blob: 3d11d928bc266eec2866f29db54a1e82e5655d57 [file] [log] [blame]
/*
**
** Copyright 2019, The Android Open Source Project
**
** Licensed under the Apache License, Version 2.0 (the "License");
** you may not use this file except in compliance with the License.
** You may obtain a copy of the License at
**
** http://www.apache.org/licenses/LICENSE-2.0
**
** Unless required by applicable law or agreed to in writing, software
** distributed under the License is distributed on an "AS IS" BASIS,
** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
** See the License for the specific language governing permissions and
** limitations under the License.
*/
#define LOG_TAG "AudioMixer"
//#define LOG_NDEBUG 0
#include <array>
#include <sstream>
#include <string.h>
#include <audio_utils/primitives.h>
#include <cutils/compiler.h>
#include <media/AudioMixerBase.h>
#include <utils/Log.h>
#include "AudioMixerOps.h"
// The FCC_2 macro refers to the Fixed Channel Count of 2 for the legacy integer mixer.
#ifndef FCC_2
#define FCC_2 2
#endif
// Look for MONO_HACK for any Mono hack involving legacy mono channel to
// stereo channel conversion.
/* VERY_VERY_VERBOSE_LOGGING will show exactly which process hook and track hook is
* being used. This is a considerable amount of log spam, so don't enable unless you
* are verifying the hook based code.
*/
//#define VERY_VERY_VERBOSE_LOGGING
#ifdef VERY_VERY_VERBOSE_LOGGING
#define ALOGVV ALOGV
//define ALOGVV printf // for test-mixer.cpp
#else
#define ALOGVV(a...) do { } while (0)
#endif
// TODO: remove BLOCKSIZE unit of processing - it isn't needed anymore.
static constexpr int BLOCKSIZE = 16;
namespace android {
// ----------------------------------------------------------------------------
bool AudioMixerBase::isValidFormat(audio_format_t format) const
{
switch (format) {
case AUDIO_FORMAT_PCM_8_BIT:
case AUDIO_FORMAT_PCM_16_BIT:
case AUDIO_FORMAT_PCM_24_BIT_PACKED:
case AUDIO_FORMAT_PCM_32_BIT:
case AUDIO_FORMAT_PCM_FLOAT:
return true;
default:
return false;
}
}
bool AudioMixerBase::isValidChannelMask(audio_channel_mask_t channelMask) const
{
return audio_channel_count_from_out_mask(channelMask) <= MAX_NUM_CHANNELS;
}
std::shared_ptr<AudioMixerBase::TrackBase> AudioMixerBase::preCreateTrack()
{
return std::make_shared<TrackBase>();
}
status_t AudioMixerBase::create(
int name, audio_channel_mask_t channelMask, audio_format_t format, int sessionId)
{
LOG_ALWAYS_FATAL_IF(exists(name), "name %d already exists", name);
if (!isValidChannelMask(channelMask)) {
ALOGE("%s invalid channelMask: %#x", __func__, channelMask);
return BAD_VALUE;
}
if (!isValidFormat(format)) {
ALOGE("%s invalid format: %#x", __func__, format);
return BAD_VALUE;
}
auto t = preCreateTrack();
{
// TODO: move initialization to the Track constructor.
// assume default parameters for the track, except where noted below
t->needs = 0;
// Integer volume.
// Currently integer volume is kept for the legacy integer mixer.
// Will be removed when the legacy mixer path is removed.
t->volume[0] = 0;
t->volume[1] = 0;
t->prevVolume[0] = 0 << 16;
t->prevVolume[1] = 0 << 16;
t->volumeInc[0] = 0;
t->volumeInc[1] = 0;
t->auxLevel = 0;
t->auxInc = 0;
t->prevAuxLevel = 0;
// Floating point volume.
t->mVolume[0] = 0.f;
t->mVolume[1] = 0.f;
t->mPrevVolume[0] = 0.f;
t->mPrevVolume[1] = 0.f;
t->mVolumeInc[0] = 0.;
t->mVolumeInc[1] = 0.;
t->mAuxLevel = 0.;
t->mAuxInc = 0.;
t->mPrevAuxLevel = 0.;
// no initialization needed
// t->frameCount
t->channelCount = audio_channel_count_from_out_mask(channelMask);
t->enabled = false;
ALOGV_IF(audio_channel_mask_get_bits(channelMask) != AUDIO_CHANNEL_OUT_STEREO,
"Non-stereo channel mask: %d\n", channelMask);
t->channelMask = channelMask;
t->sessionId = sessionId;
// setBufferProvider(name, AudioBufferProvider *) is required before enable(name)
t->bufferProvider = NULL;
t->buffer.raw = NULL;
// no initialization needed
// t->buffer.frameCount
t->hook = NULL;
t->mIn = NULL;
t->sampleRate = mSampleRate;
// setParameter(name, TRACK, MAIN_BUFFER, mixBuffer) is required before enable(name)
t->mainBuffer = NULL;
t->auxBuffer = NULL;
t->teeBuffer = nullptr;
t->mMixerFormat = AUDIO_FORMAT_PCM_16_BIT;
t->mFormat = format;
t->mMixerInFormat = kUseFloat && kUseNewMixer ?
AUDIO_FORMAT_PCM_FLOAT : AUDIO_FORMAT_PCM_16_BIT;
t->mMixerChannelMask = audio_channel_mask_from_representation_and_bits(
AUDIO_CHANNEL_REPRESENTATION_POSITION, AUDIO_CHANNEL_OUT_STEREO);
t->mMixerChannelCount = audio_channel_count_from_out_mask(t->mMixerChannelMask);
t->mTeeBufferFrameCount = 0;
t->mInputFrameSize = audio_bytes_per_frame(t->channelCount, t->mFormat);
status_t status = postCreateTrack(t.get());
if (status != OK) return status;
mTracks[name] = t;
return OK;
}
}
// Called when channel masks have changed for a track name
bool AudioMixerBase::setChannelMasks(int name,
audio_channel_mask_t trackChannelMask, audio_channel_mask_t mixerChannelMask)
{
LOG_ALWAYS_FATAL_IF(!exists(name), "invalid name: %d", name);
const std::shared_ptr<TrackBase> &track = mTracks[name];
if (trackChannelMask == track->channelMask && mixerChannelMask == track->mMixerChannelMask) {
return false; // no need to change
}
// always recompute for both channel masks even if only one has changed.
const uint32_t trackChannelCount = audio_channel_count_from_out_mask(trackChannelMask);
const uint32_t mixerChannelCount = audio_channel_count_from_out_mask(mixerChannelMask);
ALOG_ASSERT(trackChannelCount && mixerChannelCount);
track->channelMask = trackChannelMask;
track->channelCount = trackChannelCount;
track->mMixerChannelMask = mixerChannelMask;
track->mMixerChannelCount = mixerChannelCount;
track->mInputFrameSize = audio_bytes_per_frame(track->channelCount, track->mFormat);
// Resampler channels may have changed.
track->recreateResampler(mSampleRate);
return true;
}
void AudioMixerBase::destroy(int name)
{
LOG_ALWAYS_FATAL_IF(!exists(name), "invalid name: %d", name);
ALOGV("deleteTrackName(%d)", name);
if (mTracks[name]->enabled) {
invalidate();
}
mTracks.erase(name); // deallocate track
}
void AudioMixerBase::enable(int name)
{
LOG_ALWAYS_FATAL_IF(!exists(name), "invalid name: %d", name);
const std::shared_ptr<TrackBase> &track = mTracks[name];
if (!track->enabled) {
track->enabled = true;
ALOGV("enable(%d)", name);
invalidate();
}
}
void AudioMixerBase::disable(int name)
{
LOG_ALWAYS_FATAL_IF(!exists(name), "invalid name: %d", name);
const std::shared_ptr<TrackBase> &track = mTracks[name];
if (track->enabled) {
track->enabled = false;
ALOGV("disable(%d)", name);
invalidate();
}
}
/* Sets the volume ramp variables for the AudioMixer.
*
* The volume ramp variables are used to transition from the previous
* volume to the set volume. ramp controls the duration of the transition.
* Its value is typically one state framecount period, but may also be 0,
* meaning "immediate."
*
* FIXME: 1) Volume ramp is enabled only if there is a nonzero integer increment
* even if there is a nonzero floating point increment (in that case, the volume
* change is immediate). This restriction should be changed when the legacy mixer
* is removed (see #2).
* FIXME: 2) Integer volume variables are used for Legacy mixing and should be removed
* when no longer needed.
*
* @param newVolume set volume target in floating point [0.0, 1.0].
* @param ramp number of frames to increment over. if ramp is 0, the volume
* should be set immediately. Currently ramp should not exceed 65535 (frames).
* @param pIntSetVolume pointer to the U4.12 integer target volume, set on return.
* @param pIntPrevVolume pointer to the U4.28 integer previous volume, set on return.
* @param pIntVolumeInc pointer to the U4.28 increment per output audio frame, set on return.
