_str());
uint16_t major, minor;
std::string type, id;
IPCTransport transport = getIPCTransport();
status_t res = parseDeviceName(name, &major, &minor, &type, &id);
if (res != OK) {
return res;
}
if (type != mType) {
ALOGE("%s: Device type %s does not match provider type %s", __FUNCTION__,
type.c_str(), mType.c_str());
return BAD_VALUE;
}
if (mManager->isValidDeviceLocked(id, major, transport)) {
ALOGE("%s: Device %s: ID %s is already in use for device major version %d", __FUNCTION__,
name.c_str(), id.c_str(), major);
return BAD_VALUE;
}
std::unique_ptr<DeviceInfo> deviceInfo;
switch (transport) {
case IPCTransport::HIDL:
switch (major) {
case 3:
break;
default:
ALOGE("%s: Device %s: Unsupported HIDL device HAL major version %d:",
__FUNCTION__, name.c_str(), major);
return BAD_VALUE;
}
break;
case IPCTransport::AIDL:
if (major != 1) {
ALOGE("%s: Device %s: Unsupported AIDL device HAL major version %d:", __FUNCTION__,
name.c_str(), major);
return BAD_VALUE;
}
break;
default:
ALOGE("%s Invalid transport %d", __FUNCTION__, transport);
return BAD_VALUE;
}
deviceInfo = initializeDeviceInfo(name, mProviderTagid, id, minor);
if (deviceInfo == nullptr) return BAD_VALUE;
deviceInfo->notifyDeviceStateChange(getDeviceState());
deviceInfo->mStatus = initialStatus;
bool isAPI1Compatible = deviceInfo->isAPI1Compatible();
mDevices.push_back(std::move(deviceInfo));
mUniqueCameraIds.insert(id);
if (isAPI1Compatible) {
// addDevice can be called more than once for the same camera id if HAL
// supports openLegacy.
if (std::find(mUniqueAPI1CompatibleCameraIds.begin(), mUniqueAPI1CompatibleCameraIds.end(),
id) == mUniqueAPI1CompatibleCameraIds.end()) {
mUniqueAPI1CompatibleCameraIds.push_back(id);
}
}
if (parsedId != nullptr) {
*parsedId = id;
}
return OK;
}
void CameraProviderManager::ProviderInfo::removeDevice(const std::string &id) {
for (auto it = mDevices.begin(); it != mDevices.end(); it++) {
if ((*it)->mId == id) {
mUniqueCameraIds.erase(id);
mUnavailablePhysicalCameras.erase(id);
if ((*it)->isAPI1Compatible()) {
mUniqueAPI1CompatibleCameraIds.erase(std::remove(
mUniqueAPI1CompatibleCameraIds.begin(),
mUniqueAPI1CompatibleCameraIds.end(), id));
}
// Remove reference to camera provider to avoid pointer leak when
// unplugging external camera while in use with lazy HALs
mManager->removeRef(DeviceMode::CAMERA, id);
mManager->removeRef(DeviceMode::TORCH, id);
mDevices.erase(it);
break;
}
}
}
void CameraProviderManager::ProviderInfo::removeAllDevices() {
std::lock_guard<std::mutex> lock(mLock);
auto itDevices = mDevices.begin();
while (itDevices != mDevices.end()) {
std::string id = (*itDevices)->mId;
std::string deviceName = (*itDevices)->mName;
removeDevice(id);
// device was removed, reset iterator
itDevices = mDevices.begin();
//notify CameraService of status change
sp<StatusListener> listener = mManager->getStatusListener();
if (listener != nullptr) {
mLock.unlock();
ALOGV("%s: notify device not_present: %s",
__FUNCTION__,
deviceName.c_str());
listener->onDeviceStatusChanged(id, CameraDeviceStatus::NOT_PRESENT);
mLock.lock();
}
}
}
bool CameraProviderManager::ProviderInfo::isExternalLazyHAL() const {
std::string providerName = mProviderName;
if (flags::lazy_aidl_wait_for_service() && getIPCTransport() == IPCTransport::AIDL) {
using aidl::android::hardware::camera::provider::ICameraProvider;
providerName =
mProviderName.substr(std::string(ICameraProvider::descriptor).size() + 1);
}
return kEnableLazyHal && (providerName == kExternalProviderName);
}
status_t CameraProviderManager::ProviderInfo::dump(int fd, const Vector<String16>&) const {
dprintf(fd, "== Camera Provider HAL %s (v2.%d, %s) static info: %zu devices: ==\n",
mProviderInstance.c_str(),
mMinorVersion,
mIsRemote ? "remote" : "passthrough",
mDevices.size());
for (auto& device : mDevices) {
dprintf(fd, "== Camera HAL device %s (v%d.%d) static information: ==\n", device->mName.c_str(),
device->mVersion.get_major(), device->mVersion.get_minor());
dprintf(fd, " Resource cost: %d\n", device->mResourceCost.resourceCost);
if (device->mResourceCost.conflictingDevices.size() == 0) {
dprintf(fd, " Conflicting devices: None\n");
