blob: ec1dd1433b6c719624aea4c89f2b6962bd20e761 [file] [log] [blame]
/*
* Copyright (C) 2019 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
//#define LOG_NDEBUG 0
#define LOG_TAG "C2SoftHevcEnc"
#include <log/log.h>
#include <media/hardware/VideoAPI.h>
#include <media/stagefright/MediaDefs.h>
#include <media/stagefright/MediaErrors.h>
#include <media/stagefright/MetaData.h>
#include <media/stagefright/foundation/AUtils.h>
#include <C2Debug.h>
#include <Codec2Mapper.h>
#include <C2PlatformSupport.h>
#include <Codec2BufferUtils.h>
#include <SimpleC2Interface.h>
#include <util/C2InterfaceHelper.h>
#include "ihevc_typedefs.h"
#include "itt_video_api.h"
#include "ihevce_api.h"
#include "ihevce_plugin.h"
#include "C2SoftHevcEnc.h"
namespace android {
namespace {
constexpr char COMPONENT_NAME[] = "c2.android.hevc.encoder";
void ParseGop(
const C2StreamGopTuning::output &gop,
uint32_t *syncInterval, uint32_t *iInterval, uint32_t *maxBframes) {
uint32_t syncInt = 1;
uint32_t iInt = 1;
for (size_t i = 0; i < gop.flexCount(); ++i) {
const C2GopLayerStruct &layer = gop.m.values[i];
if (layer.count == UINT32_MAX) {
syncInt = 0;
} else if (syncInt <= UINT32_MAX / (layer.count + 1)) {
syncInt *= (layer.count + 1);
}
if ((layer.type_ & I_FRAME) == 0) {
if (layer.count == UINT32_MAX) {
iInt = 0;
} else if (iInt <= UINT32_MAX / (layer.count + 1)) {
iInt *= (layer.count + 1);
}
}
if (layer.type_ == C2Config::picture_type_t(P_FRAME | B_FRAME) && maxBframes) {
*maxBframes = layer.count;
}
}
if (syncInterval) {
*syncInterval = syncInt;
}
if (iInterval) {
*iInterval = iInt;
}
}
} // namepsace
class C2SoftHevcEnc::IntfImpl : public SimpleInterface<void>::BaseParams {
public:
explicit IntfImpl(const std::shared_ptr<C2ReflectorHelper> &helper)
: SimpleInterface<void>::BaseParams(
helper,
COMPONENT_NAME,
C2Component::KIND_ENCODER,
C2Component::DOMAIN_VIDEO,
MEDIA_MIMETYPE_VIDEO_HEVC) {
noPrivateBuffers(); // TODO: account for our buffers here
noInputReferences();
noOutputReferences();
noTimeStretch();
setDerivedInstance(this);
addParameter(
DefineParam(mGop, C2_PARAMKEY_GOP)
.withDefault(C2StreamGopTuning::output::AllocShared(
0 /* flexCount */, 0u /* stream */))
.withFields({C2F(mGop, m.values[0].type_).any(),
C2F(mGop, m.values[0].count).any()})
.withSetter(GopSetter)
.build());
addParameter(
DefineParam(mActualInputDelay, C2_PARAMKEY_INPUT_DELAY)
.withDefault(new C2PortActualDelayTuning::input(
DEFAULT_B_FRAMES + DEFAULT_RC_LOOKAHEAD))
.withFields({C2F(mActualInputDelay, value).inRange(
0, MAX_B_FRAMES + MAX_RC_LOOKAHEAD)})
.calculatedAs(InputDelaySetter, mGop)
.build());
addParameter(
DefineParam(mAttrib, C2_PARAMKEY_COMPONENT_ATTRIBUTES)
.withConstValue(new C2ComponentAttributesSetting(
C2Component::ATTRIB_IS_TEMPORAL))
.build());
addParameter(
DefineParam(mUsage, C2_PARAMKEY_INPUT_STREAM_USAGE)
.withConstValue(new C2StreamUsageTuning::input(
0u, (uint64_t)C2MemoryUsage::CPU_READ))
.build());
// matches size limits in codec library
addParameter(
DefineParam(mSize, C2_PARAMKEY_PICTURE_SIZE)
.withDefault(new C2StreamPictureSizeInfo::input(0u, 64, 64))
.withFields({
C2F(mSize, width).inRange(2, 1920, 2),
C2F(mSize, height).inRange(2, 1088, 2),
})
.withSetter(SizeSetter)
.build());
addParameter(
DefineParam(mFrameRate, C2_PARAMKEY_FRAME_RATE)
.withDefault(new C2StreamFrameRateInfo::output(0u, 1.))
