blob: 6b48075819dcae39add73af3dc7c3bda172359d9 [file] [log] [blame]
/*
* Copyright (C) 2017 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "AAudioServiceEndpointMMAP"
//#define LOG_NDEBUG 0
#include <utils/Log.h>
#include <algorithm>
#include <assert.h>
#include <map>
#include <mutex>
#include <set>
#include <sstream>
#include <thread>
#include <utils/Singleton.h>
#include <vector>
#include "AAudioEndpointManager.h"
#include "AAudioServiceEndpoint.h"
#include "core/AudioStreamBuilder.h"
#include "AAudioServiceEndpoint.h"
#include "AAudioServiceStreamShared.h"
#include "AAudioServiceEndpointPlay.h"
#include "AAudioServiceEndpointMMAP.h"
#define AAUDIO_BUFFER_CAPACITY_MIN (4 * 512)
#define AAUDIO_SAMPLE_RATE_DEFAULT 48000
// This is an estimate of the time difference between the HW and the MMAP time.
// TODO Get presentation timestamps from the HAL instead of using these estimates.
#define OUTPUT_ESTIMATED_HARDWARE_OFFSET_NANOS (3 * AAUDIO_NANOS_PER_MILLISECOND)
#define INPUT_ESTIMATED_HARDWARE_OFFSET_NANOS (-1 * AAUDIO_NANOS_PER_MILLISECOND)
#define AAUDIO_MAX_OPEN_ATTEMPTS 10
using namespace android; // TODO just import names needed
using namespace aaudio; // TODO just import names needed
AAudioServiceEndpointMMAP::AAudioServiceEndpointMMAP(AAudioService &audioService)
: mMmapStream(nullptr)
, mAAudioService(audioService) {}
std::string AAudioServiceEndpointMMAP::dump() const {
std::stringstream result;
result << " MMAP: framesTransferred = " << mFramesTransferred.get();
result << ", HW nanos = " << mHardwareTimeOffsetNanos;
result << ", port handle = " << mPortHandle;
result << ", audio data FD = " << mAudioDataWrapper->getDataFileDescriptor();
result << "\n";
result << " HW Offset Micros: " <<
(getHardwareTimeOffsetNanos()
/ AAUDIO_NANOS_PER_MICROSECOND) << "\n";
result << AAudioServiceEndpoint::dump();
return result.str();
}
namespace {
const static std::map<audio_format_t, audio_format_t> NEXT_FORMAT_TO_TRY = {
{AUDIO_FORMAT_PCM_FLOAT, AUDIO_FORMAT_PCM_32_BIT},
{AUDIO_FORMAT_PCM_32_BIT, AUDIO_FORMAT_PCM_24_BIT_PACKED},
{AUDIO_FORMAT_PCM_24_BIT_PACKED, AUDIO_FORMAT_PCM_8_24_BIT},
{AUDIO_FORMAT_PCM_8_24_BIT, AUDIO_FORMAT_PCM_16_BIT}
};
audio_format_t getNextFormatToTry(audio_format_t curFormat) {
const auto it = NEXT_FORMAT_TO_TRY.find(curFormat);
return it != NEXT_FORMAT_TO_TRY.end() ? it->second : curFormat;
}
struct configComp {
bool operator() (const audio_config_base_t& lhs, const audio_config_base_t& rhs) const {
if (lhs.sample_rate != rhs.sample_rate) {
return lhs.sample_rate < rhs.sample_rate;
} else if (lhs.channel_mask != rhs.channel_mask) {
return lhs.channel_mask < rhs.channel_mask;
} else {
return lhs.format < rhs.format;
}
}
};
} // namespace
aaudio_result_t AAudioServiceEndpointMMAP::open(const aaudio::AAudioStreamRequest &request) {
aaudio_result_t result = AAUDIO_OK;
mAudioDataWrapper = std::make_unique<SharedMemoryWrapper>();
copyFrom(request.getConstantConfiguration());
mRequestedDeviceId = getDeviceId();
mMmapClient.attributionSource = request.getAttributionSource();
// TODO b/182392769: use attribution source util
mMmapClient.attributionSource.uid = VALUE_OR_FATAL(
legacy2aidl_uid_t_int32_t(IPCThreadState::self()->getCallingUid()));
mMmapClient.attributionSource.pid = VALUE_OR_FATAL(
legacy2aidl_pid_t_int32_t(IPCThreadState::self()->getCallingPid()));
audio_format_t audioFormat = getFormat();
