| /* |
| * Copyright (C) 2016 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #ifndef ANDROID_AUDIO_RESAMPLER_FIR_PROCESS_SSE_H |
| #define ANDROID_AUDIO_RESAMPLER_FIR_PROCESS_SSE_H |
| |
| namespace android { |
| |
| // depends on AudioResamplerFirOps.h, AudioResamplerFirProcess.h |
| |
| #if USE_SSE |
| |
| #define TO_STRING2(x) #x |
| #define TO_STRING(x) TO_STRING2(x) |
| // uncomment to print GCC version, may be relevant for intrinsic optimizations |
| /* #pragma message ("GCC version: " TO_STRING(__GNUC__) \ |
| "." TO_STRING(__GNUC_MINOR__) \ |
| "." TO_STRING(__GNUC_PATCHLEVEL__)) */ |
| |
| // |
| // SSEx specializations are enabled for Process() and ProcessL() in AudioResamplerFirProcess.h |
| // |
| |
| template <int CHANNELS, int STRIDE, bool FIXED> |
| static inline void ProcessSSEIntrinsic(float* out, |
| int count, |
| const float* coefsP, |
| const float* coefsN, |
| const float* sP, |
| const float* sN, |
| const float* volumeLR, |
| float lerpP, |
| const float* coefsP1, |
| const float* coefsN1) |
| { |
| ALOG_ASSERT(count > 0 && (count & 7) == 0); // multiple of 8 |
| static_assert(CHANNELS == 1 || CHANNELS == 2, "CHANNELS must be 1 or 2"); |
| |
| sP -= CHANNELS*(4-1); // adjust sP for a loop iteration of four |
| |
| __m128 interp; |
| if (!FIXED) { |
| interp = _mm_set1_ps(lerpP); |
| } |
| |
| __m128 accL, accR; |
| accL = _mm_setzero_ps(); |
| if (CHANNELS == 2) { |
| accR = _mm_setzero_ps(); |
| } |
| |
| do { |
| __m128 posCoef = _mm_load_ps(coefsP); |
| __m128 negCoef = _mm_load_ps(coefsN); |
| coefsP += 4; |
| coefsN += 4; |
| |
| if (!FIXED) { // interpolate |
| __m128 posCoef1 = _mm_load_ps(coefsP1); |
| __m128 negCoef1 = _mm_load_ps(coefsN1); |
| coefsP1 += 4; |
| coefsN1 += 4; |
| |
| // Calculate the final coefficient for interpolation |
| // posCoef = interp * (posCoef1 - posCoef) + posCoef |
| // negCoef = interp * (negCoef - negCoef1) + negCoef1 |
| posCoef1 = _mm_sub_ps(posCoef1, posCoef); |
| negCoef = _mm_sub_ps(negCoef, negCoef1); |
| |
| |
| #if USE_AVX2 |
| posCoef = _mm_fmadd_ps(posCoef1, interp, posCoef); |
| negCoef = _mm_fmadd_ps(negCoef, interp, negCoef1); |
| #else |
| posCoef1 = _mm_mul_ps(posCoef1, interp); |
| negCoef = _mm_mul_ps(negCoef, interp); |
| posCoef = _mm_add_ps(posCoef1, posCoef); |
| negCoef = _mm_add_ps(negCoef, negCoef1); |
| #endif //USE_AVX2 |
| } |
| switch (CHANNELS) { |
| case 1: { |
| __m128 posSamp = _mm_loadu_ps(sP); |
| __m128 negSamp = _mm_loadu_ps(sN); |
| sP -= 4; |
| sN += 4; |
| |
| posSamp = _mm_shuffle_ps(posSamp, posSamp, 0x1B); |
| |
| #if USE_AVX2 |
| accL = _mm_fmadd_ps(posSamp, posCoef, accL); |
| accL = _mm_fmadd_ps(negSamp, negCoef, accL); |
| #else |
| posSamp = _mm_mul_ps(posSamp, posCoef); |
| negSamp = _mm_mul_ps(negSamp, negCoef); |
| accL = _mm_add_ps(accL, posSamp); |
| accL = _mm_add_ps(accL, negSamp); |
| #endif |
| |
| } break; |
| case 2: { |
| __m128 posSamp0 = _mm_loadu_ps(sP); |
| __m128 posSamp1 = _mm_loadu_ps(sP+4); |
| __m128 negSamp0 = _mm_loadu_ps(sN); |
| __m128 negSamp1 = _mm_loadu_ps(sN+4); |
| sP -= 8; |
| sN += 8; |
| |
| // deinterleave everything and reverse the positives |
| __m128 posSampL = _mm_shuffle_ps(posSamp1, posSamp0, 0x22); |
| __m128 posSampR = _mm_shuffle_ps(posSamp1, posSamp0, 0x77); |
