| /* |
| * Copyright (C) 2013 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #ifndef ANDROID_AUDIO_RESAMPLER_FIR_PROCESS_H |
| #define ANDROID_AUDIO_RESAMPLER_FIR_PROCESS_H |
| |
| namespace android { |
| |
| // depends on AudioResamplerFirOps.h |
| |
| /* variant for input type TI = int16_t input samples */ |
| template<typename TC> |
| static inline |
| void mac(int32_t& l, int32_t& r, TC coef, const int16_t* samples) |
| { |
| uint32_t rl = *reinterpret_cast<const uint32_t*>(samples); |
| l = mulAddRL(1, rl, coef, l); |
| r = mulAddRL(0, rl, coef, r); |
| } |
| |
| template<typename TC> |
| static inline |
| void mac(int32_t& l, TC coef, const int16_t* samples) |
| { |
| l = mulAdd(samples[0], coef, l); |
| } |
| |
| /* variant for input type TI = float input samples */ |
| template<typename TC> |
| static inline |
| void mac(float& l, float& r, TC coef, const float* samples) |
| { |
| l += *samples++ * coef; |
| r += *samples * coef; |
| } |
| |
| template<typename TC> |
| static inline |
| void mac(float& l, TC coef, const float* samples) |
| { |
| l += *samples * coef; |
| } |
| |
| /* variant for output type TO = int32_t output samples */ |
| static inline |
| int32_t volumeAdjust(int32_t value, int32_t volume) |
| { |
| return 2 * mulRL(0, value, volume); // Note: only use top 16b |
| } |
| |
| /* variant for output type TO = float output samples */ |
| static inline |
| float volumeAdjust(float value, float volume) |
| { |
| return value * volume; |
| } |
| |
| /* |
| * Helper template functions for loop unrolling accumulator operations. |
| * |
| * Unrolling the loops achieves about 2x gain. |
| * Using a recursive template rather than an array of TO[] for the accumulator |
| * values is an additional 10-20% gain. |
| */ |
| |
| template<int CHANNELS, typename TO> |
| class Accumulator : public Accumulator<CHANNELS-1, TO> // recursive |
| { |
| public: |
| inline void clear() { |
| value = 0; |
| Accumulator<CHANNELS-1, TO>::clear(); |
| } |
| template<typename TC, typename TI> |
| inline void acc(TC coef, const TI*& data) { |
| mac(value, coef, data++); |
| Accumulator<CHANNELS-1, TO>::acc(coef, data); |
| } |
| inline void volume(TO*& out, TO gain) { |
| *out++ += volumeAdjust(value, gain); |
| Accumulator<CHANNELS-1, TO>::volume(out, gain); |
| } |
| |
| TO value; // one per recursive inherited base class |
| }; |
| |
| template<typename TO> |
| class Accumulator<0, TO> { |
| public: |
| inline void clear() { |
| } |
| template<typename TC, typename TI> |
| inline void acc(TC coef __unused, const TI*& data __unused) { |
| } |
| inline void volume(TO*& out __unused, TO gain __unused) { |
| } |
| }; |
| |
| template<typename TC, typename TINTERP> |
| inline |
| TC interpolate(TC coef_0, TC coef_1, TINTERP lerp) |
| { |
| return lerp * (coef_1 - coef_0) + coef_0; |
| } |
| |
| template<> |
| inline |
| int16_t interpolate<int16_t, uint32_t>(int16_t coef_0, int16_t coef_1, uint32_t lerp) |
| { // in some CPU architectures 16b x 16b multiplies are faster. |
| return (static_cast<int16_t>(lerp) * static_cast<int16_t>(coef_1 - coef_0) >> 15) + coef_0; |
| } |
| |
| template<> |
| inline |
| int32_t interpolate<int32_t, uint32_t>(int32_t coef_0, int32_t coef_1, uint32_t lerp) |
| { |
| return (lerp * static_cast<int64_t>(coef_1 - coef_0) >> 31) + coef_0; |
| } |
| |
| /* class scope for passing in functions into templates */ |
| struct InterpCompute { |
| template<typename TC, typename TINTERP> |
| static inline |
| TC interpolatep(TC coef_0, TC coef_1, TINTERP lerp) { |
| return interpolate(coef_0, coef_1, lerp); |
| } |
| |
| template<typename TC, typename TINTERP> |
| static inline |
| TC interpolaten(TC coef_0, TC coef_1, TINTERP lerp) { |
| return interpolate(coef_0, coef_1, lerp); |
| } |
| }; |
| |
| struct InterpNull { |
| template<typename TC, typename TINTERP> |
| static inline |