.withFields({C2F(mFrameRate, value).greaterThan(0.)})
.withSetter(
Setter<decltype(*mFrameRate)>::StrictValueWithNoDeps)
.build());
// matches limits in codec library
addParameter(
DefineParam(mBitrateMode, C2_PARAMKEY_BITRATE_MODE)
.withDefault(new C2StreamBitrateModeTuning::output(
0u, C2Config::BITRATE_VARIABLE))
.withFields({
C2F(mBitrateMode, value).oneOf({
C2Config::BITRATE_CONST,
C2Config::BITRATE_VARIABLE,
C2Config::BITRATE_IGNORE})
})
.withSetter(
Setter<decltype(*mBitrateMode)>::StrictValueWithNoDeps)
.build());
addParameter(
DefineParam(mBitrate, C2_PARAMKEY_BITRATE)
.withDefault(new C2StreamBitrateInfo::output(0u, 64000))
.withFields({C2F(mBitrate, value).inRange(4096, 12000000)})
.withSetter(BitrateSetter)
.build());
// matches levels allowed within codec library
addParameter(
DefineParam(mComplexity, C2_PARAMKEY_COMPLEXITY)
.withDefault(new C2StreamComplexityTuning::output(0u, 0))
.withFields({C2F(mComplexity, value).inRange(0, 10)})
.withSetter(Setter<decltype(*mComplexity)>::NonStrictValueWithNoDeps)
.build());
addParameter(
DefineParam(mQuality, C2_PARAMKEY_QUALITY)
.withDefault(new C2StreamQualityTuning::output(0u, 80))
.withFields({C2F(mQuality, value).inRange(0, 100)})
.withSetter(Setter<decltype(*mQuality)>::NonStrictValueWithNoDeps)
.build());
addParameter(
DefineParam(mProfileLevel, C2_PARAMKEY_PROFILE_LEVEL)
.withDefault(new C2StreamProfileLevelInfo::output(
0u, PROFILE_HEVC_MAIN, LEVEL_HEVC_MAIN_1))
.withFields({
C2F(mProfileLevel, profile)
.oneOf({C2Config::PROFILE_HEVC_MAIN,
C2Config::PROFILE_HEVC_MAIN_STILL}),
C2F(mProfileLevel, level)
.oneOf({LEVEL_HEVC_MAIN_1, LEVEL_HEVC_MAIN_2,
LEVEL_HEVC_MAIN_2_1, LEVEL_HEVC_MAIN_3,
LEVEL_HEVC_MAIN_3_1, LEVEL_HEVC_MAIN_4,
LEVEL_HEVC_MAIN_4_1, LEVEL_HEVC_MAIN_5,
LEVEL_HEVC_MAIN_5_1, LEVEL_HEVC_MAIN_5_2}),
})
.withSetter(ProfileLevelSetter, mSize, mFrameRate, mBitrate)
.build());
addParameter(
DefineParam(mRequestSync, C2_PARAMKEY_REQUEST_SYNC_FRAME)
.withDefault(new C2StreamRequestSyncFrameTuning::output(0u, C2_FALSE))
.withFields({C2F(mRequestSync, value).oneOf({ C2_FALSE, C2_TRUE }) })
.withSetter(Setter<decltype(*mRequestSync)>::NonStrictValueWithNoDeps)
.build());
addParameter(
DefineParam(mSyncFramePeriod, C2_PARAMKEY_SYNC_FRAME_INTERVAL)
.withDefault(
new C2StreamSyncFrameIntervalTuning::output(0u, 1000000))
.withFields({C2F(mSyncFramePeriod, value).any()})
.withSetter(
Setter<decltype(*mSyncFramePeriod)>::StrictValueWithNoDeps)
.build());
addParameter(
DefineParam(mColorAspects, C2_PARAMKEY_COLOR_ASPECTS)
.withDefault(new C2StreamColorAspectsInfo::input(
0u, C2Color::RANGE_UNSPECIFIED, C2Color::PRIMARIES_UNSPECIFIED,
C2Color::TRANSFER_UNSPECIFIED, C2Color::MATRIX_UNSPECIFIED))
.withFields({
C2F(mColorAspects, range).inRange(
C2Color::RANGE_UNSPECIFIED, C2Color::RANGE_OTHER),
C2F(mColorAspects, primaries).inRange(
C2Color::PRIMARIES_UNSPECIFIED, C2Color::PRIMARIES_OTHER),
C2F(mColorAspects, transfer).inRange(
C2Color::TRANSFER_UNSPECIFIED, C2Color::TRANSFER_OTHER),
C2F(mColorAspects, matrix).inRange(
C2Color::MATRIX_UNSPECIFIED, C2Color::MATRIX_OTHER)
})
.withSetter(ColorAspectsSetter)
.build());
addParameter(
DefineParam(mCodedColorAspects, C2_PARAMKEY_VUI_COLOR_ASPECTS)
.withDefault(new C2StreamColorAspectsInfo::output(
0u, C2Color::RANGE_LIMITED, C2Color::PRIMARIES_UNSPECIFIED,
C2Color::TRANSFER_UNSPECIFIED, C2Color::MATRIX_UNSPECIFIED))