* @param pSetVolume pointer to the float target volume, set on return.
* @param pPrevVolume pointer to the float previous volume, set on return.
* @param pVolumeInc pointer to the float increment per output audio frame, set on return.
* @return true if the volume has changed, false if volume is same.
*/
static inline bool setVolumeRampVariables(float newVolume, int32_t ramp,
int16_t *pIntSetVolume, int32_t *pIntPrevVolume, int32_t *pIntVolumeInc,
float *pSetVolume, float *pPrevVolume, float *pVolumeInc) {
// check floating point volume to see if it is identical to the previously
// set volume.
// We do not use a tolerance here (and reject changes too small)
// as it may be confusing to use a different value than the one set.
// If the resulting volume is too small to ramp, it is a direct set of the volume.
if (newVolume == *pSetVolume) {
return false;
}
if (newVolume < 0) {
newVolume = 0; // should not have negative volumes
} else {
switch (fpclassify(newVolume)) {
case FP_SUBNORMAL:
case FP_NAN:
newVolume = 0;
break;
case FP_ZERO:
break; // zero volume is fine
case FP_INFINITE:
// Infinite volume could be handled consistently since
// floating point math saturates at infinities,
// but we limit volume to unity gain float.
// ramp = 0; break;
//
newVolume = AudioMixerBase::UNITY_GAIN_FLOAT;
break;
case FP_NORMAL:
default:
// Floating point does not have problems with overflow wrap
// that integer has. However, we limit the volume to
// unity gain here.
// TODO: Revisit the volume limitation and perhaps parameterize.
if (newVolume > AudioMixerBase::UNITY_GAIN_FLOAT) {
newVolume = AudioMixerBase::UNITY_GAIN_FLOAT;
}
break;
}
}
// set floating point volume ramp
if (ramp != 0) {
// when the ramp completes, *pPrevVolume is set to *pSetVolume, so there
// is no computational mismatch; hence equality is checked here.
ALOGD_IF(*pPrevVolume != *pSetVolume, "previous float ramp hasn't finished,"
" prev:%f set_to:%f", *pPrevVolume, *pSetVolume);
const float inc = (newVolume - *pPrevVolume) / ramp; // could be inf, nan, subnormal
// could be inf, cannot be nan, subnormal
const float maxv = std::max(newVolume, *pPrevVolume);
if (isnormal(inc) // inc must be a normal number (no subnormals, infinite, nan)
&& maxv + inc != maxv) { // inc must make forward progress
*pVolumeInc = inc;
// ramp is set now.
// Note: if newVolume is 0, then near the end of the ramp,
// it may be possible that the ramped volume may be subnormal or
// temporarily negative by a small amount or subnormal due to floating
// point inaccuracies.
} else {
ramp = 0; // ramp not allowed
}
}
// compute and check integer volume, no need to check negative values
// The integer volume is limited to "unity_gain" to avoid wrapping and other
// audio artifacts, so it never reaches the range limit of U4.28.
// We safely use signed 16 and 32 bit integers here.
const float scaledVolume = newVolume * AudioMixerBase::UNITY_GAIN_INT; // not neg, subnormal, nan
const int32_t intVolume = (scaledVolume >= (float)AudioMixerBase::UNITY_GAIN_INT) ?
AudioMixerBase::UNITY_GAIN_INT : (int32_t)scaledVolume;
// set integer volume ramp
if (ramp != 0) {
// integer volume is U4.12 (to use 16 bit multiplies), but ramping uses U4.28.
// when the ramp completes, *pIntPrevVolume is set to *pIntSetVolume << 16, so there
// is no computational mismatch; hence equality is checked here.
ALOGD_IF(*pIntPrevVolume != *pIntSetVolume << 16, "previous int ramp hasn't finished,"
" prev:%d set_to:%d", *pIntPrevVolume, *pIntSetVolume << 16);
const int32_t inc = ((intVolume << 16) - *pIntPrevVolume) / ramp;
if (inc != 0) { // inc must make forward progress
*pIntVolumeInc = inc;
} else {
ramp = 0; // ramp not allowed
}
}
// if no ramp, or ramp not allowed, then clear float and integer increments
if (ramp == 0) {
*pVolumeInc = 0;
*pPrevVolume = newVolume;
*pIntVolumeInc = 0;
*pIntPrevVolume = intVolume << 16;
}
*pSetVolume = newVolume;
*pIntSetVolume = intVolume;
return true;
}
void AudioMixerBase::setParameter(int name, int target, int param, void *value)
{
LOG_ALWAYS_FATAL_IF(!exists(name), "invalid name: %d", name);
const std::shared_ptr<TrackBase> &track = mTracks[name];
int valueInt = static_cast<int>(reinterpret_cast<uintptr_t>(value));
int32_t *valueBuf = reinterpret_cast<int32_t*>(value);
switch (target) {
case TRACK:
switch (param) {
case CHANNEL_MASK: {
const audio_channel_mask_t trackChannelMask =
static_cast<audio_channel_mask_t>(valueInt);
if (setChannelMasks(name, trackChannelMask, track->mMixerChannelMask)) {
ALOGV("setParameter(TRACK, CHANNEL_MASK, %x)", trackChannelMask);
invalidate();
}
} break;
case MAIN_BUFFER:
if (track->mainBuffer != valueBuf) {
track->mainBuffer = valueBuf;
ALOGV("setParameter(TRACK, MAIN_BUFFER, %p)", valueBuf);
invalidate();
}
break;
case AUX_BUFFER:
if (track->auxBuffer != valueBuf) {
track->auxBuffer = valueBuf;
ALOGV("setParameter(TRACK, AUX_BUFFER, %p)", valueBuf);
invalidate();
}
break;
case FORMAT: {
audio_format_t format = static_cast<audio_format_t>(valueInt);
if (track->mFormat != format) {
ALOG_ASSERT(audio_is_linear_pcm(format), "Invalid format %#x", format);
track->mFormat = format;
ALOGV("setParameter(TRACK, FORMAT, %#x)", format);
invalidate();
}
} break;
case MIXER_FORMAT: {
audio_format_t format = static_cast<audio_format_t>(valueInt);
if (track->mMixerFormat != format) {
track->mMixerFormat = format;
ALOGV("setParameter(TRACK, MIXER_FORMAT, %#x)", format);
}
} break;
case MIXER_CHANNEL_MASK: {
const audio_channel_mask_t mixerChannelMask =
static_cast<audio_channel_mask_t>(valueInt);
if (setChannelMasks(name, track->channelMask, mixerChannelMask)) {
ALOGV("setParameter(TRACK, MIXER_CHANNEL_MASK, %#x)", mixerChannelMask);
invalidate();
}
} break;
case TEE_BUFFER:
if (track->teeBuffer != valueBuf) {
track->teeBuffer = valueBuf;
ALOGV("setParameter(TRACK, TEE_BUFFER, %p)", valueBuf);
invalidate();
}
break;
case TEE_BUFFER_FRAME_COUNT:
if (track->mTeeBufferFrameCount != valueInt) {
track->mTeeBufferFrameCount = valueInt;
ALOGV("setParameter(TRACK, TEE_BUFFER_FRAME_COUNT, %i)", valueInt);
invalidate();
}
break;
default:
LOG_ALWAYS_FATAL("setParameter track: bad param %d", param);
}
break;
case RESAMPLE:
switch (param) {
case SAMPLE_RATE:
ALOG_ASSERT(valueInt > 0, "bad sample rate %d", valueInt);
if (track->setResampler(uint32_t(valueInt), mSampleRate)) {
ALOGV("setParameter(RESAMPLE, SAMPLE_RATE, %u)",
uint32_t(valueInt));
invalidate();
}
break;
case RESET:
track->resetResampler();
invalidate();
break;
case REMOVE:
track->mResampler.reset(nullptr);
track->sampleRate = mSampleRate;
invalidate();
break;
default:
LOG_ALWAYS_FATAL("setParameter resample: bad param %d", param);
}
break;
case RAMP_VOLUME:
case VOLUME:
switch (param) {
case AUXLEVEL:
if (setVolumeRampVariables(*reinterpret_cast<float*>(value),
target == RAMP_VOLUME ? mFrameCount : 0,
&track->auxLevel, &track->prevAuxLevel, &track->auxInc,
&track->mAuxLevel, &track->mPrevAuxLevel, &track->mAuxInc)) {
ALOGV("setParameter(%s, AUXLEVEL: %04x)",
target == VOLUME ? "VOLUME" : "RAMP_VOLUME", track->auxLevel);
invalidate();
}
break;
default:
if ((unsigned)param >= VOLUME0 && (unsigned)param < VOLUME0 + MAX_NUM_VOLUMES) {
if (setVolumeRampVariables(*reinterpret_cast<float*>(value),
target == RAMP_VOLUME ? mFrameCount : 0,
&track->volume[param - VOLUME0],
&track->prevVolume[param - VOLUME0],
&track->volumeInc[param - VOLUME0],
&track->mVolume[param - VOLUME0],
&track->mPrevVolume[param - VOLUME0],
&track->mVolumeInc[param - VOLUME0])) {
ALOGV("setParameter(%s, VOLUME%d: %f)",
target == VOLUME ? "VOLUME" : "RAMP_VOLUME", param - VOLUME0,
track->mVolume[param - VOLUME0]);
invalidate();
}
} else {
LOG_ALWAYS_FATAL("setParameter volume: bad param %d", param);
}
}
break;
default:
LOG_ALWAYS_FATAL("setParameter: bad target %d", target);
}
}
bool AudioMixerBase::TrackBase::setResampler(uint32_t trackSampleRate, uint32_t devSampleRate)
{
if (trackSampleRate != devSampleRate || mResampler.get() != nullptr) {
if (sampleRate != trackSampleRate) {
sampleRate = trackSampleRate;
if (mResampler.get() == nullptr) {
ALOGV("Creating resampler from track %d Hz to device %d Hz",
trackSampleRate, devSampleRate);
AudioResampler::src_quality quality;
// force lowest quality level resampler if use case isn't music or video
// FIXME this is flawed for dynamic sample rates, as we choose the resampler
// quality level based on the initial ratio, but that could change later.