int32_t sampleRate = getSampleRate();
if (sampleRate == AAUDIO_UNSPECIFIED) {
sampleRate = AAUDIO_SAMPLE_RATE_DEFAULT;
}
const aaudio_direction_t direction = getDirection();
audio_config_base_t config;
config.format = audioFormat;
config.sample_rate = sampleRate;
config.channel_mask = AAudio_getChannelMaskForOpen(
getChannelMask(), getSamplesPerFrame(), direction == AAUDIO_DIRECTION_INPUT);
std::set<audio_config_base_t, configComp> configsTried;
int32_t numberOfAttempts = 0;
while (numberOfAttempts < AAUDIO_MAX_OPEN_ATTEMPTS) {
if (configsTried.find(config) != configsTried.end()) {
// APM returning something that has already tried.
ALOGW("Have already tried to open with format=%#x and sr=%d, but failed before",
config.format, config.sample_rate);
break;
}
configsTried.insert(config);
audio_config_base_t previousConfig = config;
result = openWithConfig(&config);
if (result != AAUDIO_ERROR_UNAVAILABLE) {
// Return if it is successful or there is an error that is not
// AAUDIO_ERROR_UNAVAILABLE happens.
ALOGI("Opened format=%#x sr=%d, with result=%d", previousConfig.format,
previousConfig.sample_rate, result);
break;
}
// Try other formats if the config from APM is the same as our current config.
// Some HALs may report its format support incorrectly.
if ((previousConfig.format == config.format) &&
(previousConfig.sample_rate == config.sample_rate)) {
config.format = getNextFormatToTry(config.format);
}
ALOGD("%s() %#x %d failed, perhaps due to format or sample rate. Try again with %#x %d",
__func__, previousConfig.format, previousConfig.sample_rate, config.format,
config.sample_rate);
numberOfAttempts++;
}
return result;
}
aaudio_result_t AAudioServiceEndpointMMAP::openWithConfig(
audio_config_base_t* config) {
aaudio_result_t result = AAUDIO_OK;
audio_config_base_t currentConfig = *config;
audio_port_handle_t deviceId;
const audio_attributes_t attributes = getAudioAttributesFrom(this);
deviceId = mRequestedDeviceId;
const aaudio_direction_t direction = getDirection();
if (direction == AAUDIO_DIRECTION_OUTPUT) {
mHardwareTimeOffsetNanos = OUTPUT_ESTIMATED_HARDWARE_OFFSET_NANOS; // frames at DAC later
} else if (direction == AAUDIO_DIRECTION_INPUT) {
mHardwareTimeOffsetNanos = INPUT_ESTIMATED_HARDWARE_OFFSET_NANOS; // frames at ADC earlier
} else {
ALOGE("%s() invalid direction = %d", __func__, direction);
return AAUDIO_ERROR_ILLEGAL_ARGUMENT;
}
const MmapStreamInterface::stream_direction_t streamDirection =
(direction == AAUDIO_DIRECTION_OUTPUT)
? MmapStreamInterface::DIRECTION_OUTPUT
: MmapStreamInterface::DIRECTION_INPUT;
const aaudio_session_id_t requestedSessionId = getSessionId();
audio_session_t sessionId = AAudioConvert_aaudioToAndroidSessionId(requestedSessionId);
// Open HAL stream. Set mMmapStream
ALOGD("%s trying to open MMAP stream with format=%#x, "
"sample_rate=%u, channel_mask=%#x, device=%d",
__func__, config->format, config->sample_rate,
config->channel_mask, deviceId);
const status_t status = MmapStreamInterface::openMmapStream(streamDirection,
&attributes,
config,
mMmapClient,
&deviceId,
&sessionId,
this, // callback
mMmapStream,
&mPortHandle);
ALOGD("%s() mMapClient.attributionSource = %s => portHandle = %d\n",
__func__, mMmapClient.attributionSource.toString().c_str(), mPortHandle);
if (status != OK) {
// This can happen if the resource is busy or the config does
// not match the hardware.