.withFields({
C2F(mCodedColorAspects, range).inRange(
C2Color::RANGE_UNSPECIFIED, C2Color::RANGE_OTHER),
C2F(mCodedColorAspects, primaries).inRange(
C2Color::PRIMARIES_UNSPECIFIED, C2Color::PRIMARIES_OTHER),
C2F(mCodedColorAspects, transfer).inRange(
C2Color::TRANSFER_UNSPECIFIED, C2Color::TRANSFER_OTHER),
C2F(mCodedColorAspects, matrix).inRange(
C2Color::MATRIX_UNSPECIFIED, C2Color::MATRIX_OTHER)
})
.withSetter(CodedColorAspectsSetter, mColorAspects)
.build());
addParameter(
DefineParam(mPictureQuantization, C2_PARAMKEY_PICTURE_QUANTIZATION)
.withDefault(C2StreamPictureQuantizationTuning::output::AllocShared(
0 /* flexCount */, 0u /* stream */))
.withFields({C2F(mPictureQuantization, m.values[0].type_).oneOf(
{C2Config::picture_type_t(I_FRAME),
C2Config::picture_type_t(P_FRAME),
C2Config::picture_type_t(B_FRAME)}),
C2F(mPictureQuantization, m.values[0].min).any(),
C2F(mPictureQuantization, m.values[0].max).any()})
.withSetter(PictureQuantizationSetter)
.build());
}
static C2R InputDelaySetter(
bool mayBlock,
C2P<C2PortActualDelayTuning::input> &me,
const C2P<C2StreamGopTuning::output> &gop) {
(void)mayBlock;
uint32_t maxBframes = 0;
ParseGop(gop.v, nullptr, nullptr, &maxBframes);
me.set().value = maxBframes + DEFAULT_RC_LOOKAHEAD;
return C2R::Ok();
}
static C2R BitrateSetter(bool mayBlock,
C2P<C2StreamBitrateInfo::output>& me) {
(void)mayBlock;
C2R res = C2R::Ok();
if (me.v.value < 4096) {
me.set().value = 4096;
}
return res;
}
static C2R SizeSetter(bool mayBlock,
const C2P<C2StreamPictureSizeInfo::input>& oldMe,
C2P<C2StreamPictureSizeInfo::input>& me) {
(void)mayBlock;
C2R res = C2R::Ok();
if (!me.F(me.v.width).supportsAtAll(me.v.width)) {
res = res.plus(C2SettingResultBuilder::BadValue(me.F(me.v.width)));
me.set().width = oldMe.v.width;
}
if (!me.F(me.v.height).supportsAtAll(me.v.height)) {
res = res.plus(C2SettingResultBuilder::BadValue(me.F(me.v.height)));
me.set().height = oldMe.v.height;
}
return res;
}
static C2R ProfileLevelSetter(
bool mayBlock,
C2P<C2StreamProfileLevelInfo::output> &me,
const C2P<C2StreamPictureSizeInfo::input> &size,
const C2P<C2StreamFrameRateInfo::output> &frameRate,
const C2P<C2StreamBitrateInfo::output> &bitrate) {
(void)mayBlock;
if (!me.F(me.v.profile).supportsAtAll(me.v.profile)) {
me.set().profile = PROFILE_HEVC_MAIN;
}
struct LevelLimits {
C2Config::level_t level;
uint64_t samplesPerSec;
uint64_t samples;
uint32_t bitrate;
};
constexpr LevelLimits kLimits[] = {
{ LEVEL_HEVC_MAIN_1, 552960, 36864, 128000 },
{ LEVEL_HEVC_MAIN_2, 3686400, 122880, 1500000 },
{ LEVEL_HEVC_MAIN_2_1, 7372800, 245760, 3000000 },
{ LEVEL_HEVC_MAIN_3, 16588800, 552960, 6000000 },
{ LEVEL_HEVC_MAIN_3_1, 33177600, 983040, 10000000 },
{ LEVEL_HEVC_MAIN_4, 66846720, 2228224, 12000000 },
{ LEVEL_HEVC_MAIN_4_1, 133693440, 2228224, 20000000 },
{ LEVEL_HEVC_MAIN_5, 267386880, 8912896, 25000000 },
{ LEVEL_HEVC_MAIN_5_1, 534773760, 8912896, 40000000 },
{ LEVEL_HEVC_MAIN_5_2, 1069547520, 8912896, 60000000 },
{ LEVEL_HEVC_MAIN_6, 1069547520, 35651584, 60000000 },
{ LEVEL_HEVC_MAIN_6_1, 2139095040, 35651584, 120000000 },
{ LEVEL_HEVC_MAIN_6_2, 4278190080, 35651584, 240000000 },
};
uint64_t samples = size.v.width * size.v.height;
uint64_t samplesPerSec = samples * frameRate.v.value;
// Check if the supplied level meets the MB / bitrate requirements. If
// not, update the level with the lowest level meeting the requirements.
