| /* |
| * Copyright (C) 2014 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #define LOG_TAG "FastThread" |
| //#define LOG_NDEBUG 0 |
| |
| #define ATRACE_TAG ATRACE_TAG_AUDIO |
| |
| #include "Configuration.h" |
| #include <linux/futex.h> |
| #include <sys/syscall.h> |
| #include <audio_utils/clock.h> |
| #include <cutils/atomic.h> |
| #include <utils/Log.h> |
| #include <utils/Trace.h> |
| #include "FastThread.h" |
| #include "FastThreadDumpState.h" |
| #include <afutils/TypedLogger.h> |
| |
| #define FAST_DEFAULT_NS 999999999L // ~1 sec: default time to sleep |
| #define FAST_HOT_IDLE_NS 1000000L // 1 ms: time to sleep while hot idling |
| #define MIN_WARMUP_CYCLES 2 // minimum number of consecutive in-range loop cycles |
| // to wait for warmup |
| #define MAX_WARMUP_CYCLES 10 // maximum number of loop cycles to wait for warmup |
| |
| namespace android { |
| |
| FastThread::FastThread(const char *cycleMs, const char *loadUs) : Thread(false /*canCallJava*/) |
| { |
| strlcpy(mCycleMs, cycleMs, sizeof(mCycleMs)); |
| strlcpy(mLoadUs, loadUs, sizeof(mLoadUs)); |
| } |
| |
| bool FastThread::threadLoop() |
| { |
| // LOGT now works even if tlNBLogWriter is nullptr, but we're considering changing that, |
| // so this initialization permits a future change to remove the check for nullptr. |
| aflog::setThreadWriter(mDummyNBLogWriter.get()); |
| for (;;) { |
| |
| // either nanosleep, sched_yield, or busy wait |
| if (mSleepNs >= 0) { |
| if (mSleepNs > 0) { |
| ALOG_ASSERT(mSleepNs < 1000000000); |
| const struct timespec req = { |
| 0, // tv_sec |
| static_cast<long>(mSleepNs) // NOLINT(google-runtime-int) |
| }; |
| nanosleep(&req, nullptr); |
| } else { |
| sched_yield(); |
| } |
| } |
| // default to long sleep for next cycle |
| mSleepNs = FAST_DEFAULT_NS; |
| |
| // poll for state change |
| const FastThreadState *next = poll(); |
| if (next == nullptr) { |
| // continue to use the default initial state until a real state is available |
| // FIXME &sInitial not available, should save address earlier |
| //ALOG_ASSERT(mCurrent == &sInitial && previous == &sInitial); |
| next = mCurrent; |
| } |
| |
| mCommand = next->mCommand; |
| if (next != mCurrent) { |
| |
| // As soon as possible of learning of a new dump area, start using it |
| mDumpState = next->mDumpState != nullptr ? next->mDumpState : mDummyDumpState; |
| NBLog::Writer * const writer = next->mNBLogWriter != nullptr ? |
| next->mNBLogWriter : mDummyNBLogWriter.get(); |
| aflog::setThreadWriter(writer); |
| setNBLogWriter(writer); // This is used for debugging only |
| |
| // We want to always have a valid reference to the previous (non-idle) state. |
| // However, the state queue only guarantees access to current and previous states. |
| // So when there is a transition from a non-idle state into an idle state, we make a |
| // copy of the last known non-idle state so it is still available on return from idle. |
| // The possible transitions are: |
| // non-idle -> non-idle update previous from current in-place |
| // non-idle -> idle update previous from copy of current |
| // idle -> idle don't update previous |
| // idle -> non-idle don't update previous |
| if (!(mCurrent->mCommand & FastThreadState::IDLE)) { |
| if (mCommand & FastThreadState::IDLE) { |
| onIdle(); |
| mOldTsValid = false; |
| #ifdef FAST_THREAD_STATISTICS |
| mOldLoadValid = false; |
| #endif |
| mIgnoreNextOverrun = true; |
| } |
| mPrevious = mCurrent; |
| } |
| mCurrent = next; |
| } |
| #if !LOG_NDEBUG |
| next = nullptr; // not referenced again |
| #endif |
| |
| mDumpState->mCommand = mCommand; |
| |
| // FIXME what does this comment mean? |
| // << current, previous, command, dumpState >> |
| |
| switch (mCommand) { |
| case FastThreadState::INITIAL: |
| case FastThreadState::HOT_IDLE: |
| mSleepNs = FAST_HOT_IDLE_NS; |