// Should have a way to distinguish tracks with static ratios vs. dynamic ratios.
if (isMusicRate(trackSampleRate)) {
quality = AudioResampler::DEFAULT_QUALITY;
} else {
quality = AudioResampler::DYN_LOW_QUALITY;
}
// TODO: Remove MONO_HACK. Resampler sees #channels after the downmixer
// but if none exists, it is the channel count (1 for mono).
const int resamplerChannelCount = getOutputChannelCount();
ALOGVV("Creating resampler:"
" format(%#x) channels(%d) devSampleRate(%u) quality(%d)\n",
mMixerInFormat, resamplerChannelCount, devSampleRate, quality);
mResampler.reset(AudioResampler::create(
mMixerInFormat,
resamplerChannelCount,
devSampleRate, quality));
}
return true;
}
}
return false;
}
/* Checks to see if the volume ramp has completed and clears the increment
* variables appropriately.
*
* FIXME: There is code to handle int/float ramp variable switchover should it not
* complete within a mixer buffer processing call, but it is preferred to avoid switchover
* due to precision issues. The switchover code is included for legacy code purposes
* and can be removed once the integer volume is removed.
*
* It is not sufficient to clear only the volumeInc integer variable because
* if one channel requires ramping, all channels are ramped.
*
* There is a bit of duplicated code here, but it keeps backward compatibility.
*/
void AudioMixerBase::TrackBase::adjustVolumeRamp(bool aux, bool useFloat)
{
if (useFloat) {
for (uint32_t i = 0; i < MAX_NUM_VOLUMES; i++) {
if ((mVolumeInc[i] > 0 && mPrevVolume[i] + mVolumeInc[i] >= mVolume[i]) ||
(mVolumeInc[i] < 0 && mPrevVolume[i] + mVolumeInc[i] <= mVolume[i])) {
volumeInc[i] = 0;
prevVolume[i] = volume[i] << 16;
mVolumeInc[i] = 0.;
mPrevVolume[i] = mVolume[i];
} else {
//ALOGV("ramp: %f %f %f", mVolume[i], mPrevVolume[i], mVolumeInc[i]);
prevVolume[i] = u4_28_from_float(mPrevVolume[i]);
}
}
} else {
for (uint32_t i = 0; i < MAX_NUM_VOLUMES; i++) {
if (((volumeInc[i]>0) && (((prevVolume[i]+volumeInc[i])>>16) >= volume[i])) ||
((volumeInc[i]<0) && (((prevVolume[i]+volumeInc[i])>>16) <= volume[i]))) {
volumeInc[i] = 0;
prevVolume[i] = volume[i] << 16;
mVolumeInc[i] = 0.;
mPrevVolume[i] = mVolume[i];
} else {
//ALOGV("ramp: %d %d %d", volume[i] << 16, prevVolume[i], volumeInc[i]);
mPrevVolume[i] = float_from_u4_28(prevVolume[i]);
}
}
}
if (aux) {
#ifdef FLOAT_AUX
if (useFloat) {
if ((mAuxInc > 0.f && mPrevAuxLevel + mAuxInc >= mAuxLevel) ||
(mAuxInc < 0.f && mPrevAuxLevel + mAuxInc <= mAuxLevel)) {
auxInc = 0;
prevAuxLevel = auxLevel << 16;
mAuxInc = 0.f;
mPrevAuxLevel = mAuxLevel;
}
} else
#endif
if ((auxInc > 0 && ((prevAuxLevel + auxInc) >> 16) >= auxLevel) ||
(auxInc < 0 && ((prevAuxLevel + auxInc) >> 16) <= auxLevel)) {
auxInc = 0;
prevAuxLevel = auxLevel << 16;
mAuxInc = 0.f;
mPrevAuxLevel = mAuxLevel;
}
}
}
void AudioMixerBase::TrackBase::recreateResampler(uint32_t devSampleRate)
{
if (mResampler.get() != nullptr) {
const uint32_t resetToSampleRate = sampleRate;
mResampler.reset(nullptr);
sampleRate = devSampleRate; // without resampler, track rate is device sample rate.
// recreate the resampler with updated format, channels, saved sampleRate.
setResampler(resetToSampleRate /*trackSampleRate*/, devSampleRate);
}
}
size_t AudioMixerBase::getUnreleasedFrames(int name) const
{
const auto it = mTracks.find(name);
if (it != mTracks.end()) {
return it->second->getUnreleasedFrames();
}
return 0;
}
std::string AudioMixerBase::trackNames() const
{
std::stringstream ss;
for (const auto &pair : mTracks) {
ss << pair.first << " ";
}
return ss.str();
}
void AudioMixerBase::process__validate()
{
// TODO: fix all16BitsStereNoResample logic to
// either properly handle muted tracks (it should ignore them)
// or remove altogether as an obsolete optimization.
bool all16BitsStereoNoResample = true;
bool resampling = false;
bool volumeRamp = false;
mEnabled.clear();
mGroups.clear();
for (const auto &pair : mTracks) {
const int name = pair.first;
const std::shared_ptr<TrackBase> &t = pair.second;
if (!t->enabled) continue;
mEnabled.emplace_back(name); // we add to mEnabled in order of name.
mGroups[t->mainBuffer].emplace_back(name); // mGroups also in order of name.
uint32_t n = 0;
// FIXME can overflow (mask is only 3 bits)
n |= NEEDS_CHANNEL_1 + t->channelCount - 1;
if (t->doesResample()) {
n |= NEEDS_RESAMPLE;
}
if (t->auxLevel != 0 && t->auxBuffer != NULL) {
n |= NEEDS_AUX;
}
if (t->volumeInc[0]|t->volumeInc[1]) {
volumeRamp = true;
} else if (!t->doesResample() && t->isVolumeMuted()) {
n |= NEEDS_MUTE;
}
t->needs = n;
if (n & NEEDS_MUTE) {
t->hook = &TrackBase::track__nop;
} else {
if (n & NEEDS_AUX) {
all16BitsStereoNoResample = false;
}
if (n & NEEDS_RESAMPLE) {
all16BitsStereoNoResample = false;
resampling = true;
if ((n & NEEDS_CHANNEL_COUNT__MASK) == NEEDS_CHANNEL_1
&& t->channelMask == AUDIO_CHANNEL_OUT_MONO // MONO_HACK
&& isAudioChannelPositionMask(t->mMixerChannelMask)) {
t->hook = TrackBase::getTrackHook(
TRACKTYPE_RESAMPLEMONO, t->mMixerChannelCount,
t->mMixerInFormat, t->mMixerFormat);
} else if ((n & NEEDS_CHANNEL_COUNT__MASK) >= NEEDS_CHANNEL_2
&& t->useStereoVolume()) {
t->hook = TrackBase::getTrackHook(
TRACKTYPE_RESAMPLESTEREO, t->mMixerChannelCount,
t->mMixerInFormat, t->mMixerFormat);
} else {
t->hook = TrackBase::getTrackHook(
TRACKTYPE_RESAMPLE, t->mMixerChannelCount,
t->mMixerInFormat, t->mMixerFormat);
}
ALOGV_IF((n & NEEDS_CHANNEL_COUNT__MASK) > NEEDS_CHANNEL_2,
"Track %d needs downmix + resample", name);
} else {
if ((n & NEEDS_CHANNEL_COUNT__MASK) == NEEDS_CHANNEL_1){
t->hook = TrackBase::getTrackHook(
(isAudioChannelPositionMask(t->mMixerChannelMask) // TODO: MONO_HACK
&& t->channelMask == AUDIO_CHANNEL_OUT_MONO)
? TRACKTYPE_NORESAMPLEMONO : TRACKTYPE_NORESAMPLE,
t->mMixerChannelCount,
t->mMixerInFormat, t->mMixerFormat);
all16BitsStereoNoResample = false;
}
if ((n & NEEDS_CHANNEL_COUNT__MASK) >= NEEDS_CHANNEL_2){
t->hook = TrackBase::getTrackHook(
t->useStereoVolume() ? TRACKTYPE_NORESAMPLESTEREO
: TRACKTYPE_NORESAMPLE,
t->mMixerChannelCount, t->mMixerInFormat,
t->mMixerFormat);
ALOGV_IF((n & NEEDS_CHANNEL_COUNT__MASK) > NEEDS_CHANNEL_2,
"Track %d needs downmix", name);
}
}
}
}
// select the processing hooks
mHook = &AudioMixerBase::process__nop;
if (mEnabled.size() > 0) {
if (resampling) {
if (mOutputTemp.get() == nullptr) {
mOutputTemp.reset(new int32_t[MAX_NUM_CHANNELS * mFrameCount]);
}
if (mResampleTemp.get() == nullptr) {
mResampleTemp.reset(new int32_t[MAX_NUM_CHANNELS * mFrameCount]);
}
mHook = &AudioMixerBase::process__genericResampling;
} else {
// we keep temp arrays around.
