| /* |
| * Copyright (C) 2017 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| //#define LOG_NDEBUG 0 |
| #include <utils/Log.h> |
| |
| #define ATRACE_TAG ATRACE_TAG_AUDIO |
| |
| #include <media/MediaMetricsItem.h> |
| #include <utils/Trace.h> |
| |
| #include "client/AudioStreamInternalPlay.h" |
| #include "utility/AudioClock.h" |
| |
| // We do this after the #includes because if a header uses ALOG. |
| // it would fail on the reference to mInService. |
| #undef LOG_TAG |
| // This file is used in both client and server processes. |
| // This is needed to make sense of the logs more easily. |
| #define LOG_TAG (mInService ? "AudioStreamInternalPlay_Service" \ |
| : "AudioStreamInternalPlay_Client") |
| |
| using android::status_t; |
| using android::WrappingBuffer; |
| |
| using namespace aaudio; |
| |
| AudioStreamInternalPlay::AudioStreamInternalPlay(AAudioServiceInterface &serviceInterface, |
| bool inService) |
| : AudioStreamInternal(serviceInterface, inService) { |
| |
| } |
| |
| constexpr int kRampMSec = 10; // time to apply a change in volume |
| |
| aaudio_result_t AudioStreamInternalPlay::open(const AudioStreamBuilder &builder) { |
| aaudio_result_t result = AudioStreamInternal::open(builder); |
| const bool useVolumeRamps = (getSharingMode() == AAUDIO_SHARING_MODE_EXCLUSIVE); |
| if (result == AAUDIO_OK) { |
| result = mFlowGraph.configure(getFormat(), |
| getSamplesPerFrame(), |
| getSampleRate(), |
| getDeviceFormat(), |
| getDeviceSamplesPerFrame(), |
| getDeviceSampleRate(), |
| getRequireMonoBlend(), |
| useVolumeRamps, |
| getAudioBalance(), |
| aaudio::resampler::MultiChannelResampler::Quality::Medium); |
| |
| if (result != AAUDIO_OK) { |
| safeReleaseClose(); |
| } |
| // Sample rate is constrained to common values by now and should not overflow. |
| int32_t numFrames = kRampMSec * getSampleRate() / AAUDIO_MILLIS_PER_SECOND; |
| mFlowGraph.setRampLengthInFrames(numFrames); |
| } |
| return result; |
| } |
| |
| // This must be called under mStreamLock. |
| aaudio_result_t AudioStreamInternalPlay::requestPause_l() |
| { |
| aaudio_result_t result = stopCallback_l(); |
| if (result != AAUDIO_OK) { |
| return result; |
| } |
| if (getServiceHandle() == AAUDIO_HANDLE_INVALID) { |
| ALOGW("%s() mServiceStreamHandle invalid", __func__); |
| return AAUDIO_ERROR_INVALID_STATE; |
| } |
| |
| mClockModel.stop(AudioClock::getNanoseconds()); |
| setState(AAUDIO_STREAM_STATE_PAUSING); |
| mAtomicInternalTimestamp.clear(); |
| return mServiceInterface.pauseStream(mServiceStreamHandleInfo); |
| } |
| |
| aaudio_result_t AudioStreamInternalPlay::requestFlush_l() { |
| if (getServiceHandle() == AAUDIO_HANDLE_INVALID) { |
| ALOGW("%s() mServiceStreamHandle invalid", __func__); |
| return AAUDIO_ERROR_INVALID_STATE; |
| } |
| |
| setState(AAUDIO_STREAM_STATE_FLUSHING); |
| return mServiceInterface.flushStream(mServiceStreamHandleInfo); |
| } |
| |
| void AudioStreamInternalPlay::prepareBuffersForStart() { |
| // Prevent stale data from being played. |
| mAudioEndpoint->eraseDataMemory(); |
| } |
| |
| void AudioStreamInternalPlay::advanceClientToMatchServerPosition(int32_t serverMargin) { |
| int64_t readCounter = mAudioEndpoint->getDataReadCounter() + serverMargin; |
| int64_t writeCounter = mAudioEndpoint->getDataWriteCounter(); |
| |
| // Bump offset so caller does not see the retrograde motion in getFramesRead(). |
| int64_t offset = writeCounter - readCounter; |
| mFramesOffsetFromService += offset; |
| ALOGV("%s() readN = %lld, writeN = %lld, offset = %lld", __func__, |
| (long long)readCounter, (long long)writeCounter, (long long)mFramesOffsetFromService); |
| |
| // Force writeCounter to match readCounter. |
| // This is because we cannot change the read counter in the hardware. |