| TC interpolatep(TC coef_0, TC coef_1 __unused, TINTERP lerp __unused) { |
| return coef_0; |
| } |
| |
| template<typename TC, typename TINTERP> |
| static inline |
| TC interpolaten(TC coef_0 __unused, TC coef_1, TINTERP lerp __unused) { |
| return coef_1; |
| } |
| }; |
| |
| /* |
| * Calculates a single output frame (two samples). |
| * |
| * The Process*() functions compute both the positive half FIR dot product and |
| * the negative half FIR dot product, accumulates, and then applies the volume. |
| * |
| * Use fir() to compute the proper coefficient pointers for a polyphase |
| * filter bank. |
| * |
| * ProcessBase() is the fundamental processing template function. |
| * |
| * ProcessL() calls ProcessBase() with TFUNC = InterpNull, for fixed/locked phase. |
| * Process() calls ProcessBase() with TFUNC = InterpCompute, for interpolated phase. |
| */ |
| |
| template <int CHANNELS, int STRIDE, typename TFUNC, typename TC, typename TI, typename TO, |
| typename TINTERP> |
| static inline |
| void ProcessBase(TO* const out, |
| size_t count, |
| const TC* coefsP, |
| const TC* coefsN, |
| const TI* sP, |
| const TI* sN, |
| TINTERP lerpP, |
| const TO* const volumeLR) |
| { |
| static_assert(CHANNELS > 0, "CHANNELS must be > 0"); |
| |
| if (CHANNELS > 2) { |
| // TO accum[CHANNELS]; |
| Accumulator<CHANNELS, TO> accum; |
| |
| // for (int j = 0; j < CHANNELS; ++j) accum[j] = 0; |
| accum.clear(); |
| for (size_t i = 0; i < count; ++i) { |
| TC c = TFUNC::interpolatep(coefsP[0], coefsP[count], lerpP); |
| |
| // for (int j = 0; j < CHANNELS; ++j) mac(accum[j], c, sP + j); |
| const TI *tmp_data = sP; // tmp_ptr seems to work better |
| accum.acc(c, tmp_data); |
| |
| coefsP++; |
| sP -= CHANNELS; |
| c = TFUNC::interpolaten(coefsN[count], coefsN[0], lerpP); |
| |
| // for (int j = 0; j < CHANNELS; ++j) mac(accum[j], c, sN + j); |
| tmp_data = sN; // tmp_ptr seems faster than directly using sN |
| accum.acc(c, tmp_data); |
| |
| coefsN++; |
| sN += CHANNELS; |
| } |
| // for (int j = 0; j < CHANNELS; ++j) out[j] += volumeAdjust(accum[j], volumeLR[0]); |
| TO *tmp_out = out; // may remove if const out definition changes. |
| accum.volume(tmp_out, volumeLR[0]); |
| } else if (CHANNELS == 2) { |
| TO l = 0; |
| TO r = 0; |
| for (size_t i = 0; i < count; ++i) { |
| mac(l, r, TFUNC::interpolatep(coefsP[0], coefsP[count], lerpP), sP); |
| coefsP++; |
| sP -= CHANNELS; |
| mac(l, r, TFUNC::interpolaten(coefsN[count], coefsN[0], lerpP), sN); |
| coefsN++; |
| sN += CHANNELS; |
| } |
| out[0] += volumeAdjust(l, volumeLR[0]); |
| out[1] += volumeAdjust(r, volumeLR[1]); |
| } else { /* CHANNELS == 1 */ |
| TO l = 0; |
| for (size_t i = 0; i < count; ++i) { |
| mac(l, TFUNC::interpolatep(coefsP[0], coefsP[count], lerpP), sP); |
| coefsP++; |
| sP -= CHANNELS; |
| mac(l, TFUNC::interpolaten(coefsN[count], coefsN[0], lerpP), sN); |
| coefsN++; |
| sN += CHANNELS; |
| } |
| out[0] += volumeAdjust(l, volumeLR[0]); |
| out[1] += volumeAdjust(l, volumeLR[1]); |
| } |
| } |
| |
| /* Calculates a single output frame from a polyphase resampling filter. |
| * See Process() for parameter details. |
| */ |
| template <int CHANNELS, int STRIDE, typename TC, typename TI, typename TO> |
| static inline |
| void ProcessL(TO* const out, |
| int count, |
| const TC* coefsP, |
| const TC* coefsN, |
| const TI* sP, |
| const TI* sN, |
| const TO* const volumeLR) |
| { |
| ProcessBase<CHANNELS, STRIDE, InterpNull>(out, count, coefsP, coefsN, sP, sN, 0, volumeLR); |
| } |
| |
| /* |
| * Calculates a single output frame from a polyphase resampling filter, |
| * with filter phase interpolation. |
| * |
| * @param out should point to the output buffer with space for at least one output frame. |
| * |
| * @param count should be half the size of the total filter length (halfNumCoefs), as we |
| * use symmetry in filter coefficients to evaluate two dot products. |
| * |