} else {
dprintf(fd, " Conflicting devices:\n");
for (size_t i = 0; i < device->mResourceCost.conflictingDevices.size(); i++) {
dprintf(fd, " %s\n",
device->mResourceCost.conflictingDevices[i].c_str());
}
}
dprintf(fd, " API1 info:\n");
dprintf(fd, " Has a flash unit: %s\n",
device->hasFlashUnit() ? "true" : "false");
hardware::CameraInfo info;
int portraitRotation;
status_t res = device->getCameraInfo(/*overrideToPortrait*/false, &portraitRotation,
&info);
if (res != OK) {
dprintf(fd, " <Error reading camera info: %s (%d)>\n",
strerror(-res), res);
} else {
dprintf(fd, " Facing: %s\n",
info.facing == hardware::CAMERA_FACING_BACK ? "Back" : "Front");
dprintf(fd, " Orientation: %d\n", info.orientation);
}
CameraMetadata info2;
res = device->getCameraCharacteristics(true /*overrideForPerfClass*/, &info2,
/*overrideToPortrait*/false);
if (res == INVALID_OPERATION) {
dprintf(fd, " API2 not directly supported\n");
} else if (res != OK) {
dprintf(fd, " <Error reading camera characteristics: %s (%d)>\n",
strerror(-res), res);
} else {
dprintf(fd, " API2 camera characteristics:\n");
info2.dump(fd, /*verbosity*/ 2, /*indentation*/ 4);
}
// Dump characteristics of non-standalone physical camera
if (device->mIsLogicalCamera) {
for (auto& id : device->mPhysicalIds) {
// Skip if physical id is an independent camera
if (std::find(mProviderPublicCameraIds.begin(), mProviderPublicCameraIds.end(), id)
!= mProviderPublicCameraIds.end()) {
continue;
}
CameraMetadata physicalInfo;
status_t status = device->getPhysicalCameraCharacteristics(id, &physicalInfo);
if (status == OK) {
dprintf(fd, " Physical camera %s characteristics:\n", id.c_str());
physicalInfo.dump(fd, /*verbosity*/ 2, /*indentation*/ 4);
}
}
}
dprintf(fd, "== Camera HAL device %s (v%d.%d) dumpState: ==\n", device->mName.c_str(),
device->mVersion.get_major(), device->mVersion.get_minor());
res = device->dumpState(fd);
if (res != OK) {
dprintf(fd, " <Error dumping device %s state: %s (%d)>\n",
device->mName.c_str(), strerror(-res), res);
}
}
return OK;
}
std::vector<std::unordered_set<std::string>>
CameraProviderManager::ProviderInfo::getConcurrentCameraIdCombinations() {
std::lock_guard<std::mutex> lock(mLock);
return mConcurrentCameraIdCombinations;
}
void CameraProviderManager::ProviderInfo::cameraDeviceStatusChangeInternal(
const std::string& cameraDeviceName, CameraDeviceStatus newStatus) {
sp<StatusListener> listener;
std::string id;
std::lock_guard<std::mutex> lock(mInitLock);
CameraDeviceStatus internalNewStatus = newStatus;
if (!mInitialized) {
mCachedStatus.emplace_back(false /*isPhysicalCameraStatus*/,
cameraDeviceName, std::string(), internalNewStatus);
return;
}
{
std::lock_guard<std::mutex> lock(mLock);
if (OK != cameraDeviceStatusChangeLocked(&id, cameraDeviceName, newStatus)) {
return;
}
listener = mManager->getStatusListener();
}
// Call without lock held to allow reentrancy into provider manager
if (listener != nullptr) {
listener->onDeviceStatusChanged(id, internalNewStatus);
}
}
status_t CameraProviderManager::ProviderInfo::cameraDeviceStatusChangeLocked(
std::string* id, const std::string& cameraDeviceName,
CameraDeviceStatus newStatus) {
bool known = false;
std::string cameraId;
for (auto& deviceInfo : mDevices) {
if (deviceInfo->mName == cameraDeviceName) {
Mutex::Autolock l(deviceInfo->mDeviceAvailableLock);
ALOGI("Camera device %s status is now %s, was %s", cameraDeviceName.c_str(),
FrameworkDeviceStatusToString(newStatus),
FrameworkDeviceStatusToString(deviceInfo->mStatus));
deviceInfo->mStatus = newStatus;
// TODO: Handle device removal (NOT_PRESENT)
cameraId = deviceInfo->mId;
known = true;
deviceInfo->mIsDeviceAvailable =
(newStatus == CameraDeviceStatus::PRESENT);
deviceInfo->mDeviceAvailableSignal.signal();
break;
}
}
// Previously unseen device; status must not be NOT_PRESENT
if (!known) {
if (newStatus == CameraDeviceStatus::NOT_PRESENT) {
ALOGW("Camera provider %s says an unknown camera device %s is not present. Curious.",
mProviderName.c_str(), cameraDeviceName.c_str());
return BAD_VALUE;
}
addDevice(cameraDeviceName, newStatus, &cameraId);
} else if (newStatus == CameraDeviceStatus::NOT_PRESENT) {