mHook = &AudioMixerBase::process__genericNoResampling;
if (all16BitsStereoNoResample && !volumeRamp) {
if (mEnabled.size() == 1) {
const std::shared_ptr<TrackBase> &t = mTracks[mEnabled[0]];
if ((t->needs & NEEDS_MUTE) == 0) {
// The check prevents a muted track from acquiring a process hook.
//
// This is dangerous if the track is MONO as that requires
// special case handling due to implicit channel duplication.
// Stereo or Multichannel should actually be fine here.
mHook = getProcessHook(PROCESSTYPE_NORESAMPLEONETRACK,
t->mMixerChannelCount, t->mMixerInFormat, t->mMixerFormat,
t->useStereoVolume());
}
}
}
}
}
ALOGV("mixer configuration change: %zu "
"all16BitsStereoNoResample=%d, resampling=%d, volumeRamp=%d",
mEnabled.size(), all16BitsStereoNoResample, resampling, volumeRamp);
process();
// Now that the volume ramp has been done, set optimal state and
// track hooks for subsequent mixer process
if (mEnabled.size() > 0) {
bool allMuted = true;
for (const int name : mEnabled) {
const std::shared_ptr<TrackBase> &t = mTracks[name];
if (!t->doesResample() && t->isVolumeMuted()) {
t->needs |= NEEDS_MUTE;
t->hook = &TrackBase::track__nop;
} else {
allMuted = false;
}
}
if (allMuted) {
mHook = &AudioMixerBase::process__nop;
} else if (all16BitsStereoNoResample) {
if (mEnabled.size() == 1) {
//const int i = 31 - __builtin_clz(enabledTracks);
const std::shared_ptr<TrackBase> &t = mTracks[mEnabled[0]];
// Muted single tracks handled by allMuted above.
mHook = getProcessHook(PROCESSTYPE_NORESAMPLEONETRACK,
t->mMixerChannelCount, t->mMixerInFormat, t->mMixerFormat,
t->useStereoVolume());
}
}
}
}
void AudioMixerBase::TrackBase::track__genericResample(
int32_t* out, size_t outFrameCount, int32_t* temp, int32_t* aux)
{
ALOGVV("track__genericResample\n");
mResampler->setSampleRate(sampleRate);
// ramp gain - resample to temp buffer and scale/mix in 2nd step
if (aux != NULL) {
// always resample with unity gain when sending to auxiliary buffer to be able
// to apply send level after resampling
mResampler->setVolume(UNITY_GAIN_FLOAT, UNITY_GAIN_FLOAT);
memset(temp, 0, outFrameCount * mMixerChannelCount * sizeof(int32_t));
mResampler->resample(temp, outFrameCount, bufferProvider);
if (CC_UNLIKELY(volumeInc[0]|volumeInc[1]|auxInc)) {
volumeRampStereo(out, outFrameCount, temp, aux);
} else {
volumeStereo(out, outFrameCount, temp, aux);
}
} else {
if (CC_UNLIKELY(volumeInc[0]|volumeInc[1])) {
mResampler->setVolume(UNITY_GAIN_FLOAT, UNITY_GAIN_FLOAT);
memset(temp, 0, outFrameCount * MAX_NUM_CHANNELS * sizeof(int32_t));
mResampler->resample(temp, outFrameCount, bufferProvider);
volumeRampStereo(out, outFrameCount, temp, aux);
}
// constant gain
else {
mResampler->setVolume(mVolume[0], mVolume[1]);
mResampler->resample(out, outFrameCount, bufferProvider);
}
}
}
void AudioMixerBase::TrackBase::track__nop(int32_t* out __unused,
size_t outFrameCount __unused, int32_t* temp __unused, int32_t* aux __unused)
{
}
void AudioMixerBase::TrackBase::volumeRampStereo(
int32_t* out, size_t frameCount, int32_t* temp, int32_t* aux)
{
int32_t vl = prevVolume[0];
int32_t vr = prevVolume[1];
const int32_t vlInc = volumeInc[0];
const int32_t vrInc = volumeInc[1];
//ALOGD("[0] %p: inc=%f, v0=%f, v1=%d, final=%f, count=%d",
// t, vlInc/65536.0f, vl/65536.0f, volume[0],
// (vl + vlInc*frameCount)/65536.0f, frameCount);
// ramp volume
if (CC_UNLIKELY(aux != NULL)) {
int32_t va = prevAuxLevel;
const int32_t vaInc = auxInc;
int32_t l;
int32_t r;
do {
l = (*temp++ >> 12);
r = (*temp++ >> 12);
*out++ += (vl >> 16) * l;
*out++ += (vr >> 16) * r;
*aux++ += (va >> 17) * (l + r);
vl += vlInc;
vr += vrInc;
va += vaInc;
} while (--frameCount);
prevAuxLevel = va;
} else {
do {
*out++ += (vl >> 16) * (*temp++ >> 12);
*out++ += (vr >> 16) * (*temp++ >> 12);
vl += vlInc;
vr += vrInc;
} while (--frameCount);
}
prevVolume[0] = vl;
prevVolume[1] = vr;
adjustVolumeRamp(aux != NULL);
}
void AudioMixerBase::TrackBase::volumeStereo(
int32_t* out, size_t frameCount, int32_t* temp, int32_t* aux)
{
const int16_t vl = volume[0];
const int16_t vr = volume[1];
if (CC_UNLIKELY(aux != NULL)) {
const int16_t va = auxLevel;
do {
int16_t l = (int16_t)(*temp++ >> 12);
int16_t r = (int16_t)(*temp++ >> 12);
out[0] = mulAdd(l, vl, out[0]);
int16_t a = (int16_t)(((int32_t)l + r) >> 1);
out[1] = mulAdd(r, vr, out[1]);
out += 2;
aux[0] = mulAdd(a, va, aux[0]);
aux++;
} while (--frameCount);
} else {
do {
int16_t l = (int16_t)(*temp++ >> 12);
int16_t r = (int16_t)(*temp++ >> 12);
out[0] = mulAdd(l, vl, out[0]);
out[1] = mulAdd(r, vr, out[1]);
out += 2;
} while (--frameCount);
}
}
void AudioMixerBase::TrackBase::track__16BitsStereo(
int32_t* out, size_t frameCount, int32_t* temp __unused, int32_t* aux)
{
ALOGVV("track__16BitsStereo\n");
const int16_t *in = static_cast<const int16_t *>(mIn);
if (CC_UNLIKELY(aux != NULL)) {
int32_t l;
int32_t r;
// ramp gain
if (CC_UNLIKELY(volumeInc[0]|volumeInc[1]|auxInc)) {
int32_t vl = prevVolume[0];
int32_t vr = prevVolume[1];
int32_t va = prevAuxLevel;
const int32_t vlInc = volumeInc[0];
const int32_t vrInc = volumeInc[1];
const int32_t vaInc = auxInc;
// ALOGD("[1] %p: inc=%f, v0=%f, v1=%d, final=%f, count=%d",
// t, vlInc/65536.0f, vl/65536.0f, volume[0],
// (vl + vlInc*frameCount)/65536.0f, frameCount);
do {
l = (int32_t)*in++;
r = (int32_t)*in++;
*out++ += (vl >> 16) * l;
*out++ += (vr >> 16) * r;
*aux++ += (va >> 17) * (l + r);
vl += vlInc;
vr += vrInc;
va += vaInc;
} while (--frameCount);
prevVolume[0] = vl;
prevVolume[1] = vr;
prevAuxLevel = va;
adjustVolumeRamp(true);
}
// constant gain
else {
const uint32_t vrl = volumeRL;
const int16_t va = (int16_t)auxLevel;
do {
uint32_t rl = *reinterpret_cast<const uint32_t *>(in);
int16_t a = (int16_t)(((int32_t)in[0] + in[1]) >> 1);
in += 2;
out[0] = mulAddRL(1, rl, vrl, out[0]);
out[1] = mulAddRL(0, rl, vrl, out[1]);
out += 2;
aux[0] = mulAdd(a, va, aux[0]);
aux++;
} while (--frameCount);
}
} else {
// ramp gain
if (CC_UNLIKELY(volumeInc[0]|volumeInc[1])) {
int32_t vl = prevVolume[0];
int32_t vr = prevVolume[1];
const int32_t vlInc = volumeInc[0];
const int32_t vrInc = volumeInc[1];
// ALOGD("[1] %p: inc=%f, v0=%f, v1=%d, final=%f, count=%d",
// t, vlInc/65536.0f, vl/65536.0f, volume[0],
// (vl + vlInc*frameCount)/65536.0f, frameCount);
do {