| * @param coefsP is one phase of the polyphase filter bank of size halfNumCoefs, corresponding |
| * to the positive sP. |
| * |
| * @param coefsN is one phase of the polyphase filter bank of size halfNumCoefs, corresponding |
| * to the negative sN. |
| * |
| * @param coefsP1 is the next phase of coefsP (used for interpolation). |
| * |
| * @param coefsN1 is the next phase of coefsN (used for interpolation). |
| * |
| * @param sP is the positive half of the coefficients (as viewed by a convolution), |
| * starting at the original samples pointer and decrementing (by CHANNELS). |
| * |
| * @param sN is the negative half of the samples (as viewed by a convolution), |
| * starting at the original samples pointer + CHANNELS and incrementing (by CHANNELS). |
| * |
| * @param lerpP The fractional siting between the polyphase indices is given by the bits |
| * below coefShift. See fir() for details. |
| * |
| * @param volumeLR is a pointer to an array of two 32 bit volume values, one per stereo channel, |
| * expressed as a S32 integer or float. A negative value inverts the channel 180 degrees. |
| * The pointer volumeLR should be aligned to a minimum of 8 bytes. |
| * A typical value for volume is 0x1000 to align to a unity gain output of 20.12. |
| */ |
| template <int CHANNELS, int STRIDE, typename TC, typename TI, typename TO, typename TINTERP> |
| static inline |
| void Process(TO* const out, |
| int count, |
| const TC* coefsP, |
| const TC* coefsN, |
| const TC* coefsP1 __unused, |
| const TC* coefsN1 __unused, |
| const TI* sP, |
| const TI* sN, |
| TINTERP lerpP, |
| const TO* const volumeLR) |
| { |
| ProcessBase<CHANNELS, STRIDE, InterpCompute>(out, count, coefsP, coefsN, sP, sN, lerpP, |
| volumeLR); |
| } |
| |
| /* |
| * Calculates a single output frame from input sample pointer. |
| * |
| * This sets up the params for the accelerated Process() and ProcessL() |
| * functions to do the appropriate dot products. |
| * |
| * @param out should point to the output buffer with space for at least one output frame. |
| * |
| * @param phase is the fractional distance between input frames for interpolation: |
| * phase >= 0 && phase < phaseWrapLimit. It can be thought of as a rational fraction |
| * of phase/phaseWrapLimit. |
| * |
| * @param phaseWrapLimit is #polyphases<<coefShift, where #polyphases is the number of polyphases |
| * in the polyphase filter. Likewise, #polyphases can be obtained as (phaseWrapLimit>>coefShift). |
| * |
| * @param coefShift gives the bit alignment of the polyphase index in the phase parameter. |
| * |
| * @param halfNumCoefs is the half the number of coefficients per polyphase filter. Since the |
| * overall filterbank is odd-length symmetric, only halfNumCoefs need be stored. |
| * |
| * @param coefs is the polyphase filter bank, starting at from polyphase index 0, and ranging to |
| * and including the #polyphases. Each polyphase of the filter has half-length halfNumCoefs |
| * (due to symmetry). The total size of the filter bank in coefficients is |
| * (#polyphases+1)*halfNumCoefs. |
| * |
| * The filter bank coefs should be aligned to a minimum of 16 bytes (preferrably to cache line). |
| * |
| * The coefs should be attenuated (to compensate for passband ripple) |
| * if storing back into the native format. |
| * |
| * @param samples are unaligned input samples. The position is in the "middle" of the |
| * sample array with respect to the FIR filter: |
| * the negative half of the filter is dot product from samples+1 to samples+halfNumCoefs; |
| * the positive half of the filter is dot product from samples to samples-halfNumCoefs+1. |
| * |
| * @param volumeLR is a pointer to an array of two 32 bit volume values, one per stereo channel, |
| * expressed as a S32 integer or float. A negative value inverts the channel 180 degrees. |
| * The pointer volumeLR should be aligned to a minimum of 8 bytes. |