ALOGD("%s() - openMmapStream() returned status=%d, suggested format=%#x, sample_rate=%u, "
"channel_mask=%#x",
__func__, status, config->format, config->sample_rate, config->channel_mask);
// Keep the channel mask of the current config
config->channel_mask = currentConfig.channel_mask;
return AAUDIO_ERROR_UNAVAILABLE;
}
if (deviceId == AAUDIO_UNSPECIFIED) {
ALOGW("%s() - openMmapStream() failed to set deviceId", __func__);
}
setDeviceId(deviceId);
if (sessionId == AUDIO_SESSION_ALLOCATE) {
ALOGW("%s() - openMmapStream() failed to set sessionId", __func__);
}
const aaudio_session_id_t actualSessionId =
(requestedSessionId == AAUDIO_SESSION_ID_NONE)
? AAUDIO_SESSION_ID_NONE
: (aaudio_session_id_t) sessionId;
setSessionId(actualSessionId);
ALOGD("%s(format = 0x%X) deviceId = %d, sessionId = %d",
__func__, config->format, getDeviceId(), getSessionId());
// Create MMAP/NOIRQ buffer.
result = createMmapBuffer();
if (result != AAUDIO_OK) {
goto error;
}
// Get information about the stream and pass it back to the caller.
setChannelMask(AAudioConvert_androidToAAudioChannelMask(
config->channel_mask, getDirection() == AAUDIO_DIRECTION_INPUT,
AAudio_isChannelIndexMask(config->channel_mask)));
setFormat(config->format);
setSampleRate(config->sample_rate);
setHardwareSampleRate(getSampleRate());
setHardwareFormat(getFormat());
setHardwareSamplesPerFrame(AAudioConvert_channelMaskToCount(getChannelMask()));
// If the position is not updated while the timestamp is updated for more than a certain amount,
// the timestamp reported from the HAL may not be accurate. Here, a timestamp grace period is
// set as 5 burst size. We may want to update this value if there is any report from OEMs saying
// that is too short.
static constexpr int kTimestampGraceBurstCount = 5;
mTimestampGracePeriodMs = ((int64_t) kTimestampGraceBurstCount * mFramesPerBurst
* AAUDIO_MILLIS_PER_SECOND) / getSampleRate();
mDataReportOffsetNanos = ((int64_t)mTimestampGracePeriodMs) * AAUDIO_NANOS_PER_MILLISECOND;
ALOGD("%s() got rate = %d, channels = %d channelMask = %#x, deviceId = %d, capacity = %d\n",
__func__, getSampleRate(), getSamplesPerFrame(), getChannelMask(),
deviceId, getBufferCapacity());
ALOGD("%s() got format = 0x%X = %s, frame size = %d, burst size = %d",
__func__, getFormat(), audio_format_to_string(getFormat()),
calculateBytesPerFrame(), mFramesPerBurst);
return result;
error:
close();
// restore original requests
setDeviceId(mRequestedDeviceId);
setSessionId(requestedSessionId);
return result;
}
void AAudioServiceEndpointMMAP::close() {
if (mMmapStream != nullptr) {
// Needs to be explicitly cleared or CTS will fail but it is not clear why.
mMmapStream.clear();
AudioClock::sleepForNanos(100 * AAUDIO_NANOS_PER_MILLISECOND);
}
}
aaudio_result_t AAudioServiceEndpointMMAP::startStream(sp<AAudioServiceStreamBase> stream,
audio_port_handle_t *clientHandle __unused) {
// Start the client on behalf of the AAudio service.