*out++ += (vl >> 16) * (int32_t) *in++;
*out++ += (vr >> 16) * (int32_t) *in++;
vl += vlInc;
vr += vrInc;
} while (--frameCount);
prevVolume[0] = vl;
prevVolume[1] = vr;
adjustVolumeRamp(false);
}
// constant gain
else {
const uint32_t vrl = volumeRL;
do {
uint32_t rl = *reinterpret_cast<const uint32_t *>(in);
in += 2;
out[0] = mulAddRL(1, rl, vrl, out[0]);
out[1] = mulAddRL(0, rl, vrl, out[1]);
out += 2;
} while (--frameCount);
}
}
mIn = in;
}
void AudioMixerBase::TrackBase::track__16BitsMono(
int32_t* out, size_t frameCount, int32_t* temp __unused, int32_t* aux)
{
ALOGVV("track__16BitsMono\n");
const int16_t *in = static_cast<int16_t const *>(mIn);
if (CC_UNLIKELY(aux != NULL)) {
// ramp gain
if (CC_UNLIKELY(volumeInc[0]|volumeInc[1]|auxInc)) {
int32_t vl = prevVolume[0];
int32_t vr = prevVolume[1];
int32_t va = prevAuxLevel;
const int32_t vlInc = volumeInc[0];
const int32_t vrInc = volumeInc[1];
const int32_t vaInc = auxInc;
// ALOGD("[2] %p: inc=%f, v0=%f, v1=%d, final=%f, count=%d",
// t, vlInc/65536.0f, vl/65536.0f, volume[0],
// (vl + vlInc*frameCount)/65536.0f, frameCount);
do {
int32_t l = *in++;
*out++ += (vl >> 16) * l;
*out++ += (vr >> 16) * l;
*aux++ += (va >> 16) * l;
vl += vlInc;
vr += vrInc;
va += vaInc;
} while (--frameCount);
prevVolume[0] = vl;
prevVolume[1] = vr;
prevAuxLevel = va;
adjustVolumeRamp(true);
}
// constant gain
else {
const int16_t vl = volume[0];
const int16_t vr = volume[1];
const int16_t va = (int16_t)auxLevel;
do {
int16_t l = *in++;
out[0] = mulAdd(l, vl, out[0]);
out[1] = mulAdd(l, vr, out[1]);
out += 2;
aux[0] = mulAdd(l, va, aux[0]);
aux++;
} while (--frameCount);
}
} else {
// ramp gain
if (CC_UNLIKELY(volumeInc[0]|volumeInc[1])) {
int32_t vl = prevVolume[0];
int32_t vr = prevVolume[1];
const int32_t vlInc = volumeInc[0];
const int32_t vrInc = volumeInc[1];
// ALOGD("[2] %p: inc=%f, v0=%f, v1=%d, final=%f, count=%d",
// t, vlInc/65536.0f, vl/65536.0f, volume[0],
// (vl + vlInc*frameCount)/65536.0f, frameCount);
do {
int32_t l = *in++;
*out++ += (vl >> 16) * l;
*out++ += (vr >> 16) * l;
vl += vlInc;
vr += vrInc;
} while (--frameCount);
prevVolume[0] = vl;
prevVolume[1] = vr;
adjustVolumeRamp(false);
}
// constant gain
else {
const int16_t vl = volume[0];
const int16_t vr = volume[1];
do {
int16_t l = *in++;
out[0] = mulAdd(l, vl, out[0]);
out[1] = mulAdd(l, vr, out[1]);
out += 2;
} while (--frameCount);
}
}
mIn = in;
}
// no-op case
void AudioMixerBase::process__nop()
{
ALOGVV("process__nop\n");
for (const auto &pair : mGroups) {
// process by group of tracks with same output buffer to
// avoid multiple memset() on same buffer
const auto &group = pair.second;
const std::shared_ptr<TrackBase> &t = mTracks[group[0]];
memset(t->mainBuffer, 0,
mFrameCount * audio_bytes_per_frame(t->getMixerChannelCount(), t->mMixerFormat));
// now consume data
for (const int name : group) {
const std::shared_ptr<TrackBase> &t = mTracks[name];
size_t outFrames = mFrameCount;
while (outFrames) {
t->buffer.frameCount = outFrames;
t->bufferProvider->getNextBuffer(&t->buffer);
if (t->buffer.raw == NULL) break;
outFrames -= t->buffer.frameCount;
t->bufferProvider->releaseBuffer(&t->buffer);
}
}
}
}
// generic code without resampling
void AudioMixerBase::process__genericNoResampling()
{
ALOGVV("process__genericNoResampling\n");
int32_t outTemp[BLOCKSIZE * MAX_NUM_CHANNELS] __attribute__((aligned(32)));
for (const auto &pair : mGroups) {
// process by group of tracks with same output main buffer to
// avoid multiple memset() on same buffer
const auto &group = pair.second;
// acquire buffer
for (const int name : group) {
const std::shared_ptr<TrackBase> &t = mTracks[name];
t->buffer.frameCount = mFrameCount;
t->bufferProvider->getNextBuffer(&t->buffer);
t->frameCount = t->buffer.frameCount;
t->mIn = t->buffer.raw;
}
int32_t *out = (int *)pair.first;
size_t numFrames = 0;
do {
const size_t frameCount = std::min((size_t)BLOCKSIZE, mFrameCount - numFrames);
memset(outTemp, 0, sizeof(outTemp));
for (const int name : group) {
const std::shared_ptr<TrackBase> &t = mTracks[name];
int32_t *aux = NULL;
if (CC_UNLIKELY(t->needs & NEEDS_AUX)) {
aux = t->auxBuffer + numFrames;
}
for (int outFrames = frameCount; outFrames > 0; ) {
// t->in == nullptr can happen if the track was flushed just after having
// been enabled for mixing.
if (t->mIn == nullptr) {
break;
}
size_t inFrames = (t->frameCount > outFrames)?outFrames:t->frameCount;
if (inFrames > 0) {
(t.get()->*t->hook)(
outTemp + (frameCount - outFrames) * t->mMixerChannelCount,
inFrames, mResampleTemp.get() /* naked ptr */, aux);
t->frameCount -= inFrames;
outFrames -= inFrames;
if (CC_UNLIKELY(aux != NULL)) {
aux += inFrames;
}
}
if (t->frameCount == 0 && outFrames) {
t->bufferProvider->releaseBuffer(&t->buffer);
t->buffer.frameCount = (mFrameCount - numFrames) -
(frameCount - outFrames);
t->bufferProvider->getNextBuffer(&t->buffer);
t->mIn = t->buffer.raw;
if (t->mIn == nullptr) {
break;
}
t->frameCount = t->buffer.frameCount;
}
}
}
const std::shared_ptr<TrackBase> &t1 = mTracks[group[0]];
convertMixerFormat(out, t1->mMixerFormat, outTemp, t1->mMixerInFormat,
frameCount * t1->mMixerChannelCount);
// TODO: fix ugly casting due to choice of out pointer type
out = reinterpret_cast<int32_t*>((uint8_t*)out
+ frameCount * t1->mMixerChannelCount
* audio_bytes_per_sample(t1->mMixerFormat));
numFrames += frameCount;
} while (numFrames < mFrameCount);
// release each track's buffer
for (const int name : group) {
const std::shared_ptr<TrackBase> &t = mTracks[name];
t->bufferProvider->releaseBuffer(&t->buffer);
}
}
}
// generic code with resampling
void AudioMixerBase::process__genericResampling()
{
ALOGVV("process__genericResampling\n");
int32_t * const outTemp = mOutputTemp.get(); // naked ptr
size_t numFrames = mFrameCount;
for (const auto &pair : mGroups) {
const auto &group = pair.second;
const std::shared_ptr<TrackBase> &t1 = mTracks[group[0]];
// clear temp buffer
memset(outTemp, 0, sizeof(*outTemp) * t1->mMixerChannelCount * mFrameCount);
for (const int name : group) {
const std::shared_ptr<TrackBase> &t = mTracks[name];
int32_t *aux = NULL;
if (CC_UNLIKELY(t->needs & NEEDS_AUX)) {
aux = t->auxBuffer;
}
// this is a little goofy, on the resampling case we don't
// acquire/release the buffers because it's done by
// the resampler.