| continue; |
| case FastThreadState::COLD_IDLE: |
| // only perform a cold idle command once |
| // FIXME consider checking previous state and only perform if previous != COLD_IDLE |
| if (mCurrent->mColdGen != mColdGen) { |
| int32_t *coldFutexAddr = mCurrent->mColdFutexAddr; |
| ALOG_ASSERT(coldFutexAddr != nullptr); |
| const int32_t old = android_atomic_dec(coldFutexAddr); |
| if (old <= 0) { |
| syscall(__NR_futex, coldFutexAddr, FUTEX_WAIT_PRIVATE, old - 1, nullptr); |
| } |
| const int policy = sched_getscheduler(0) & ~SCHED_RESET_ON_FORK; |
| if (!(policy == SCHED_FIFO || policy == SCHED_RR)) { |
| ALOGE("did not receive expected priority boost on time"); |
| } |
| // This may be overly conservative; there could be times that the normal mixer |
| // requests such a brief cold idle that it doesn't require resetting this flag. |
| mIsWarm = false; |
| mMeasuredWarmupTs.tv_sec = 0; |
| mMeasuredWarmupTs.tv_nsec = 0; |
| mWarmupCycles = 0; |
| mWarmupConsecutiveInRangeCycles = 0; |
| mSleepNs = -1; |
| mColdGen = mCurrent->mColdGen; |
| #ifdef FAST_THREAD_STATISTICS |
| mBounds = 0; |
| mFull = false; |
| #endif |
| mOldTsValid = !clock_gettime(CLOCK_MONOTONIC, &mOldTs); |
| mTimestampStatus = INVALID_OPERATION; |
| } else { |
| mSleepNs = FAST_HOT_IDLE_NS; |
| } |
| continue; |
| case FastThreadState::EXIT: |
| onExit(); |
| return false; |
| default: |
| LOG_ALWAYS_FATAL_IF(!isSubClassCommand(mCommand)); |
| break; |
| } |
| |
| // there is a non-idle state available to us; did the state change? |
| if (mCurrent != mPrevious) { |
| onStateChange(); |
| #if 1 // FIXME shouldn't need this |
| // only process state change once |
| mPrevious = mCurrent; |
| #endif |
| } |
| |
| // do work using current state here |
| mAttemptedWrite = false; |
| onWork(); |
| |
| // To be exactly periodic, compute the next sleep time based on current time. |
| // This code doesn't have long-term stability when the sink is non-blocking. |
| // FIXME To avoid drift, use the local audio clock or watch the sink's fill status. |
| struct timespec newTs; |
| int rc = clock_gettime(CLOCK_MONOTONIC, &newTs); |
| if (rc == 0) { |
| if (mOldTsValid) { |
| time_t sec = newTs.tv_sec - mOldTs.tv_sec; |
| auto nsec = newTs.tv_nsec - mOldTs.tv_nsec; |
| ALOGE_IF(sec < 0 || (sec == 0 && nsec < 0), |
| "clock_gettime(CLOCK_MONOTONIC) failed: was %ld.%09ld but now %ld.%09ld", |
| mOldTs.tv_sec, mOldTs.tv_nsec, newTs.tv_sec, newTs.tv_nsec); |
| if (nsec < 0) { |
| --sec; |
| nsec += 1000000000; |
| } |
| // To avoid an initial underrun on fast tracks after exiting standby, |
| // do not start pulling data from tracks and mixing until warmup is complete. |
| // Warmup is considered complete after the earlier of: |
| // MIN_WARMUP_CYCLES consecutive in-range write() attempts, |
| // where "in-range" means mWarmupNsMin <= cycle time <= mWarmupNsMax |
| // MAX_WARMUP_CYCLES write() attempts. |
| // This is overly conservative, but to get better accuracy requires a new HAL API. |
| if (!mIsWarm && mAttemptedWrite) { |
| mMeasuredWarmupTs.tv_sec += sec; |
| mMeasuredWarmupTs.tv_nsec += nsec; |
| if (mMeasuredWarmupTs.tv_nsec >= 1000000000) { |
| mMeasuredWarmupTs.tv_sec++; |
| mMeasuredWarmupTs.tv_nsec -= 1000000000; |
| } |
| ++mWarmupCycles; |
| if (mWarmupNsMin <= nsec && nsec <= mWarmupNsMax) { |
| ALOGV("warmup cycle %d in range: %.03f ms", mWarmupCycles, nsec * 1e-9); |
| ++mWarmupConsecutiveInRangeCycles; |
| } else { |
| ALOGV("warmup cycle %d out of range: %.03f ms", mWarmupCycles, nsec * 1e-9); |
| mWarmupConsecutiveInRangeCycles = 0; |
| } |
| if ((mWarmupConsecutiveInRangeCycles >= MIN_WARMUP_CYCLES) || |
| (mWarmupCycles >= MAX_WARMUP_CYCLES)) { |
| mIsWarm = true; |
| mDumpState->mMeasuredWarmupTs = mMeasuredWarmupTs; |
| mDumpState->mWarmupCycles = mWarmupCycles; |