// Use the port handle that was provided by openMmapStream().
audio_port_handle_t tempHandle = mPortHandle;
audio_attributes_t attr = {};
if (stream != nullptr) {
attr = getAudioAttributesFrom(stream.get());
}
const aaudio_result_t result = startClient(
mMmapClient, stream == nullptr ? nullptr : &attr, &tempHandle);
// When AudioFlinger is passed a valid port handle then it should not change it.
LOG_ALWAYS_FATAL_IF(tempHandle != mPortHandle,
"%s() port handle not expected to change from %d to %d",
__func__, mPortHandle, tempHandle);
ALOGV("%s() mPortHandle = %d", __func__, mPortHandle);
return result;
}
aaudio_result_t AAudioServiceEndpointMMAP::stopStream(sp<AAudioServiceStreamBase> /*stream*/,
audio_port_handle_t /*clientHandle*/) {
mFramesTransferred.reset32();
// Round 64-bit counter up to a multiple of the buffer capacity.
// This is required because the 64-bit counter is used as an index
// into a circular buffer and the actual HW position is reset to zero
// when the stream is stopped.
mFramesTransferred.roundUp64(getBufferCapacity());
// Use the port handle that was provided by openMmapStream().
ALOGV("%s() mPortHandle = %d", __func__, mPortHandle);
return stopClient(mPortHandle);
}
aaudio_result_t AAudioServiceEndpointMMAP::startClient(const android::AudioClient& client,
const audio_attributes_t *attr,
audio_port_handle_t *clientHandle) {
return mMmapStream == nullptr
? AAUDIO_ERROR_NULL
: AAudioConvert_androidToAAudioResult(mMmapStream->start(client, attr, clientHandle));
}
aaudio_result_t AAudioServiceEndpointMMAP::stopClient(audio_port_handle_t clientHandle) {
return mMmapStream == nullptr
? AAUDIO_ERROR_NULL
: AAudioConvert_androidToAAudioResult(mMmapStream->stop(clientHandle));
}
aaudio_result_t AAudioServiceEndpointMMAP::standby() {
return mMmapStream == nullptr
? AAUDIO_ERROR_NULL
: AAudioConvert_androidToAAudioResult(mMmapStream->standby());
}
aaudio_result_t AAudioServiceEndpointMMAP::exitStandby(AudioEndpointParcelable* parcelable) {
if (mMmapStream == nullptr) {
return AAUDIO_ERROR_NULL;
}
mAudioDataWrapper->reset();
const aaudio_result_t result = createMmapBuffer();
if (result == AAUDIO_OK) {
getDownDataDescription(parcelable);
}
return result;
}
// Get free-running DSP or DMA hardware position from the HAL.
aaudio_result_t AAudioServiceEndpointMMAP::getFreeRunningPosition(int64_t *positionFrames,
int64_t *timeNanos) {
struct audio_mmap_position position;
if (mMmapStream == nullptr) {
return AAUDIO_ERROR_NULL;
}
const status_t status = mMmapStream->getMmapPosition(&position);
ALOGV("%s() status= %d, pos = %d, nanos = %lld\n",
__func__, status, position.position_frames, (long long) position.time_nanoseconds);
const aaudio_result_t result = AAudioConvert_androidToAAudioResult(status);
if (result == AAUDIO_ERROR_UNAVAILABLE) {
ALOGW("%s(): getMmapPosition() has no position data available", __func__);
} else if (result != AAUDIO_OK) {
ALOGE("%s(): getMmapPosition() returned status %d", __func__, status);
} else {
// Convert 32-bit position to 64-bit position.