if (t->needs & NEEDS_RESAMPLE) {
(t.get()->*t->hook)(outTemp, numFrames, mResampleTemp.get() /* naked ptr */, aux);
} else {
size_t outFrames = 0;
while (outFrames < numFrames) {
t->buffer.frameCount = numFrames - outFrames;
t->bufferProvider->getNextBuffer(&t->buffer);
t->mIn = t->buffer.raw;
// t->mIn == nullptr can happen if the track was flushed just after having
// been enabled for mixing.
if (t->mIn == nullptr) break;
(t.get()->*t->hook)(
outTemp + outFrames * t->mMixerChannelCount, t->buffer.frameCount,
mResampleTemp.get() /* naked ptr */,
aux != nullptr ? aux + outFrames : nullptr);
outFrames += t->buffer.frameCount;
t->bufferProvider->releaseBuffer(&t->buffer);
}
}
}
convertMixerFormat(t1->mainBuffer, t1->mMixerFormat,
outTemp, t1->mMixerInFormat, numFrames * t1->mMixerChannelCount);
}
}
// one track, 16 bits stereo without resampling is the most common case
void AudioMixerBase::process__oneTrack16BitsStereoNoResampling()
{
ALOGVV("process__oneTrack16BitsStereoNoResampling\n");
LOG_ALWAYS_FATAL_IF(mEnabled.size() != 0,
"%zu != 1 tracks enabled", mEnabled.size());
const int name = mEnabled[0];
const std::shared_ptr<TrackBase> &t = mTracks[name];
AudioBufferProvider::Buffer& b(t->buffer);
int32_t* out = t->mainBuffer;
float *fout = reinterpret_cast<float*>(out);
size_t numFrames = mFrameCount;
const int16_t vl = t->volume[0];
const int16_t vr = t->volume[1];
const uint32_t vrl = t->volumeRL;
while (numFrames) {
b.frameCount = numFrames;
t->bufferProvider->getNextBuffer(&b);
const int16_t *in = b.i16;
// in == NULL can happen if the track was flushed just after having
// been enabled for mixing.
if (in == NULL || (((uintptr_t)in) & 3)) {
if ( AUDIO_FORMAT_PCM_FLOAT == t->mMixerFormat ) {
memset((char*)fout, 0, numFrames
* t->mMixerChannelCount * audio_bytes_per_sample(t->mMixerFormat));
} else {
memset((char*)out, 0, numFrames
* t->mMixerChannelCount * audio_bytes_per_sample(t->mMixerFormat));
}
ALOGE_IF((((uintptr_t)in) & 3),
"process__oneTrack16BitsStereoNoResampling: misaligned buffer"
" %p track %d, channels %d, needs %08x, volume %08x vfl %f vfr %f",
in, name, t->channelCount, t->needs, vrl, t->mVolume[0], t->mVolume[1]);
return;
}
size_t outFrames = b.frameCount;
switch (t->mMixerFormat) {
case AUDIO_FORMAT_PCM_FLOAT:
do {
uint32_t rl = *reinterpret_cast<const uint32_t *>(in);
in += 2;
int32_t l = mulRL(1, rl, vrl);
int32_t r = mulRL(0, rl, vrl);
*fout++ = float_from_q4_27(l);
*fout++ = float_from_q4_27(r);
// Note: In case of later int16_t sink output,
// conversion and clamping is done by memcpy_to_i16_from_float().
} while (--outFrames);
break;
case AUDIO_FORMAT_PCM_16_BIT:
if (CC_UNLIKELY(uint32_t(vl) > UNITY_GAIN_INT || uint32_t(vr) > UNITY_GAIN_INT)) {
// volume is boosted, so we might need to clamp even though
// we process only one track.
do {
uint32_t rl = *reinterpret_cast<const uint32_t *>(in);
in += 2;
int32_t l = mulRL(1, rl, vrl) >> 12;
int32_t r = mulRL(0, rl, vrl) >> 12;
// clamping...
l = clamp16(l);
r = clamp16(r);
*out++ = (r<<16) | (l & 0xFFFF);
} while (--outFrames);
} else {
do {
uint32_t rl = *reinterpret_cast<const uint32_t *>(in);
in += 2;
int32_t l = mulRL(1, rl, vrl) >> 12;
int32_t r = mulRL(0, rl, vrl) >> 12;
*out++ = (r<<16) | (l & 0xFFFF);
} while (--outFrames);
}
break;
default:
LOG_ALWAYS_FATAL("bad mixer format: %d", t->mMixerFormat);
}
numFrames -= b.frameCount;
t->bufferProvider->releaseBuffer(&b);
}
}
/* TODO: consider whether this level of optimization is necessary.
* Perhaps just stick with a single for loop.
*/
// Needs to derive a compile time constant (constexpr). Could be targeted to go
// to a MONOVOL mixtype based on MAX_NUM_VOLUMES, but that's an unnecessary complication.
constexpr int MIXTYPE_MONOVOL(int mixtype, int channels) {
if (channels <= FCC_2) {
return mixtype;
} else if (mixtype == MIXTYPE_MULTI) {
return MIXTYPE_MULTI_MONOVOL;
} else if (mixtype == MIXTYPE_MULTI_SAVEONLY) {
return MIXTYPE_MULTI_SAVEONLY_MONOVOL;
} else {
return mixtype;
}
}
// Helper to make a functional array from volumeRampMulti.
template <int MIXTYPE, typename TO, typename TI, typename TV, typename TA, typename TAV,
std::size_t ... Is>
static constexpr auto makeVRMArray(std::index_sequence<Is...>)
{
using F = void(*)(TO*, size_t, const TI*, TA*, TV*, const TV*, TAV*, TAV);
return std::array<F, sizeof...(Is)>{
{ &volumeRampMulti<MIXTYPE_MONOVOL(MIXTYPE, Is + 1), Is + 1, TO, TI, TV, TA, TAV> ...}
};
}
/* MIXTYPE (see AudioMixerOps.h MIXTYPE_* enumeration)
* TO: int32_t (Q4.27) or float
* TI: int32_t (Q4.27) or int16_t (Q0.15) or float
* TA: int32_t (Q4.27) or float
*/
template <int MIXTYPE,
typename TO, typename TI, typename TV, typename TA, typename TAV>
static void volumeRampMulti(uint32_t channels, TO* out, size_t frameCount,
const TI* in, TA* aux, TV *vol, const TV *volinc, TAV *vola, TAV volainc)
{
static constexpr auto volumeRampMultiArray =
makeVRMArray<MIXTYPE, TO, TI, TV, TA, TAV>(std::make_index_sequence<FCC_LIMIT>());
if (channels > 0 && channels <= volumeRampMultiArray.size()) {
volumeRampMultiArray[channels - 1](out, frameCount, in, aux, vol, volinc, vola, volainc);
} else {
ALOGE("%s: invalid channel count:%d", __func__, channels);
}
}
// Helper to make a functional array from volumeMulti.
template <int MIXTYPE, typename TO, typename TI, typename TV, typename TA, typename TAV,
std::size_t ... Is>
static constexpr auto makeVMArray(std::index_sequence<Is...>)
{
using F = void(*)(TO*, size_t, const TI*, TA*, const TV*, TAV);
return std::array<F, sizeof...(Is)>{
{ &volumeMulti<MIXTYPE_MONOVOL(MIXTYPE, Is + 1), Is + 1, TO, TI, TV, TA, TAV> ... }
};
}
/* MIXTYPE (see AudioMixerOps.h MIXTYPE_* enumeration)
* TO: int32_t (Q4.27) or float
* TI: int32_t (Q4.27) or int16_t (Q0.15) or float
* TA: int32_t (Q4.27) or float
*/
template <int MIXTYPE,
typename TO, typename TI, typename TV, typename TA, typename TAV>
static void volumeMulti(uint32_t channels, TO* out, size_t frameCount,
const TI* in, TA* aux, const TV *vol, TAV vola)
{
static constexpr auto volumeMultiArray =
makeVMArray<MIXTYPE, TO, TI, TV, TA, TAV>(std::make_index_sequence<FCC_LIMIT>());
if (channels > 0 && channels <= volumeMultiArray.size()) {
volumeMultiArray[channels - 1](out, frameCount, in, aux, vol, vola);
} else {
ALOGE("%s: invalid channel count:%d", __func__, channels);
}
}
/* MIXTYPE (see AudioMixerOps.h MIXTYPE_* enumeration)
* USEFLOATVOL (set to true if float volume is used)
* ADJUSTVOL (set to true if volume ramp parameters needs adjustment afterwards)
* TO: int32_t (Q4.27) or float
* TI: int32_t (Q4.27) or int16_t (Q0.15) or float
* TA: int32_t (Q4.27) or float
*/
template <int MIXTYPE, bool USEFLOATVOL, bool ADJUSTVOL,
typename TO, typename TI, typename TA>
void AudioMixerBase::TrackBase::volumeMix(TO *out, size_t outFrames,
const TI *in, TA *aux, bool ramp)
{
if (USEFLOATVOL) {
if (ramp) {
volumeRampMulti<MIXTYPE>(mMixerChannelCount, out, outFrames, in, aux,
mPrevVolume, mVolumeInc,
#ifdef FLOAT_AUX
&mPrevAuxLevel, mAuxInc
#else
&prevAuxLevel, auxInc
#endif
);
if (ADJUSTVOL) {
adjustVolumeRamp(aux != NULL, true);
}
} else {
volumeMulti<MIXTYPE>(mMixerChannelCount, out, outFrames, in, aux,
mVolume,
#ifdef FLOAT_AUX
mAuxLevel
#else
auxLevel
#endif
);
}
} else {
if (ramp) {
volumeRampMulti<MIXTYPE>(mMixerChannelCount, out, outFrames, in, aux,
prevVolume, volumeInc, &prevAuxLevel, auxInc);
if (ADJUSTVOL) {
adjustVolumeRamp(aux != NULL);
}
} else {
volumeMulti<MIXTYPE>(mMixerChannelCount, out, outFrames, in, aux,
volume, auxLevel);
}
}
}
/* This process hook is called when there is a single track without
* aux buffer, volume ramp, or resampling.