removeDevice(cameraId);
} else if (isExternalLazyHAL()) {
// Do not notify CameraService for PRESENT->PRESENT (lazy HAL restart)
// because NOT_AVAILABLE is set on CameraService::connect and a PRESENT
// notif. would overwrite it
return BAD_VALUE;
}
if (reCacheConcurrentStreamingCameraIdsLocked() != OK) {
ALOGE("%s: CameraProvider %s could not re-cache concurrent streaming camera id list ",
__FUNCTION__, mProviderName.c_str());
}
*id = cameraId;
return OK;
}
void CameraProviderManager::ProviderInfo::physicalCameraDeviceStatusChangeInternal(
const std::string& cameraDeviceName,
const std::string& physicalCameraDeviceName,
CameraDeviceStatus newStatus) {
sp<StatusListener> listener;
std::string id;
std::string physicalId;
std::lock_guard<std::mutex> lock(mInitLock);
if (!mInitialized) {
mCachedStatus.emplace_back(true /*isPhysicalCameraStatus*/, cameraDeviceName,
physicalCameraDeviceName, newStatus);
return;
}
{
std::lock_guard<std::mutex> lock(mLock);
if (OK != physicalCameraDeviceStatusChangeLocked(&id, &physicalId, cameraDeviceName,
physicalCameraDeviceName, newStatus)) {
return;
}
listener = mManager->getStatusListener();
}
// Call without lock held to allow reentrancy into provider manager
if (listener != nullptr) {
listener->onDeviceStatusChanged(id, physicalId, newStatus);
}
return;
}
status_t CameraProviderManager::ProviderInfo::physicalCameraDeviceStatusChangeLocked(
std::string* id, std::string* physicalId,
const std::string& cameraDeviceName,
const std::string& physicalCameraDeviceName,
CameraDeviceStatus newStatus) {
bool known = false;
std::string cameraId;
for (auto& deviceInfo : mDevices) {
if (deviceInfo->mName == cameraDeviceName) {
cameraId = deviceInfo->mId;
if (!deviceInfo->mIsLogicalCamera) {
ALOGE("%s: Invalid combination of camera id %s, physical id %s",
__FUNCTION__, cameraId.c_str(), physicalCameraDeviceName.c_str());
return BAD_VALUE;
}
if (std::find(deviceInfo->mPhysicalIds.begin(), deviceInfo->mPhysicalIds.end(),
physicalCameraDeviceName) == deviceInfo->mPhysicalIds.end()) {
ALOGE("%s: Invalid combination of camera id %s, physical id %s",
__FUNCTION__, cameraId.c_str(), physicalCameraDeviceName.c_str());
return BAD_VALUE;
}
ALOGI("Camera device %s physical device %s status is now %s",
cameraDeviceName.c_str(), physicalCameraDeviceName.c_str(),
FrameworkDeviceStatusToString(newStatus));
known = true;
break;
}
}
// Previously unseen device; status must not be NOT_PRESENT
if (!known) {
ALOGW("Camera provider %s says an unknown camera device %s-%s is not present. Curious.",
mProviderName.c_str(), cameraDeviceName.c_str(),
physicalCameraDeviceName.c_str());
return BAD_VALUE;
}
if (mUnavailablePhysicalCameras.count(cameraId) == 0) {
mUnavailablePhysicalCameras.emplace(cameraId, std::set<std::string>{});
}
if (newStatus != CameraDeviceStatus::PRESENT) {
mUnavailablePhysicalCameras[cameraId].insert(physicalCameraDeviceName);
} else {
mUnavailablePhysicalCameras[cameraId].erase(physicalCameraDeviceName);
}
*id = cameraId;
*physicalId = physicalCameraDeviceName;
return OK;
}
void CameraProviderManager::ProviderInfo::torchModeStatusChangeInternal(
const std::string& cameraDeviceName,
TorchModeStatus newStatus) {
sp<StatusListener> listener;
SystemCameraKind systemCameraKind = SystemCameraKind::PUBLIC;
std::string id;
bool known = false;
{
// Hold mLock for accessing mDevices
std::lock_guard<std::mutex> lock(mLock);
for (auto& deviceInfo : mDevices) {
if (deviceInfo->mName == cameraDeviceName) {
ALOGI("Camera device %s torch status is now %s", cameraDeviceName.c_str(),
FrameworkTorchStatusToString(newStatus));
id = deviceInfo->mId;
known = true;
systemCameraKind = deviceInfo->mSystemCameraKind;
if (TorchModeStatus::AVAILABLE_ON != newStatus) {
mManager->removeRef(CameraProviderManager::DeviceMode::TORCH, id);
}
break;
}
}
if (!known) {
ALOGW("Camera provider %s says an unknown camera %s now has torch status %d. Curious.",
mProviderName.c_str(), cameraDeviceName.c_str(), newStatus);
return;
}
// no lock needed since listener is set up only once during
// CameraProviderManager initialization and then never changed till it is
// destructed.