| * A typical value for volume is 0x1000 to align to a unity gain output of 20.12. |
| * |
| * In between calls to filterCoefficient, the phase is incremented by phaseIncrement, where |
| * phaseIncrement is calculated as inputSampling * phaseWrapLimit / outputSampling. |
| * |
| * The filter polyphase index is given by indexP = phase >> coefShift. Due to |
| * odd length symmetric filter, the polyphase index of the negative half depends on |
| * whether interpolation is used. |
| * |
| * The fractional siting between the polyphase indices is given by the bits below coefShift: |
| * |
| * lerpP = phase << 32 - coefShift >> 1; // for 32 bit unsigned phase multiply |
| * lerpP = phase << 32 - coefShift >> 17; // for 16 bit unsigned phase multiply |
| * |
| * For integer types, this is expressed as: |
| * |
| * lerpP = phase << sizeof(phase)*8 - coefShift |
| * >> (sizeof(phase)-sizeof(*coefs))*8 + 1; |
| * |
| * For floating point, lerpP is the fractional phase scaled to [0.0, 1.0): |
| * |
| * lerpP = (phase << 32 - coefShift) / (1 << 32); // floating point equivalent |
| */ |
| |
| template<int CHANNELS, bool LOCKED, int STRIDE, typename TC, typename TI, typename TO> |
| static inline |
| void fir(TO* const out, |
| const uint32_t phase, const uint32_t phaseWrapLimit, |
| const int coefShift, const int halfNumCoefs, const TC* const coefs, |
| const TI* const samples, const TO* const volumeLR) |
| { |
| // NOTE: be very careful when modifying the code here. register |
| // pressure is very high and a small change might cause the compiler |
| // to generate far less efficient code. |
| // Always validate the result with objdump or test-resample. |
| |
| if (LOCKED) { |
| // locked polyphase (no interpolation) |
| // Compute the polyphase filter index on the positive and negative side. |
| uint32_t indexP = phase >> coefShift; |
| uint32_t indexN = (phaseWrapLimit - phase) >> coefShift; |
| const TC* coefsP = coefs + indexP*halfNumCoefs; |
| const TC* coefsN = coefs + indexN*halfNumCoefs; |
| const TI* sP = samples; |
| const TI* sN = samples + CHANNELS; |
| |
| // dot product filter. |
| ProcessL<CHANNELS, STRIDE>(out, |
| halfNumCoefs, coefsP, coefsN, sP, sN, volumeLR); |
| } else { |
| // interpolated polyphase |
| // Compute the polyphase filter index on the positive and negative side. |
| uint32_t indexP = phase >> coefShift; |
| uint32_t indexN = (phaseWrapLimit - phase - 1) >> coefShift; // one's complement. |
| const TC* coefsP = coefs + indexP*halfNumCoefs; |
| const TC* coefsN = coefs + indexN*halfNumCoefs; |
| const TC* coefsP1 = coefsP + halfNumCoefs; |
| const TC* coefsN1 = coefsN + halfNumCoefs; |
| const TI* sP = samples; |
| const TI* sN = samples + CHANNELS; |
| |
| // Interpolation fraction lerpP derived by shifting all the way up and down |
| // to clear the appropriate bits and align to the appropriate level |
| // for the integer multiply. The constants should resolve in compile time. |
| // |
| // The interpolated filter coefficient is derived as follows for the pos/neg half: |
| // |
| // interpolated[P] = index[P]*lerpP + index[P+1]*(1-lerpP) |
| // interpolated[N] = index[N+1]*lerpP + index[N]*(1-lerpP) |
| |
| // on-the-fly interpolated dot product filter |
| if (is_same<TC, float>::value || is_same<TC, double>::value) { |
| static const TC scale = 1. / (65536. * 65536.); // scale phase bits to [0.0, 1.0) |
| TC lerpP = TC(phase << (sizeof(phase)*8 - coefShift)) * scale; |
| |
| Process<CHANNELS, STRIDE>(out, |
| halfNumCoefs, coefsP, coefsN, coefsP1, coefsN1, sP, sN, lerpP, volumeLR); |
| } else { |
| uint32_t lerpP = phase << (sizeof(phase)*8 - coefShift) |
| >> ((sizeof(phase)-sizeof(*coefs))*8 + 1); |
| |
| Process<CHANNELS, STRIDE>(out, |
| halfNumCoefs, coefsP, coefsN, coefsP1, coefsN1, sP, sN, lerpP, volumeLR); |
| } |
| } |
| } |
| |
| } // namespace android |
| |
| #endif /*ANDROID_AUDIO_RESAMPLER_FIR_PROCESS_H*/ |