* TODO: Update the hook selection: this can properly handle aux and ramp.
*
* MIXTYPE (see AudioMixerOps.h MIXTYPE_* enumeration)
* TO: int32_t (Q4.27) or float
* TI: int32_t (Q4.27) or int16_t (Q0.15) or float
* TA: int32_t (Q4.27)
*/
template <int MIXTYPE, typename TO, typename TI, typename TA>
void AudioMixerBase::process__noResampleOneTrack()
{
ALOGVV("process__noResampleOneTrack\n");
LOG_ALWAYS_FATAL_IF(mEnabled.size() != 1,
"%zu != 1 tracks enabled", mEnabled.size());
const std::shared_ptr<TrackBase> &t = mTracks[mEnabled[0]];
const uint32_t channels = t->mMixerChannelCount;
TO* out = reinterpret_cast<TO*>(t->mainBuffer);
TA* aux = reinterpret_cast<TA*>(t->auxBuffer);
const bool ramp = t->needsRamp();
for (size_t numFrames = mFrameCount; numFrames > 0; ) {
AudioBufferProvider::Buffer& b(t->buffer);
// get input buffer
b.frameCount = numFrames;
t->bufferProvider->getNextBuffer(&b);
const TI *in = reinterpret_cast<TI*>(b.raw);
// in == NULL can happen if the track was flushed just after having
// been enabled for mixing.
if (in == NULL || (((uintptr_t)in) & 3)) {
memset(out, 0, numFrames
* channels * audio_bytes_per_sample(t->mMixerFormat));
ALOGE_IF((((uintptr_t)in) & 3), "process__noResampleOneTrack: bus error: "
"buffer %p track %p, channels %d, needs %#x",
in, &t, t->channelCount, t->needs);
return;
}
const size_t outFrames = b.frameCount;
t->volumeMix<MIXTYPE, std::is_same_v<TI, float> /* USEFLOATVOL */, false /* ADJUSTVOL */> (
out, outFrames, in, aux, ramp);
out += outFrames * channels;
if (aux != NULL) {
aux += outFrames;
}
numFrames -= b.frameCount;
// release buffer
t->bufferProvider->releaseBuffer(&b);
}
if (ramp) {
t->adjustVolumeRamp(aux != NULL, std::is_same_v<TI, float>);
}
}
/* This track hook is called to do resampling then mixing,
* pulling from the track's upstream AudioBufferProvider.
*
* MIXTYPE (see AudioMixerOps.h MIXTYPE_* enumeration)
* TO: int32_t (Q4.27) or float
* TI: int32_t (Q4.27) or int16_t (Q0.15) or float
* TA: int32_t (Q4.27) or float
*/
template <int MIXTYPE, typename TO, typename TI, typename TA>
void AudioMixerBase::TrackBase::track__Resample(TO* out, size_t outFrameCount, TO* temp, TA* aux)
{
ALOGVV("track__Resample\n");
mResampler->setSampleRate(sampleRate);
const bool ramp = needsRamp();
if (MIXTYPE == MIXTYPE_MONOEXPAND || MIXTYPE == MIXTYPE_STEREOEXPAND // custom volume handling
|| ramp || aux != NULL) {
// if ramp: resample with unity gain to temp buffer and scale/mix in 2nd step.
// if aux != NULL: resample with unity gain to temp buffer then apply send level.
mResampler->setVolume(UNITY_GAIN_FLOAT, UNITY_GAIN_FLOAT);
memset(temp, 0, outFrameCount * mMixerChannelCount * sizeof(TO));
mResampler->resample((int32_t*)temp, outFrameCount, bufferProvider);
volumeMix<MIXTYPE, std::is_same_v<TI, float> /* USEFLOATVOL */, true /* ADJUSTVOL */>(
out, outFrameCount, temp, aux, ramp);
} else { // constant volume gain
mResampler->setVolume(mVolume[0], mVolume[1]);
mResampler->resample((int32_t*)out, outFrameCount, bufferProvider);
}
}
/* This track hook is called to mix a track, when no resampling is required.
* The input buffer should be present in in.
*
* MIXTYPE (see AudioMixerOps.h MIXTYPE_* enumeration)
* TO: int32_t (Q4.27) or float
* TI: int32_t (Q4.27) or int16_t (Q0.15) or float
* TA: int32_t (Q4.27) or float
*/
template <int MIXTYPE, typename TO, typename TI, typename TA>
void AudioMixerBase::TrackBase::track__NoResample(
TO* out, size_t frameCount, TO* temp __unused, TA* aux)
{
ALOGVV("track__NoResample\n");
const TI *in = static_cast<const TI *>(mIn);
volumeMix<MIXTYPE, std::is_same_v<TI, float> /* USEFLOATVOL */, true /* ADJUSTVOL */>(
out, frameCount, in, aux, needsRamp());
// MIXTYPE_MONOEXPAND reads a single input channel and expands to NCHAN output channels.
// MIXTYPE_MULTI reads NCHAN input channels and places to NCHAN output channels.
in += (MIXTYPE == MIXTYPE_MONOEXPAND) ? frameCount : frameCount * mMixerChannelCount;
mIn = in;
}
/* The Mixer engine generates either int32_t (Q4_27) or float data.
* We use this function to convert the engine buffers
* to the desired mixer output format, either int16_t (Q.15) or float.
*/
/* static */
void AudioMixerBase::convertMixerFormat(void *out, audio_format_t mixerOutFormat,
void *in, audio_format_t mixerInFormat, size_t sampleCount)
{
switch (mixerInFormat) {
case AUDIO_FORMAT_PCM_FLOAT:
switch (mixerOutFormat) {
case AUDIO_FORMAT_PCM_FLOAT:
memcpy(out, in, sampleCount * sizeof(float)); // MEMCPY. TODO optimize out
break;
case AUDIO_FORMAT_PCM_16_BIT:
memcpy_to_i16_from_float((int16_t*)out, (float*)in, sampleCount);
break;
default:
LOG_ALWAYS_FATAL("bad mixerOutFormat: %#x", mixerOutFormat);
break;
}
break;
case AUDIO_FORMAT_PCM_16_BIT:
switch (mixerOutFormat) {
case AUDIO_FORMAT_PCM_FLOAT:
memcpy_to_float_from_q4_27((float*)out, (const int32_t*)in, sampleCount);
break;
case AUDIO_FORMAT_PCM_16_BIT:
memcpy_to_i16_from_q4_27((int16_t*)out, (const int32_t*)in, sampleCount);
break;
default:
LOG_ALWAYS_FATAL("bad mixerOutFormat: %#x", mixerOutFormat);
break;
}
break;
default:
LOG_ALWAYS_FATAL("bad mixerInFormat: %#x", mixerInFormat);
break;
}
}
/* Returns the proper track hook to use for mixing the track into the output buffer.