listener = mManager->getStatusListener();
}
// Call without lock held to allow reentrancy into provider manager
// The problem with holding mLock here is that we
// might be limiting re-entrancy : CameraService::onTorchStatusChanged calls
// back into CameraProviderManager which might try to hold mLock again (eg:
// findDeviceInfo, which should be holding mLock while iterating through
// each provider's devices).
if (listener != nullptr) {
listener->onTorchStatusChanged(id, newStatus, systemCameraKind);
}
return;
}
void CameraProviderManager::ProviderInfo::notifyDeviceInfoStateChangeLocked(
int64_t newDeviceState) {
std::lock_guard<std::mutex> lock(mLock);
for (auto it = mDevices.begin(); it != mDevices.end(); it++) {
(*it)->notifyDeviceStateChange(newDeviceState);
}
}
CameraProviderManager::ProviderInfo::DeviceInfo3::DeviceInfo3(const std::string& name,
const metadata_vendor_id_t tagId, const std::string &id,
uint16_t minorVersion,
const CameraResourceCost& resourceCost,
sp<ProviderInfo> parentProvider,
const std::vector<std::string>& publicCameraIds) :
DeviceInfo(name, tagId, id,
hardware::hidl_version{
static_cast<uint16_t >(
parentProvider->getIPCTransport() == IPCTransport::HIDL ? 3 : 1),
minorVersion},
publicCameraIds, resourceCost, parentProvider) { }
void CameraProviderManager::ProviderInfo::DeviceInfo3::notifyDeviceStateChange(int64_t newState) {
if (!mDeviceStateOrientationMap.empty() &&
(mDeviceStateOrientationMap.find(newState) != mDeviceStateOrientationMap.end())) {
mCameraCharacteristics.update(ANDROID_SENSOR_ORIENTATION,
&mDeviceStateOrientationMap[newState], 1);
if (mCameraCharNoPCOverride.get() != nullptr) {
mCameraCharNoPCOverride->update(ANDROID_SENSOR_ORIENTATION,
&mDeviceStateOrientationMap[newState], 1);
}
}
}
status_t CameraProviderManager::ProviderInfo::DeviceInfo3::getCameraInfo(
bool overrideToPortrait, int *portraitRotation,
hardware::CameraInfo *info) const {
if (info == nullptr) return BAD_VALUE;
camera_metadata_ro_entry facing =
mCameraCharacteristics.find(ANDROID_LENS_FACING);
if (facing.count == 1) {
switch (facing.data.u8[0]) {
case ANDROID_LENS_FACING_BACK:
info->facing = hardware::CAMERA_FACING_BACK;
break;
case ANDROID_LENS_FACING_EXTERNAL:
// Map external to front for legacy API
case ANDROID_LENS_FACING_FRONT:
info->facing = hardware::CAMERA_FACING_FRONT;
break;
}
} else {
ALOGE("%s: Unable to find android.lens.facing static metadata", __FUNCTION__);
return NAME_NOT_FOUND;
}
camera_metadata_ro_entry orientation =
mCameraCharacteristics.find(ANDROID_SENSOR_ORIENTATION);
if (orientation.count == 1) {
info->orientation = orientation.data.i32[0];
} else {
ALOGE("%s: Unable to find android.sensor.orientation static metadata", __FUNCTION__);
return NAME_NOT_FOUND;
}
if (overrideToPortrait && (info->orientation == 0 || info->orientation == 180)) {
*portraitRotation = 90;
if (info->facing == hardware::CAMERA_FACING_FRONT) {
info->orientation = (360 + info->orientation - 90) % 360;
} else {
info->orientation = (360 + info->orientation + 90) % 360;
}
} else {
*portraitRotation = 0;
}
return OK;
}
bool CameraProviderManager::ProviderInfo::DeviceInfo3::isAPI1Compatible() const {
// Do not advertise NIR cameras to API1 camera app.