mFramesTransferred.update32(position.position_frames);
*positionFrames = mFramesTransferred.get();
*timeNanos = position.time_nanoseconds;
}
return result;
}
aaudio_result_t AAudioServiceEndpointMMAP::getTimestamp(int64_t* /*positionFrames*/,
int64_t* /*timeNanos*/) {
return 0; // TODO
}
// This is called by onTearDown() in a separate thread to avoid deadlocks.
void AAudioServiceEndpointMMAP::handleTearDownAsync(audio_port_handle_t portHandle) {
// Are we tearing down the EXCLUSIVE MMAP stream?
if (isStreamRegistered(portHandle)) {
ALOGD("%s(%d) tearing down this entire MMAP endpoint", __func__, portHandle);
disconnectRegisteredStreams();
} else {
// Must be a SHARED stream?
ALOGD("%s(%d) disconnect a specific stream", __func__, portHandle);
const aaudio_result_t result = mAAudioService.disconnectStreamByPortHandle(portHandle);
ALOGD("%s(%d) disconnectStreamByPortHandle returned %d", __func__, portHandle, result);
}
};
// This is called by AudioFlinger when it wants to destroy a stream.
void AAudioServiceEndpointMMAP::onTearDown(audio_port_handle_t portHandle) {
ALOGD("%s(portHandle = %d) called", __func__, portHandle);
const android::sp<AAudioServiceEndpointMMAP> holdEndpoint(this);
std::thread asyncTask([holdEndpoint, portHandle]() {
holdEndpoint->handleTearDownAsync(portHandle);
});
asyncTask.detach();
}
void AAudioServiceEndpointMMAP::onVolumeChanged(float volume) {
ALOGD("%s() volume = %f", __func__, volume);
const std::lock_guard<std::mutex> lock(mLockStreams);
for(const auto& stream : mRegisteredStreams) {
stream->onVolumeChanged(volume);
}
};
void AAudioServiceEndpointMMAP::onRoutingChanged(audio_port_handle_t portHandle) {
const auto deviceId = static_cast<int32_t>(portHandle);
ALOGD("%s() called with dev %d, old = %d", __func__, deviceId, getDeviceId());
if (getDeviceId() != deviceId) {
if (getDeviceId() != AUDIO_PORT_HANDLE_NONE) {
// When there is a routing changed, mmap stream should be disconnected. Set `mConnected`
// as false here so that there won't be a new stream connect to this endpoint.
mConnected.store(false);
const android::sp<AAudioServiceEndpointMMAP> holdEndpoint(this);
std::thread asyncTask([holdEndpoint, deviceId]() {
ALOGD("onRoutingChanged() asyncTask launched");
// When routing changed, the stream is disconnected and cannot be used except for
// closing. In that case, it should be safe to release all registered streams.
// This can help release service side resource in case the client doesn't close
// the stream after receiving disconnect event.
holdEndpoint->releaseRegisteredStreams();
holdEndpoint->setDeviceId(deviceId);
});
asyncTask.detach();
} else {
setDeviceId(deviceId);
}
}
};
/**
* Get an immutable description of the data queue from the HAL.
*/
aaudio_result_t AAudioServiceEndpointMMAP::getDownDataDescription(
AudioEndpointParcelable* parcelable)
{
if (mAudioDataWrapper->setupFifoBuffer(calculateBytesPerFrame(), getBufferCapacity())
!= AAUDIO_OK) {
ALOGE("Failed to setup audio data wrapper, will not be able to "
"set data for sound dose computation");
// This will not affect the audio processing capability
}
// Gather information on the data queue based on HAL info.