bool found = false;
// By default needsUpdate = false in case the supplied level does meet
// the requirements.
bool needsUpdate = false;
if (!me.F(me.v.level).supportsAtAll(me.v.level)) {
needsUpdate = true;
}
for (const LevelLimits &limit : kLimits) {
if (samples <= limit.samples && samplesPerSec <= limit.samplesPerSec &&
bitrate.v.value <= limit.bitrate) {
// This is the lowest level that meets the requirements, and if
// we haven't seen the supplied level yet, that means we don't
// need the update.
if (needsUpdate) {
ALOGD("Given level %x does not cover current configuration: "
"adjusting to %x", me.v.level, limit.level);
me.set().level = limit.level;
}
found = true;
break;
}
if (me.v.level == limit.level) {
// We break out of the loop when the lowest feasible level is
// found. The fact that we're here means that our level doesn't
// meet the requirement and needs to be updated.
needsUpdate = true;
}
}
if (!found || me.v.level > LEVEL_HEVC_MAIN_5_2) {
// We set to the highest supported level.
me.set().level = LEVEL_HEVC_MAIN_5_2;
}
return C2R::Ok();
}
static C2R GopSetter(bool mayBlock, C2P<C2StreamGopTuning::output> &me) {
(void)mayBlock;
for (size_t i = 0; i < me.v.flexCount(); ++i) {
const C2GopLayerStruct &layer = me.v.m.values[0];
if (layer.type_ == C2Config::picture_type_t(P_FRAME | B_FRAME)
&& layer.count > MAX_B_FRAMES) {
me.set().m.values[i].count = MAX_B_FRAMES;
}
}
return C2R::Ok();
}
UWORD32 getProfile_l() const {
switch (mProfileLevel->profile) {
case PROFILE_HEVC_MAIN: [[fallthrough]];
case PROFILE_HEVC_MAIN_STILL: return 1;
default:
ALOGD("Unrecognized profile: %x", mProfileLevel->profile);
return 1;
}
}
UWORD32 getLevel_l() const {
struct Level {
C2Config::level_t c2Level;
UWORD32 hevcLevel;
};
constexpr Level levels[] = {
{ LEVEL_HEVC_MAIN_1, 30 },
{ LEVEL_HEVC_MAIN_2, 60 },
{ LEVEL_HEVC_MAIN_2_1, 63 },
{ LEVEL_HEVC_MAIN_3, 90 },
{ LEVEL_HEVC_MAIN_3_1, 93 },
{ LEVEL_HEVC_MAIN_4, 120 },
{ LEVEL_HEVC_MAIN_4_1, 123 },
{ LEVEL_HEVC_MAIN_5, 150 },
{ LEVEL_HEVC_MAIN_5_1, 153 },
{ LEVEL_HEVC_MAIN_5_2, 156 },
{ LEVEL_HEVC_MAIN_6, 180 },
{ LEVEL_HEVC_MAIN_6_1, 183 },
{ LEVEL_HEVC_MAIN_6_2, 186 },
};
for (const Level &level : levels) {
if (mProfileLevel->level == level.c2Level) {
return level.hevcLevel;
}
}
ALOGD("Unrecognized level: %x", mProfileLevel->level);
return 156;
}
uint32_t getSyncFramePeriod_l() const {
if (mSyncFramePeriod->value < 0 ||
mSyncFramePeriod->value == INT64_MAX) {
return 0;
}
double period = mSyncFramePeriod->value / 1e6 * mFrameRate->value;
return (uint32_t)c2_max(c2_min(period + 0.5, double(UINT32_MAX)), 1.);
}
std::shared_ptr<C2StreamPictureSizeInfo::input> getSize_l() const {
return mSize;
}
std::shared_ptr<C2StreamFrameRateInfo::output> getFrameRate_l() const {
return mFrameRate;
}
std::shared_ptr<C2StreamBitrateModeTuning::output> getBitrateMode_l() const {
return mBitrateMode;
}