camera_metadata_ro_entry cfa = mCameraCharacteristics.find(
ANDROID_SENSOR_INFO_COLOR_FILTER_ARRANGEMENT);
if (cfa.count == 1 && cfa.data.u8[0] == ANDROID_SENSOR_INFO_COLOR_FILTER_ARRANGEMENT_NIR) {
return false;
}
bool isBackwardCompatible = false;
camera_metadata_ro_entry_t caps = mCameraCharacteristics.find(
ANDROID_REQUEST_AVAILABLE_CAPABILITIES);
for (size_t i = 0; i < caps.count; i++) {
if (caps.data.u8[i] ==
ANDROID_REQUEST_AVAILABLE_CAPABILITIES_BACKWARD_COMPATIBLE) {
isBackwardCompatible = true;
break;
}
}
return isBackwardCompatible;
}
status_t CameraProviderManager::ProviderInfo::DeviceInfo3::getCameraCharacteristics(
bool overrideForPerfClass, CameraMetadata *characteristics, bool overrideToPortrait) {
if (characteristics == nullptr) return BAD_VALUE;
if (!overrideForPerfClass && mCameraCharNoPCOverride != nullptr) {
*characteristics = *mCameraCharNoPCOverride;
} else {
*characteristics = mCameraCharacteristics;
}
if (overrideToPortrait) {
const auto &lensFacingEntry = characteristics->find(ANDROID_LENS_FACING);
const auto &sensorOrientationEntry = characteristics->find(ANDROID_SENSOR_ORIENTATION);
uint8_t lensFacing = lensFacingEntry.data.u8[0];
if (lensFacingEntry.count > 0 && sensorOrientationEntry.count > 0) {
int32_t sensorOrientation = sensorOrientationEntry.data.i32[0];
int32_t newSensorOrientation = sensorOrientation;
if (sensorOrientation == 0 || sensorOrientation == 180) {
if (lensFacing == ANDROID_LENS_FACING_FRONT) {
newSensorOrientation = (360 + sensorOrientation - 90) % 360;
} else if (lensFacing == ANDROID_LENS_FACING_BACK) {
newSensorOrientation = (360 + sensorOrientation + 90) % 360;
}
}
if (newSensorOrientation != sensorOrientation) {
ALOGV("%s: Update ANDROID_SENSOR_ORIENTATION for lens facing %d "
"from %d to %d", __FUNCTION__, lensFacing, sensorOrientation,
newSensorOrientation);
characteristics->update(ANDROID_SENSOR_ORIENTATION, &newSensorOrientation, 1);
}
}
if (characteristics->exists(ANDROID_INFO_DEVICE_STATE_ORIENTATIONS)) {
ALOGV("%s: Erasing ANDROID_INFO_DEVICE_STATE_ORIENTATIONS for lens facing %d",
__FUNCTION__, lensFacing);
characteristics->erase(ANDROID_INFO_DEVICE_STATE_ORIENTATIONS);
}
}
return OK;
}
status_t CameraProviderManager::ProviderInfo::DeviceInfo3::getPhysicalCameraCharacteristics(
const std::string& physicalCameraId, CameraMetadata *characteristics) const {
if (characteristics == nullptr) return BAD_VALUE;
if (mPhysicalCameraCharacteristics.find(physicalCameraId) ==
mPhysicalCameraCharacteristics.end()) {
return NAME_NOT_FOUND;
}
*characteristics = mPhysicalCameraCharacteristics.at(physicalCameraId);
return OK;
}
status_t CameraProviderManager::ProviderInfo::DeviceInfo3::filterSmallJpegSizes() {
int32_t thresholdW = SessionConfigurationUtils::PERF_CLASS_JPEG_THRESH_W;
int32_t thresholdH = SessionConfigurationUtils::PERF_CLASS_JPEG_THRESH_H;
if (mCameraCharNoPCOverride != nullptr) return OK;
mCameraCharNoPCOverride = std::make_unique<CameraMetadata>(mCameraCharacteristics);
// Remove small JPEG sizes from available stream configurations
size_t largeJpegCount = 0;
std::vector<int32_t> newStreamConfigs;
camera_metadata_entry streamConfigs =
mCameraCharacteristics.find(ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS);
for (size_t i = 0; i < streamConfigs.count; i += 4) {
if ((streamConfigs.data.i32[i] == HAL_PIXEL_FORMAT_BLOB) && (streamConfigs.data.i32[i+3] ==
ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS_OUTPUT)) {