*/
/* static */
AudioMixerBase::hook_t AudioMixerBase::TrackBase::getTrackHook(int trackType, uint32_t channelCount,
audio_format_t mixerInFormat, audio_format_t mixerOutFormat __unused)
{
if (!kUseNewMixer && channelCount == FCC_2 && mixerInFormat == AUDIO_FORMAT_PCM_16_BIT) {
switch (trackType) {
case TRACKTYPE_NOP:
return &TrackBase::track__nop;
case TRACKTYPE_RESAMPLE:
return &TrackBase::track__genericResample;
case TRACKTYPE_NORESAMPLEMONO:
return &TrackBase::track__16BitsMono;
case TRACKTYPE_NORESAMPLE:
return &TrackBase::track__16BitsStereo;
default:
LOG_ALWAYS_FATAL("bad trackType: %d", trackType);
break;
}
}
LOG_ALWAYS_FATAL_IF(channelCount > MAX_NUM_CHANNELS);
switch (trackType) {
case TRACKTYPE_NOP:
return &TrackBase::track__nop;
case TRACKTYPE_RESAMPLE:
switch (mixerInFormat) {
case AUDIO_FORMAT_PCM_FLOAT:
return (AudioMixerBase::hook_t) &TrackBase::track__Resample<
MIXTYPE_MULTI, float /*TO*/, float /*TI*/, TYPE_AUX>;
case AUDIO_FORMAT_PCM_16_BIT:
return (AudioMixerBase::hook_t) &TrackBase::track__Resample<
MIXTYPE_MULTI, int32_t /*TO*/, int16_t /*TI*/, TYPE_AUX>;
default:
LOG_ALWAYS_FATAL("bad mixerInFormat: %#x", mixerInFormat);
break;
}
break;
case TRACKTYPE_RESAMPLESTEREO:
switch (mixerInFormat) {
case AUDIO_FORMAT_PCM_FLOAT:
return (AudioMixerBase::hook_t) &TrackBase::track__Resample<
MIXTYPE_MULTI_STEREOVOL, float /*TO*/, float /*TI*/,
TYPE_AUX>;
case AUDIO_FORMAT_PCM_16_BIT:
return (AudioMixerBase::hook_t) &TrackBase::track__Resample<
MIXTYPE_MULTI_STEREOVOL, int32_t /*TO*/, int16_t /*TI*/,
TYPE_AUX>;
default:
LOG_ALWAYS_FATAL("bad mixerInFormat: %#x", mixerInFormat);
break;
}
break;
// RESAMPLEMONO needs MIXTYPE_STEREOEXPAND since resampler will upmix mono
// track to stereo track
case TRACKTYPE_RESAMPLEMONO:
switch (mixerInFormat) {
case AUDIO_FORMAT_PCM_FLOAT:
return (AudioMixerBase::hook_t) &TrackBase::track__Resample<
MIXTYPE_STEREOEXPAND, float /*TO*/, float /*TI*/,
TYPE_AUX>;
case AUDIO_FORMAT_PCM_16_BIT:
return (AudioMixerBase::hook_t) &TrackBase::track__Resample<
MIXTYPE_STEREOEXPAND, int32_t /*TO*/, int16_t /*TI*/,
TYPE_AUX>;
default:
LOG_ALWAYS_FATAL("bad mixerInFormat: %#x", mixerInFormat);
break;
}
break;
case TRACKTYPE_NORESAMPLEMONO:
switch (mixerInFormat) {
case AUDIO_FORMAT_PCM_FLOAT:
return (AudioMixerBase::hook_t) &TrackBase::track__NoResample<
MIXTYPE_MONOEXPAND, float /*TO*/, float /*TI*/, TYPE_AUX>;
case AUDIO_FORMAT_PCM_16_BIT:
return (AudioMixerBase::hook_t) &TrackBase::track__NoResample<
MIXTYPE_MONOEXPAND, int32_t /*TO*/, int16_t /*TI*/, TYPE_AUX>;
default:
LOG_ALWAYS_FATAL("bad mixerInFormat: %#x", mixerInFormat);
break;
}
break;
case TRACKTYPE_NORESAMPLE:
switch (mixerInFormat) {
case AUDIO_FORMAT_PCM_FLOAT:
return (AudioMixerBase::hook_t) &TrackBase::track__NoResample<
MIXTYPE_MULTI, float /*TO*/, float /*TI*/, TYPE_AUX>;
case AUDIO_FORMAT_PCM_16_BIT:
return (AudioMixerBase::hook_t) &TrackBase::track__NoResample<
MIXTYPE_MULTI, int32_t /*TO*/, int16_t /*TI*/, TYPE_AUX>;
default:
LOG_ALWAYS_FATAL("bad mixerInFormat: %#x", mixerInFormat);
break;
}
break;
case TRACKTYPE_NORESAMPLESTEREO:
switch (mixerInFormat) {
case AUDIO_FORMAT_PCM_FLOAT:
return (AudioMixerBase::hook_t) &TrackBase::track__NoResample<
MIXTYPE_MULTI_STEREOVOL, float /*TO*/, float /*TI*/,
TYPE_AUX>;
case AUDIO_FORMAT_PCM_16_BIT:
return (AudioMixerBase::hook_t) &TrackBase::track__NoResample<
MIXTYPE_MULTI_STEREOVOL, int32_t /*TO*/, int16_t /*TI*/,
TYPE_AUX>;
default:
LOG_ALWAYS_FATAL("bad mixerInFormat: %#x", mixerInFormat);
break;
}
break;
default:
LOG_ALWAYS_FATAL("bad trackType: %d", trackType);
break;
}
return NULL;
}
/* Returns the proper process hook for mixing tracks. Currently works only for
* PROCESSTYPE_NORESAMPLEONETRACK, a mix involving one track, no resampling.
*
* TODO: Due to the special mixing considerations of duplicating to
* a stereo output track, the input track cannot be MONO. This should be
* prevented by the caller.
*/
/* static */
AudioMixerBase::process_hook_t AudioMixerBase::getProcessHook(
int processType, uint32_t channelCount,
audio_format_t mixerInFormat, audio_format_t mixerOutFormat,
bool stereoVolume)
{
if (processType != PROCESSTYPE_NORESAMPLEONETRACK) { // Only NORESAMPLEONETRACK
LOG_ALWAYS_FATAL("bad processType: %d", processType);
return NULL;
}
if (!kUseNewMixer && channelCount == FCC_2 && mixerInFormat == AUDIO_FORMAT_PCM_16_BIT) {
return &AudioMixerBase::process__oneTrack16BitsStereoNoResampling;
}
LOG_ALWAYS_FATAL_IF(channelCount > MAX_NUM_CHANNELS);
if (stereoVolume) { // templated arguments require explicit values.
switch (mixerInFormat) {
case AUDIO_FORMAT_PCM_FLOAT:
switch (mixerOutFormat) {
case AUDIO_FORMAT_PCM_FLOAT:
return &AudioMixerBase::process__noResampleOneTrack<
MIXTYPE_MULTI_SAVEONLY_STEREOVOL, float /*TO*/,
float /*TI*/, TYPE_AUX>;
case AUDIO_FORMAT_PCM_16_BIT:
return &AudioMixerBase::process__noResampleOneTrack<
MIXTYPE_MULTI_SAVEONLY_STEREOVOL, int16_t /*TO*/,
float /*TI*/, TYPE_AUX>;
default:
LOG_ALWAYS_FATAL("bad mixerOutFormat: %#x", mixerOutFormat);
break;
}
break;
case AUDIO_FORMAT_PCM_16_BIT:
switch (mixerOutFormat) {
case AUDIO_FORMAT_PCM_FLOAT:
return &AudioMixerBase::process__noResampleOneTrack<
MIXTYPE_MULTI_SAVEONLY_STEREOVOL, float /*TO*/,
int16_t /*TI*/, TYPE_AUX>;
case AUDIO_FORMAT_PCM_16_BIT:
return &AudioMixerBase::process__noResampleOneTrack<
MIXTYPE_MULTI_SAVEONLY_STEREOVOL, int16_t /*TO*/,
int16_t /*TI*/, TYPE_AUX>;
default:
LOG_ALWAYS_FATAL("bad mixerOutFormat: %#x", mixerOutFormat);
break;
}
break;
default:
LOG_ALWAYS_FATAL("bad mixerInFormat: %#x", mixerInFormat);
break;
}
} else {
switch (mixerInFormat) {
case AUDIO_FORMAT_PCM_FLOAT:
switch (mixerOutFormat) {
case AUDIO_FORMAT_PCM_FLOAT:
return &AudioMixerBase::process__noResampleOneTrack<
MIXTYPE_MULTI_SAVEONLY, float /*TO*/,
float /*TI*/, TYPE_AUX>;
case AUDIO_FORMAT_PCM_16_BIT:
return &AudioMixerBase::process__noResampleOneTrack<
MIXTYPE_MULTI_SAVEONLY, int16_t /*TO*/,
float /*TI*/, TYPE_AUX>;
default:
LOG_ALWAYS_FATAL("bad mixerOutFormat: %#x", mixerOutFormat);
break;
}
break;
case AUDIO_FORMAT_PCM_16_BIT:
switch (mixerOutFormat) {
case AUDIO_FORMAT_PCM_FLOAT:
return &AudioMixerBase::process__noResampleOneTrack<
MIXTYPE_MULTI_SAVEONLY, float /*TO*/,
int16_t /*TI*/, TYPE_AUX>;
case AUDIO_FORMAT_PCM_16_BIT:
return &AudioMixerBase::process__noResampleOneTrack<
MIXTYPE_MULTI_SAVEONLY, int16_t /*TO*/,
int16_t /*TI*/, TYPE_AUX>;
default:
LOG_ALWAYS_FATAL("bad mixerOutFormat: %#x", mixerOutFormat);
break;
}
break;
default:
LOG_ALWAYS_FATAL("bad mixerInFormat: %#x", mixerInFormat);
break;
}
}
return NULL;
}
// ----------------------------------------------------------------------------
} // namespace android