mAudioDataWrapper->fillParcelable(parcelable, parcelable->mDownDataQueueParcelable,
calculateBytesPerFrame(), mFramesPerBurst,
getBufferCapacity(),
getDirection() == AAUDIO_DIRECTION_OUTPUT
? SharedMemoryWrapper::WRITE
: SharedMemoryWrapper::NONE);
return AAUDIO_OK;
}
aaudio_result_t AAudioServiceEndpointMMAP::getExternalPosition(uint64_t *positionFrames,
int64_t *timeNanos)
{
if (mHalExternalPositionStatus != AAUDIO_OK) {
return mHalExternalPositionStatus;
}
uint64_t tempPositionFrames;
int64_t tempTimeNanos;
const status_t status = mMmapStream->getExternalPosition(&tempPositionFrames, &tempTimeNanos);
if (status != OK) {
// getExternalPosition reports error. The HAL may not support the API. Cache the result
// so that the call will not go to the HAL next time.
mHalExternalPositionStatus = AAudioConvert_androidToAAudioResult(status);
return mHalExternalPositionStatus;
}
// If the HAL keeps reporting the same position or timestamp, the HAL may be having some issues
// to report correct external position. In that case, we will not trust the values reported from
// the HAL. Ideally, we may want to stop querying external position if the HAL cannot report
// correct position within a period. But it may not be a good idea to get system time too often.
// In that case, a maximum number of frozen external position is defined so that if the
// count of the same timestamp or position is reported by the HAL continuously, the values from
// the HAL will no longer be trusted.
static constexpr int kMaxFrozenCount = 20;
// If the HAL version is less than 7.0, the getPresentationPosition is an optional API.
// If the HAL version is 7.0 or later, the getPresentationPosition is a mandatory API.
// In that case, even the returned status is NO_ERROR, it doesn't indicate the returned
// position is a valid one. Do a simple validation, which is checking if the position is
// forward within half a second or not, here so that this function can return error if
// the validation fails. Note that we don't only apply this validation logic to HAL API
// less than 7.0. The reason is that there is a chance the HAL is not reporting the
// timestamp and position correctly.
if (mLastPositionFrames > tempPositionFrames) {
// If the position is going backwards, there must be something wrong with the HAL.
// In that case, we do not trust the values reported by the HAL.
ALOGW("%s position is going backwards, last position(%jd) current position(%jd)",
__func__, mLastPositionFrames, tempPositionFrames);
mHalExternalPositionStatus = AAUDIO_ERROR_INTERNAL;
return mHalExternalPositionStatus;
} else if (mLastPositionFrames == tempPositionFrames) {
if (tempTimeNanos - mTimestampNanosForLastPosition >
AAUDIO_NANOS_PER_MILLISECOND * mTimestampGracePeriodMs) {
ALOGW("%s, the reported position is not changed within %d msec. "
"Set the external position as not supported", __func__, mTimestampGracePeriodMs);
mHalExternalPositionStatus = AAUDIO_ERROR_INTERNAL;
return mHalExternalPositionStatus;
}
mFrozenPositionCount++;
} else {
mFrozenPositionCount = 0;
}
if (mTimestampNanosForLastPosition > tempTimeNanos) {
// If the timestamp is going backwards, there must be something wrong with the HAL.
// In that case, we do not trust the values reported by the HAL.
ALOGW("%s timestamp is going backwards, last timestamp(%jd), current timestamp(%jd)",
__func__, mTimestampNanosForLastPosition, tempTimeNanos);
mHalExternalPositionStatus = AAUDIO_ERROR_INTERNAL;
return mHalExternalPositionStatus;
} else if (mTimestampNanosForLastPosition == tempTimeNanos) {
mFrozenTimestampCount++;
} else {
mFrozenTimestampCount = 0;
}
if (mFrozenTimestampCount + mFrozenPositionCount > kMaxFrozenCount) {
ALOGW("%s too many frozen external position from HAL.", __func__);
mHalExternalPositionStatus = AAUDIO_ERROR_INTERNAL;
return mHalExternalPositionStatus;
}
mLastPositionFrames = tempPositionFrames;
mTimestampNanosForLastPosition = tempTimeNanos;
// Only update the timestamp and position when they looks valid.