if (streamConfigs.data.i32[i+1] * streamConfigs.data.i32[i+2] <
thresholdW * thresholdH) {
continue;
} else {
largeJpegCount ++;
}
}
newStreamConfigs.insert(newStreamConfigs.end(), streamConfigs.data.i32 + i,
streamConfigs.data.i32 + i + 4);
}
if (newStreamConfigs.size() == 0 || largeJpegCount == 0) {
return BAD_VALUE;
}
// Remove small JPEG sizes from available min frame durations
largeJpegCount = 0;
std::vector<int64_t> newMinDurations;
camera_metadata_entry minDurations =
mCameraCharacteristics.find(ANDROID_SCALER_AVAILABLE_MIN_FRAME_DURATIONS);
for (size_t i = 0; i < minDurations.count; i += 4) {
if (minDurations.data.i64[i] == HAL_PIXEL_FORMAT_BLOB) {
if ((int32_t)minDurations.data.i64[i+1] * (int32_t)minDurations.data.i64[i+2] <
thresholdW * thresholdH) {
continue;
} else {
largeJpegCount++;
}
}
newMinDurations.insert(newMinDurations.end(), minDurations.data.i64 + i,
minDurations.data.i64 + i + 4);
}
if (newMinDurations.size() == 0 || largeJpegCount == 0) {
return BAD_VALUE;
}
// Remove small JPEG sizes from available stall durations
largeJpegCount = 0;
std::vector<int64_t> newStallDurations;
camera_metadata_entry stallDurations =
mCameraCharacteristics.find(ANDROID_SCALER_AVAILABLE_STALL_DURATIONS);
for (size_t i = 0; i < stallDurations.count; i += 4) {
if (stallDurations.data.i64[i] == HAL_PIXEL_FORMAT_BLOB) {
if ((int32_t)stallDurations.data.i64[i+1] * (int32_t)stallDurations.data.i64[i+2] <
thresholdW * thresholdH) {
continue;
} else {
largeJpegCount++;
}
}
newStallDurations.insert(newStallDurations.end(), stallDurations.data.i64 + i,
stallDurations.data.i64 + i + 4);
}
if (newStallDurations.size() == 0 || largeJpegCount == 0) {
return BAD_VALUE;
}
mCameraCharacteristics.update(ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS,
newStreamConfigs.data(), newStreamConfigs.size());
mCameraCharacteristics.update(ANDROID_SCALER_AVAILABLE_MIN_FRAME_DURATIONS,
newMinDurations.data(), newMinDurations.size());
mCameraCharacteristics.update(ANDROID_SCALER_AVAILABLE_STALL_DURATIONS,
newStallDurations.data(), newStallDurations.size());
// Re-generate metadata tags that have dependencies on BLOB sizes
auto res = addDynamicDepthTags();
if (OK != res) {
ALOGE("%s: Failed to append dynamic depth tags: %s (%d)", __FUNCTION__,
strerror(-res), res);
// Allow filtering of small JPEG sizes to succeed even if dynamic depth
// tags fail to generate.
}
return OK;
}
status_t CameraProviderManager::ProviderInfo::parseProviderName(const std::string& name,
std::string *type, uint32_t *id) {
// Format must be "<type>/<id>"
#define ERROR_MSG_PREFIX "%s: Invalid provider name '%s'. " \
"Should match '<type>/<id>' - "
if (!type || !id) return INVALID_OPERATION;
std::string::size_type slashIdx = name.find('/');
if (slashIdx == std::string::npos || slashIdx == name.size() - 1) {
ALOGE(ERROR_MSG_PREFIX
"does not have / separator between type and id",
__FUNCTION__, name.c_str());
return BAD_VALUE;
}
std::string typeVal = name.substr(0, slashIdx);
char *endPtr;
errno = 0;
long idVal = strtol(name.c_str() + slashIdx + 1, &endPtr, 10);
if (errno != 0) {
ALOGE(ERROR_MSG_PREFIX
"cannot parse provider id as an integer: %s (%d)",
__FUNCTION__, name.c_str(), strerror(errno), errno);
return BAD_VALUE;
}
if (endPtr != name.c_str() + name.size()) {
ALOGE(ERROR_MSG_PREFIX
"provider id has unexpected length",
__FUNCTION__, name.c_str());
return BAD_VALUE;
}
if (idVal < 0) {
ALOGE(ERROR_MSG_PREFIX
"id is negative: %ld",