| __m128 negSampL = _mm_shuffle_ps(negSamp0, negSamp1, 0x88); |
| __m128 negSampR = _mm_shuffle_ps(negSamp0, negSamp1, 0xDD); |
| |
| #if USE_AVX2 |
| accL = _mm_fmadd_ps(posSampL, posCoef, accL); |
| accR = _mm_fmadd_ps(posSampR, posCoef, accR); |
| accL = _mm_fmadd_ps(negSampL, negCoef, accL); |
| accR = _mm_fmadd_ps(negSampR, negCoef, accR); |
| #else |
| posSampL = _mm_mul_ps(posSampL, posCoef); |
| posSampR = _mm_mul_ps(posSampR, posCoef); |
| negSampL = _mm_mul_ps(negSampL, negCoef); |
| negSampR = _mm_mul_ps(negSampR, negCoef); |
| |
| accL = _mm_add_ps(accL, posSampL); |
| accR = _mm_add_ps(accR, posSampR); |
| accL = _mm_add_ps(accL, negSampL); |
| accR = _mm_add_ps(accR, negSampR); |
| #endif |
| |
| } break; |
| } |
| } while (count -= 4); |
| |
| // multiply by volume and save |
| __m128 vLR = _mm_setzero_ps(); |
| __m128 outSamp; |
| vLR = _mm_loadl_pi(vLR, reinterpret_cast<const __m64*>(volumeLR)); |
| outSamp = _mm_loadl_pi(vLR, reinterpret_cast<__m64*>(out)); |
| |
| // combine and funnel down accumulator |
| __m128 outAccum = _mm_setzero_ps(); |
| if (CHANNELS == 1) { |
| // duplicate accL to both L and R |
| outAccum = _mm_add_ps(accL, _mm_movehl_ps(accL, accL)); |
| outAccum = _mm_add_ps(outAccum, _mm_shuffle_ps(outAccum, outAccum, 0x11)); |
| } else if (CHANNELS == 2) { |
| // accR contains R, fold in |
| outAccum = _mm_hadd_ps(accL, accR); |
| outAccum = _mm_hadd_ps(outAccum, outAccum); |
| } |
| #if USE_AVX2 |
| outSamp = _mm_fmadd_ps(outAccum, vLR,outSamp); |
| #else |
| outAccum = _mm_mul_ps(outAccum, vLR); |
| outSamp = _mm_add_ps(outSamp, outAccum); |
| #endif |
| |
| _mm_storel_pi(reinterpret_cast<__m64*>(out), outSamp); |
| } |
| |
| template<> |
| inline void ProcessL<1, 16>(float* const out, |
| int count, |
| const float* coefsP, |
| const float* coefsN, |
| const float* sP, |
| const float* sN, |
| const float* const volumeLR) |
| { |
| ProcessSSEIntrinsic<1, 16, true>(out, count, coefsP, coefsN, sP, sN, volumeLR, |
| 0 /*lerpP*/, NULL /*coefsP1*/, NULL /*coefsN1*/); |
| } |
| |
| template<> |
| inline void ProcessL<2, 16>(float* const out, |
| int count, |
| const float* coefsP, |
| const float* coefsN, |
| const float* sP, |
| const float* sN, |
| const float* const volumeLR) |
| { |
| ProcessSSEIntrinsic<2, 16, true>(out, count, coefsP, coefsN, sP, sN, volumeLR, |
| 0 /*lerpP*/, NULL /*coefsP1*/, NULL /*coefsN1*/); |
| } |
| |
| template<> |
| inline void Process<1, 16>(float* const out, |
| int count, |
| const float* coefsP, |
| const float* coefsN, |
| const float* coefsP1, |
| const float* coefsN1, |
| const float* sP, |
| const float* sN, |
| float lerpP, |
| const float* const volumeLR) |
| { |
| ProcessSSEIntrinsic<1, 16, false>(out, count, coefsP, coefsN, sP, sN, volumeLR, |
| lerpP, coefsP1, coefsN1); |
| } |
| |
| template<> |
| inline void Process<2, 16>(float* const out, |
| int count, |
| const float* coefsP, |
| const float* coefsN, |
| const float* coefsP1, |
| const float* coefsN1, |
| const float* sP, |
| const float* sN, |
| float lerpP, |
| const float* const volumeLR) |
| { |
| ProcessSSEIntrinsic<2, 16, false>(out, count, coefsP, coefsN, sP, sN, volumeLR, |
| lerpP, coefsP1, coefsN1); |
| } |
| |
| #endif //USE_SSE |
| |
| } // namespace android |
| |
| #endif /*ANDROID_AUDIO_RESAMPLER_FIR_PROCESS_SSE_H*/ |