*positionFrames = tempPositionFrames;
*timeNanos = tempTimeNanos;
return mHalExternalPositionStatus;
}
aaudio_result_t AAudioServiceEndpointMMAP::createMmapBuffer()
{
memset(&mMmapBufferinfo, 0, sizeof(struct audio_mmap_buffer_info));
int32_t minSizeFrames = getBufferCapacity();
if (minSizeFrames <= 0) { // zero will get rejected
minSizeFrames = AAUDIO_BUFFER_CAPACITY_MIN;
}
const status_t status = mMmapStream->createMmapBuffer(minSizeFrames, &mMmapBufferinfo);
const bool isBufferShareable = mMmapBufferinfo.flags & AUDIO_MMAP_APPLICATION_SHAREABLE;
if (status != OK) {
ALOGE("%s() - createMmapBuffer() failed with status %d %s",
__func__, status, strerror(-status));
return AAUDIO_ERROR_UNAVAILABLE;
} else {
ALOGD("%s() createMmapBuffer() buffer_size = %d fr, burst_size %d fr"
", Sharable FD: %s",
__func__,
mMmapBufferinfo.buffer_size_frames,
mMmapBufferinfo.burst_size_frames,
isBufferShareable ? "Yes" : "No");
}
setBufferCapacity(mMmapBufferinfo.buffer_size_frames);
if (!isBufferShareable) {
// Exclusive mode can only be used by the service because the FD cannot be shared.
const int32_t audioServiceUid =
VALUE_OR_FATAL(legacy2aidl_uid_t_int32_t(getuid()));
if ((mMmapClient.attributionSource.uid != audioServiceUid) &&
getSharingMode() == AAUDIO_SHARING_MODE_EXCLUSIVE) {
ALOGW("%s() - exclusive FD cannot be used by client", __func__);
return AAUDIO_ERROR_UNAVAILABLE;
}
}
// AAudio creates a copy of this FD and retains ownership of the copy.
// Assume that AudioFlinger will close the original shared_memory_fd.
mAudioDataWrapper->getDataFileDescriptor().reset(dup(mMmapBufferinfo.shared_memory_fd));
if (mAudioDataWrapper->getDataFileDescriptor().get() == -1) {
ALOGE("%s() - could not dup shared_memory_fd", __func__);
return AAUDIO_ERROR_INTERNAL;
}
// Call to HAL to make sure the transport FD was able to be closed by binder.
// This is a tricky workaround for a problem in Binder.
// TODO:[b/192048842] When that problem is fixed we may be able to remove or change this code.
struct audio_mmap_position position;
mMmapStream->getMmapPosition(&position);
mFramesPerBurst = mMmapBufferinfo.burst_size_frames;
return AAUDIO_OK;
}
int64_t AAudioServiceEndpointMMAP::nextDataReportTime() {
return getDirection() == AAUDIO_DIRECTION_OUTPUT
? AudioClock::getNanoseconds() + mDataReportOffsetNanos
: std::numeric_limits<int64_t>::max();
}
void AAudioServiceEndpointMMAP::reportData() {
if (mMmapStream == nullptr) {
// This must not happen
ALOGE("%s() invalid state, mmap stream is not initialized", __func__);
return;
}
auto fifo = mAudioDataWrapper->getFifoBuffer();
if (fifo == nullptr) {
ALOGE("%s() fifo buffer is not initialized, cannot report data", __func__);
return;
}
WrappingBuffer wrappingBuffer;
fifo_frames_t framesAvailable = fifo->getFullDataAvailable(&wrappingBuffer);
for (size_t i = 0; i < WrappingBuffer::SIZE; ++i) {
if (wrappingBuffer.numFrames[i] > 0) {
mMmapStream->reportData(wrappingBuffer.data[i], wrappingBuffer.numFrames[i]);
}
}
fifo->advanceReadIndex(framesAvailable);
}