__FUNCTION__, name.c_str(), idVal);
return BAD_VALUE;
}
#undef ERROR_MSG_PREFIX
*type = typeVal;
*id = static_cast<uint32_t>(idVal);
return OK;
}
metadata_vendor_id_t CameraProviderManager::ProviderInfo::generateVendorTagId(
const std::string &name) {
metadata_vendor_id_t ret = std::hash<std::string> {} (name);
// CAMERA_METADATA_INVALID_VENDOR_ID is not a valid hash value
if (CAMERA_METADATA_INVALID_VENDOR_ID == ret) {
ret = 0;
}
return ret;
}
status_t CameraProviderManager::ProviderInfo::parseDeviceName(const std::string& name,
uint16_t *major, uint16_t *minor, std::string *type, std::string *id) {
// Format must be "device@<major>.<minor>/<type>/<id>"
#define ERROR_MSG_PREFIX "%s: Invalid device name '%s'. " \
"Should match 'device@<major>.<minor>/<type>/<id>' - "
if (!major || !minor || !type || !id) return INVALID_OPERATION;
// Verify starting prefix
const char expectedPrefix[] = "device@";
if (name.find(expectedPrefix) != 0) {
ALOGE(ERROR_MSG_PREFIX
"does not start with '%s'",
__FUNCTION__, name.c_str(), expectedPrefix);
return BAD_VALUE;
}
// Extract major/minor versions
constexpr std::string::size_type atIdx = sizeof(expectedPrefix) - 2;
std::string::size_type dotIdx = name.find('.', atIdx);
if (dotIdx == std::string::npos) {
ALOGE(ERROR_MSG_PREFIX
"does not have @<major>. version section",
__FUNCTION__, name.c_str());
return BAD_VALUE;
}
std::string::size_type typeSlashIdx = name.find('/', dotIdx);
if (typeSlashIdx == std::string::npos) {
ALOGE(ERROR_MSG_PREFIX
"does not have .<minor>/ version section",
__FUNCTION__, name.c_str());
return BAD_VALUE;
}
char *endPtr;
errno = 0;
long majorVal = strtol(name.c_str() + atIdx + 1, &endPtr, 10);
if (errno != 0) {
ALOGE(ERROR_MSG_PREFIX
"cannot parse major version: %s (%d)",
__FUNCTION__, name.c_str(), strerror(errno), errno);
return BAD_VALUE;
}
if (endPtr != name.c_str() + dotIdx) {
ALOGE(ERROR_MSG_PREFIX
"major version has unexpected length",
__FUNCTION__, name.c_str());
return BAD_VALUE;
}
long minorVal = strtol(name.c_str() + dotIdx + 1, &endPtr, 10);
if (errno != 0) {
ALOGE(ERROR_MSG_PREFIX
"cannot parse minor version: %s (%d)",
__FUNCTION__, name.c_str(), strerror(errno), errno);
return BAD_VALUE;
}
if (endPtr != name.c_str() + typeSlashIdx) {
ALOGE(ERROR_MSG_PREFIX
"minor version has unexpected length",
__FUNCTION__, name.c_str());
return BAD_VALUE;
}
if (majorVal < 0 || majorVal > UINT16_MAX || minorVal < 0 || minorVal > UINT16_MAX) {
ALOGE(ERROR_MSG_PREFIX
"major/minor version is out of range of uint16_t: %ld.%ld",
__FUNCTION__, name.c_str(), majorVal, minorVal);
return BAD_VALUE;
}
// Extract type and id
std::string::size_type instanceSlashIdx = name.find('/', typeSlashIdx + 1);
if (instanceSlashIdx == std::string::npos) {
ALOGE(ERROR_MSG_PREFIX
"does not have /<type>/ component",
__FUNCTION__, name.c_str());
return BAD_VALUE;
}
std::string typeVal = name.substr(typeSlashIdx + 1, instanceSlashIdx - typeSlashIdx - 1);
if (instanceSlashIdx == name.size() - 1) {
ALOGE(ERROR_MSG_PREFIX
"does not have an /<id> component",
__FUNCTION__, name.c_str());
return BAD_VALUE;
}
std::string idVal = name.substr(instanceSlashIdx + 1);
#undef ERROR_MSG_PREFIX
*major = static_cast<uint16_t>(majorVal);
*minor = static_cast<uint16_t>(minorVal);
*type = typeVal;
*id = idVal;
return OK;
}
CameraProviderManager::ProviderInfo::~ProviderInfo() {
// Destruction of ProviderInfo is only supposed to happen when the respective
// CameraProvider interface dies, so do not unregister callbacks.