| mAudioEndpoint->setDataWriteCounter(readCounter); |
| } |
| |
| void AudioStreamInternalPlay::onFlushFromServer() { |
| advanceClientToMatchServerPosition(0 /*serverMargin*/); |
| } |
| |
| // Write the data, block if needed and timeoutMillis > 0 |
| aaudio_result_t AudioStreamInternalPlay::write(const void *buffer, int32_t numFrames, |
| int64_t timeoutNanoseconds) { |
| return processData((void *)buffer, numFrames, timeoutNanoseconds); |
| } |
| |
| // Write as much data as we can without blocking. |
| aaudio_result_t AudioStreamInternalPlay::processDataNow(void *buffer, int32_t numFrames, |
| int64_t currentNanoTime, int64_t *wakeTimePtr) { |
| aaudio_result_t result = processCommands(); |
| if (result != AAUDIO_OK) { |
| return result; |
| } |
| |
| const char *traceName = "aaWrNow"; |
| ATRACE_BEGIN(traceName); |
| |
| if (mClockModel.isStarting()) { |
| // Still haven't got any timestamps from server. |
| // Keep waiting until we get some valid timestamps then start writing to the |
| // current buffer position. |
| ALOGV("%s() wait for valid timestamps", __func__); |
| // Sleep very briefly and hope we get a timestamp soon. |
| *wakeTimePtr = currentNanoTime + (2000 * AAUDIO_NANOS_PER_MICROSECOND); |
| ATRACE_END(); |
| return 0; |
| } |
| // If we have gotten this far then we have at least one timestamp from server. |
| |
| // If a DMA channel or DSP is reading the other end then we have to update the readCounter. |
| if (mAudioEndpoint->isFreeRunning()) { |
| // Update data queue based on the timing model. |
| int64_t estimatedReadCounter = mClockModel.convertTimeToPosition(currentNanoTime); |
| // ALOGD("AudioStreamInternal::processDataNow() - estimatedReadCounter = %d", (int)estimatedReadCounter); |
| mAudioEndpoint->setDataReadCounter(estimatedReadCounter); |
| } |
| |
| if (mNeedCatchUp.isRequested()) { |
| // Catch an MMAP pointer that is already advancing. |
| // This will avoid initial underruns caused by a slow cold start. |
| // We add a one burst margin in case the DSP advances before we can write the data. |
| // This can help prevent the beginning of the stream from being skipped. |
| advanceClientToMatchServerPosition(getFramesPerBurst()); |
| mNeedCatchUp.acknowledge(); |
| } |
| |
| // If the read index passed the write index then consider it an underrun. |
| // For shared streams, the xRunCount is passed up from the service. |
| if (mAudioEndpoint->isFreeRunning() && mAudioEndpoint->getFullFramesAvailable() < 0) { |
| mXRunCount++; |
| if (ATRACE_ENABLED()) { |
| ATRACE_INT("aaUnderRuns", mXRunCount); |
| } |
| } |
| |
| // Write some data to the buffer. |
| //ALOGD("AudioStreamInternal::processDataNow() - writeNowWithConversion(%d)", numFrames); |
| int32_t framesWritten = writeNowWithConversion(buffer, numFrames); |
| //ALOGD("AudioStreamInternal::processDataNow() - tried to write %d frames, wrote %d", |
| // numFrames, framesWritten); |
| if (ATRACE_ENABLED()) { |
| ATRACE_INT("aaWrote", framesWritten); |
| } |
| |
| // Sleep if there is too much data in the buffer. |
| // Calculate an ideal time to wake up. |
| if (wakeTimePtr != nullptr |
| && (mAudioEndpoint->getFullFramesAvailable() >= getDeviceBufferSize())) { |
| // By default wake up a few milliseconds from now. // TODO review |
| int64_t wakeTime = currentNanoTime + (1 * AAUDIO_NANOS_PER_MILLISECOND); |
| aaudio_stream_state_t state = getState(); |
| //ALOGD("AudioStreamInternal::processDataNow() - wakeTime based on %s", |
| // AAudio_convertStreamStateToText(state)); |
| switch (state) { |
| case AAUDIO_STREAM_STATE_OPEN: |
| case AAUDIO_STREAM_STATE_STARTING: |
| if (framesWritten != 0) { |
| // Don't wait to write more data. Just prime the buffer. |
| wakeTime = currentNanoTime; |
| } |
| break; |
| case AAUDIO_STREAM_STATE_STARTED: |
| { |