| const double measuredWarmupMs = (mMeasuredWarmupTs.tv_sec * 1e3) + |
| (mMeasuredWarmupTs.tv_nsec * 1e-6); |
| LOG_WARMUP_TIME(measuredWarmupMs); |
| } |
| } |
| mSleepNs = -1; |
| if (mIsWarm) { |
| if (sec > 0 || nsec > mUnderrunNs) { |
| ATRACE_NAME("underrun"); // NOLINT(misc-const-correctness) |
| // FIXME only log occasionally |
| ALOGV("underrun: time since last cycle %d.%03ld sec", |
| (int) sec, nsec / 1000000L); |
| mDumpState->mUnderruns++; |
| LOG_UNDERRUN(audio_utils_ns_from_timespec(&newTs)); |
| mIgnoreNextOverrun = true; |
| } else if (nsec < mOverrunNs) { |
| if (mIgnoreNextOverrun) { |
| mIgnoreNextOverrun = false; |
| } else { |
| // FIXME only log occasionally |
| ALOGV("overrun: time since last cycle %d.%03ld sec", |
| (int) sec, nsec / 1000000L); |
| mDumpState->mOverruns++; |
| LOG_OVERRUN(audio_utils_ns_from_timespec(&newTs)); |
| } |
| // This forces a minimum cycle time. It: |
| // - compensates for an audio HAL with jitter due to sample rate conversion |
| // - works with a variable buffer depth audio HAL that never pulls at a |
| // rate < than mOverrunNs per buffer. |
| // - recovers from overrun immediately after underrun |
| // It doesn't work with a non-blocking audio HAL. |
| mSleepNs = mForceNs - nsec; |
| } else { |
| mIgnoreNextOverrun = false; |
| } |
| } |
| #ifdef FAST_THREAD_STATISTICS |
| if (mIsWarm) { |
| // advance the FIFO queue bounds |
| const size_t i = mBounds & (mDumpState->mSamplingN - 1); |
| mBounds = (mBounds & 0xFFFF0000) | ((mBounds + 1) & 0xFFFF); |
| if (mFull) { |
| //mBounds += 0x10000; |
| __builtin_add_overflow(mBounds, 0x10000, &mBounds); |
| } else if (!(mBounds & (mDumpState->mSamplingN - 1))) { |
| mFull = true; |
| } |
| // compute the delta value of clock_gettime(CLOCK_MONOTONIC) |
| uint32_t monotonicNs = nsec; |
| if (sec > 0 && sec < 4) { |
| monotonicNs += sec * 1000000000U; // unsigned to prevent signed overflow. |
| } |
| // compute raw CPU load = delta value of clock_gettime(CLOCK_THREAD_CPUTIME_ID) |
| uint32_t loadNs = 0; |
| struct timespec newLoad; |
| rc = clock_gettime(CLOCK_THREAD_CPUTIME_ID, &newLoad); |
| if (rc == 0) { |
| if (mOldLoadValid) { |
| sec = newLoad.tv_sec - mOldLoad.tv_sec; |
| nsec = newLoad.tv_nsec - mOldLoad.tv_nsec; |
| if (nsec < 0) { |
| --sec; |
| nsec += 1000000000; |
| } |
| loadNs = nsec; |
| if (sec > 0 && sec < 4) { |
| loadNs += sec * 1000000000U; // unsigned to prevent signed overflow. |
| } |
| } else { |
| // first time through the loop |
| mOldLoadValid = true; |
| } |
| mOldLoad = newLoad; |
| } |
| #ifdef CPU_FREQUENCY_STATISTICS |
| // get the absolute value of CPU clock frequency in kHz |
| int cpuNum = sched_getcpu(); |
| uint32_t kHz = mTcu.getCpukHz(cpuNum); |
| kHz = (kHz << 4) | (cpuNum & 0xF); |
| #endif |
| // save values in FIFO queues for dumpsys |
| // these stores #1, #2, #3 are not atomic with respect to each other, |
| // or with respect to store #4 below |
| mDumpState->mMonotonicNs[i] = monotonicNs; |
| LOG_WORK_TIME(monotonicNs); |
| mDumpState->mLoadNs[i] = loadNs; |
| #ifdef CPU_FREQUENCY_STATISTICS |
| mDumpState->mCpukHz[i] = kHz; |
| #endif |
| // this store #4 is not atomic with respect to stores #1, #2, #3 above, but |
| // the newest open & oldest closed halves are atomic with respect to each other |
| mDumpState->mBounds = mBounds; |
| ATRACE_INT(mCycleMs, monotonicNs / 1000000); |
| ATRACE_INT(mLoadUs, loadNs / 1000); |
| } |
| #endif |
| } else { |
| // first time through the loop |
| mOldTsValid = true; |
| mSleepNs = mPeriodNs; |
| mIgnoreNextOverrun = true; |
| } |
| mOldTs = newTs; |
| } else { |
| // monotonic clock is broken |
| mOldTsValid = false; |
| mSleepNs = mPeriodNs; |
| } |
| |
| } // for (;;) |
| |
| // never return 'true'; Thread::_threadLoop() locks mutex which can result in priority inversion |
| } |
| |
| } // namespace android |