}
// Expects to have mInterfaceMutex locked
std::vector<std::unordered_set<std::string>>
CameraProviderManager::getConcurrentCameraIds() const {
std::vector<std::unordered_set<std::string>> deviceIdCombinations;
std::lock_guard<std::mutex> lock(mInterfaceMutex);
for (auto &provider : mProviders) {
for (auto &combinations : provider->getConcurrentCameraIdCombinations()) {
deviceIdCombinations.push_back(combinations);
}
}
return deviceIdCombinations;
}
// Checks if the containing vector of sets has any set that contains all of the
// camera ids in cameraIdsAndSessionConfigs.
static bool checkIfSetContainsAll(
const std::vector<CameraIdAndSessionConfiguration> &cameraIdsAndSessionConfigs,
const std::vector<std::unordered_set<std::string>> &containingSets) {
for (auto &containingSet : containingSets) {
bool didHaveAll = true;
for (auto &cameraIdAndSessionConfig : cameraIdsAndSessionConfigs) {
if (containingSet.find(cameraIdAndSessionConfig.mCameraId) == containingSet.end()) {
// a camera id doesn't belong to this set, keep looking in other
// sets
didHaveAll = false;
break;
}
}
if (didHaveAll) {
// found a set that has all camera ids, lets return;
return true;
}
}
return false;
}
status_t CameraProviderManager::isConcurrentSessionConfigurationSupported(
const std::vector<CameraIdAndSessionConfiguration> &cameraIdsAndSessionConfigs,
const std::set<std::string>& perfClassPrimaryCameraIds,
int targetSdkVersion, bool *isSupported) {
std::lock_guard<std::mutex> lock(mInterfaceMutex);
// Check if all the devices are a subset of devices advertised by the
// same provider through getConcurrentStreamingCameraIds()
// TODO: we should also do a findDeviceInfoLocked here ?
for (auto &provider : mProviders) {
if (checkIfSetContainsAll(cameraIdsAndSessionConfigs,
provider->getConcurrentCameraIdCombinations())) {
return provider->isConcurrentSessionConfigurationSupported(
cameraIdsAndSessionConfigs, perfClassPrimaryCameraIds, targetSdkVersion,
isSupported);
}
}
*isSupported = false;
//The set of camera devices were not found
return INVALID_OPERATION;
}
status_t CameraProviderManager::getCameraCharacteristicsLocked(const std::string &id,
bool overrideForPerfClass, CameraMetadata* characteristics,
bool overrideToPortrait) const {
auto deviceInfo = findDeviceInfoLocked(id);
if (deviceInfo != nullptr) {
return deviceInfo->getCameraCharacteristics(overrideForPerfClass, characteristics,
overrideToPortrait);
}
// Find hidden physical camera characteristics
for (auto& provider : mProviders) {
for (auto& deviceInfo : provider->mDevices) {
status_t res = deviceInfo->getPhysicalCameraCharacteristics(id, characteristics);
if (res != NAME_NOT_FOUND) return res;
}
}
return NAME_NOT_FOUND;
}
void CameraProviderManager::filterLogicalCameraIdsLocked(
std::vector<std::string>& deviceIds) const
{
// Map between camera facing and camera IDs related to logical camera.
std::map<int, std::unordered_set<std::string>> idCombos;
// Collect all logical and its underlying physical camera IDs for each
// facing.
for (auto& deviceId : deviceIds) {
auto deviceInfo = findDeviceInfoLocked(deviceId);
if (deviceInfo == nullptr) continue;
if (!deviceInfo->mIsLogicalCamera) {
continue;
}
// combo contains the ids of a logical camera and its physical cameras
std::vector<std::string> combo = deviceInfo->mPhysicalIds;
combo.push_back(deviceId);
hardware::CameraInfo info;
int portraitRotation;
status_t res = deviceInfo->getCameraInfo(/*overrideToPortrait*/false, &portraitRotation,
&info);
if (res != OK) {
ALOGE("%s: Error reading camera info: %s (%d)", __FUNCTION__, strerror(-res), res);
continue;
}
idCombos[info.facing].insert(combo.begin(), combo.end());
}
// Only expose one camera ID per facing for all logical and underlying
// physical camera IDs.
for (auto& r : idCombos) {
auto& removedIds = r.second;
for (auto& id : deviceIds) {
auto foundId = std::find(removedIds.begin(), removedIds.end(), id);
if (foundId == removedIds.end()) {
continue;
}
removedIds.erase(foundId);
break;
}
deviceIds.erase(std::remove_if(deviceIds.begin(), deviceIds.end(),
[&removedIds](const std::string& s) {
return removedIds.find(s) != removedIds.end();}),
deviceIds.end());
}
}
bool CameraProviderManager::isVirtualCameraHalEnabled() {
return flags::virtual_camera_service_discovery();
}
} // namespace android