| // Calculate when there will be room available to write to the buffer. |
| // If the appBufferSize is smaller than the endpointBufferSize then |
| // we will have room to write data beyond the appBufferSize. |
| // That is a technique used to reduce glitches without adding latency. |
| const int64_t appBufferSize = getDeviceBufferSize(); |
| // The endpoint buffer size is set to the maximum that can be written. |
| // If we use it then we must carve out some room to write data when we wake up. |
| const int64_t endBufferSize = mAudioEndpoint->getBufferSizeInFrames() |
| - getDeviceFramesPerBurst(); |
| const int64_t bestBufferSize = std::min(appBufferSize, endBufferSize); |
| int64_t targetReadPosition = mAudioEndpoint->getDataWriteCounter() - bestBufferSize; |
| wakeTime = mClockModel.convertPositionToTime(targetReadPosition); |
| } |
| break; |
| default: |
| break; |
| } |
| *wakeTimePtr = wakeTime; |
| |
| } |
| |
| ATRACE_END(); |
| return framesWritten; |
| } |
| |
| |
| aaudio_result_t AudioStreamInternalPlay::writeNowWithConversion(const void *buffer, |
| int32_t numFrames) { |
| WrappingBuffer wrappingBuffer; |
| uint8_t *byteBuffer = (uint8_t *) buffer; |
| int32_t framesLeftInByteBuffer = numFrames; |
| |
| mAudioEndpoint->getEmptyFramesAvailable(&wrappingBuffer); |
| |
| // Write data in one or two parts. |
| int partIndex = 0; |
| int framesWrittenToAudioEndpoint = 0; |
| while (framesLeftInByteBuffer > 0 && partIndex < WrappingBuffer::SIZE) { |
| int32_t framesAvailableInWrappingBuffer = wrappingBuffer.numFrames[partIndex]; |
| uint8_t *currentWrappingBuffer = (uint8_t *) wrappingBuffer.data[partIndex]; |
| |
| if (framesAvailableInWrappingBuffer > 0) { |
| // Pull data from the flowgraph in case there is residual data. |
| const int32_t framesActuallyWrittenToWrappingBuffer = mFlowGraph.pull( |
| (void*) currentWrappingBuffer, |
| framesAvailableInWrappingBuffer); |
| |
| const int32_t numBytesActuallyWrittenToWrappingBuffer = |
| framesActuallyWrittenToWrappingBuffer * getBytesPerDeviceFrame(); |
| currentWrappingBuffer += numBytesActuallyWrittenToWrappingBuffer; |
| framesAvailableInWrappingBuffer -= framesActuallyWrittenToWrappingBuffer; |
| framesWrittenToAudioEndpoint += framesActuallyWrittenToWrappingBuffer; |
| } else { |
| break; |
| } |
| |
| // Put data from byteBuffer into the flowgraph one buffer (8 frames) at a time. |
| // Continuously pull as much data as possible from the flowgraph into the wrapping buffer. |
| // The return value of mFlowGraph.process is the number of frames actually pulled. |
| while (framesAvailableInWrappingBuffer > 0 && framesLeftInByteBuffer > 0) { |
| int32_t framesToWriteFromByteBuffer = std::min(flowgraph::kDefaultBufferSize, |
| framesLeftInByteBuffer); |
| // If the wrapping buffer is running low, write one frame at a time. |
| if (framesAvailableInWrappingBuffer < flowgraph::kDefaultBufferSize) { |
| framesToWriteFromByteBuffer = 1; |
| } |
| |
| const int32_t numBytesToWriteFromByteBuffer = getBytesPerFrame() * |
| framesToWriteFromByteBuffer; |
| |
| //ALOGD("%s() framesLeftInByteBuffer %d, framesAvailableInWrappingBuffer %d" |
| // "framesToWriteFromByteBuffer %d, numBytesToWriteFromByteBuffer %d" |
| // , __func__, framesLeftInByteBuffer, framesAvailableInWrappingBuffer, |
| // framesToWriteFromByteBuffer, numBytesToWriteFromByteBuffer); |
| |
| const int32_t framesActuallyWrittenToWrappingBuffer = mFlowGraph.process( |
| (void *)byteBuffer, |
| framesToWriteFromByteBuffer, |
| (void *)currentWrappingBuffer, |
| framesAvailableInWrappingBuffer); |
| |
| byteBuffer += numBytesToWriteFromByteBuffer; |
| framesLeftInByteBuffer -= framesToWriteFromByteBuffer; |
| const int32_t numBytesActuallyWrittenToWrappingBuffer = |
| framesActuallyWrittenToWrappingBuffer * getBytesPerDeviceFrame(); |
| currentWrappingBuffer += numBytesActuallyWrittenToWrappingBuffer; |
| framesAvailableInWrappingBuffer -= framesActuallyWrittenToWrappingBuffer; |
| framesWrittenToAudioEndpoint += framesActuallyWrittenToWrappingBuffer; |
| |
| //ALOGD("%s() numBytesActuallyWrittenToWrappingBuffer %d, framesLeftInByteBuffer %d" |
| // "framesActuallyWrittenToWrappingBuffer %d, numBytesToWriteFromByteBuffer %d" |
| // "framesWrittenToAudioEndpoint %d" |
| // , __func__, numBytesActuallyWrittenToWrappingBuffer, framesLeftInByteBuffer, |
| // framesActuallyWrittenToWrappingBuffer, numBytesToWriteFromByteBuffer, |
| // framesWrittenToAudioEndpoint); |
| } |
| partIndex++; |
| } |
| //ALOGD("%s() framesWrittenToAudioEndpoint %d, numFrames %d" |
| // "framesLeftInByteBuffer %d" |
| // , __func__, framesWrittenToAudioEndpoint, numFrames, |
| // framesLeftInByteBuffer); |
| |
| // The audio endpoint should reference the number of frames written to the wrapping buffer. |
| mAudioEndpoint->advanceWriteIndex(framesWrittenToAudioEndpoint); |
| |
| // The internal code should use the number of frames read from the app. |
| return numFrames - framesLeftInByteBuffer; |
| } |
| |
| int64_t AudioStreamInternalPlay::getFramesRead() { |
| if (mAudioEndpoint) { |
| const int64_t framesReadHardware = isClockModelInControl() |
| ? mClockModel.convertTimeToPosition(AudioClock::getNanoseconds()) |
| : mAudioEndpoint->getDataReadCounter(); |
| // Add service offset and prevent retrograde motion. |
| mLastFramesRead = std::max(mLastFramesRead, framesReadHardware + mFramesOffsetFromService); |
| } |
| return mLastFramesRead; |
| } |
| |
| int64_t AudioStreamInternalPlay::getFramesWritten() { |
| if (mAudioEndpoint) { |
| mLastFramesWritten = mAudioEndpoint->getDataWriteCounter() |
| + mFramesOffsetFromService; |
| } |
| return mLastFramesWritten; |
| } |
| |
| // Render audio in the application callback and then write the data to the stream. |
| void *AudioStreamInternalPlay::callbackLoop() { |
| ALOGD("%s() entering >>>>>>>>>>>>>>>", __func__); |
| aaudio_result_t result = AAUDIO_OK; |
| aaudio_data_callback_result_t callbackResult = AAUDIO_CALLBACK_RESULT_CONTINUE; |
| if (!isDataCallbackSet()) return nullptr; |
| int64_t timeoutNanos = calculateReasonableTimeout(mCallbackFrames); |
| |
| // result might be a frame count |
| while (mCallbackEnabled.load() && isActive() && (result >= 0)) { |
| // Call application using the AAudio callback interface. |
| callbackResult = maybeCallDataCallback(mCallbackBuffer.get(), mCallbackFrames); |
| |
| if (callbackResult == AAUDIO_CALLBACK_RESULT_CONTINUE) { |
| // Write audio data to stream. This is a BLOCKING WRITE! |
| result = write(mCallbackBuffer.get(), mCallbackFrames, timeoutNanos); |
| if ((result != mCallbackFrames)) { |
| if (result >= 0) { |
| // Only wrote some of the frames requested. Must have timed out. |
| result = AAUDIO_ERROR_TIMEOUT; |
| } |
| maybeCallErrorCallback(result); |
| break; |
| } |
| } else if (callbackResult == AAUDIO_CALLBACK_RESULT_STOP) { |
| ALOGD("%s(): callback returned AAUDIO_CALLBACK_RESULT_STOP", __func__); |
| result = systemStopInternal(); |
| break; |
| } |
| } |
| |
| ALOGD("%s() exiting, result = %d, isActive() = %d <<<<<<<<<<<<<<", |
| __func__, result, (int) isActive()); |
| return nullptr; |
| } |
| |
| //------------------------------------------------------------------------------ |
| // Implementation of PlayerBase |
| status_t AudioStreamInternalPlay::doSetVolume() { |
| float combinedVolume = mStreamVolume * getDuckAndMuteVolume(); |
| ALOGD("%s() mStreamVolume * duckAndMuteVolume = %f * %f = %f", |
| __func__, mStreamVolume, getDuckAndMuteVolume(), combinedVolume); |
| mFlowGraph.setTargetVolume(combinedVolume); |
| return android::NO_ERROR; |
| } |