std::shared_ptr<C2StreamBitrateInfo::output> getBitrate_l() const {
return mBitrate;
}
std::shared_ptr<C2StreamRequestSyncFrameTuning::output> getRequestSync_l() const {
return mRequestSync;
}
std::shared_ptr<C2StreamComplexityTuning::output> getComplexity_l() const {
return mComplexity;
}
std::shared_ptr<C2StreamQualityTuning::output> getQuality_l() const {
return mQuality;
}
std::shared_ptr<C2StreamGopTuning::output> getGop_l() const {
return mGop;
}
static C2R ColorAspectsSetter(bool mayBlock, C2P<C2StreamColorAspectsInfo::input> &me) {
(void)mayBlock;
if (me.v.range > C2Color::RANGE_OTHER) {
me.set().range = C2Color::RANGE_OTHER;
}
if (me.v.primaries > C2Color::PRIMARIES_OTHER) {
me.set().primaries = C2Color::PRIMARIES_OTHER;
}
if (me.v.transfer > C2Color::TRANSFER_OTHER) {
me.set().transfer = C2Color::TRANSFER_OTHER;
}
if (me.v.matrix > C2Color::MATRIX_OTHER) {
me.set().matrix = C2Color::MATRIX_OTHER;
}
return C2R::Ok();
}
static C2R CodedColorAspectsSetter(bool mayBlock, C2P<C2StreamColorAspectsInfo::output> &me,
const C2P<C2StreamColorAspectsInfo::input> &coded) {
(void)mayBlock;
me.set().range = coded.v.range;
me.set().primaries = coded.v.primaries;
me.set().transfer = coded.v.transfer;
me.set().matrix = coded.v.matrix;
return C2R::Ok();
}
static C2R PictureQuantizationSetter(bool mayBlock,
C2P<C2StreamPictureQuantizationTuning::output> &me) {
(void)mayBlock;
// these are the ones we're going to set, so want them to default
// to the DEFAULT values for the codec
int32_t iMin = HEVC_QP_MIN, pMin = HEVC_QP_MIN, bMin = HEVC_QP_MIN;
int32_t iMax = HEVC_QP_MAX, pMax = HEVC_QP_MAX, bMax = HEVC_QP_MAX;
for (size_t i = 0; i < me.v.flexCount(); ++i) {
const C2PictureQuantizationStruct &layer = me.v.m.values[i];
// layerMin is clamped to [HEVC_QP_MIN, layerMax] to avoid error
// cases where layer.min > layer.max
int32_t layerMax = std::clamp(layer.max, HEVC_QP_MIN, HEVC_QP_MAX);
int32_t layerMin = std::clamp(layer.min, HEVC_QP_MIN, layerMax);
if (layer.type_ == C2Config::picture_type_t(I_FRAME)) {
iMax = layerMax;
iMin = layerMin;
ALOGV("iMin %d iMax %d", iMin, iMax);
} else if (layer.type_ == C2Config::picture_type_t(P_FRAME)) {
pMax = layerMax;
pMin = layerMin;
ALOGV("pMin %d pMax %d", pMin, pMax);
} else if (layer.type_ == C2Config::picture_type_t(B_FRAME)) {
bMax = layerMax;
bMin = layerMin;
ALOGV("bMin %d bMax %d", bMin, bMax);
}
}
ALOGV("PictureQuantizationSetter(entry): i %d-%d p %d-%d b %d-%d",
iMin, iMax, pMin, pMax, bMin, bMax);
int32_t maxFrameQP = std::min(std::min(iMax, pMax), bMax);
int32_t minFrameQP = std::max(std::max(iMin, pMin), bMin);
if (minFrameQP > maxFrameQP) {
minFrameQP = maxFrameQP;
}
// put them back into the structure
for (size_t i = 0; i < me.v.flexCount(); ++i) {
const C2PictureQuantizationStruct &layer = me.v.m.values[i];
if (layer.type_ == C2Config::picture_type_t(I_FRAME) ||
layer.type_ == C2Config::picture_type_t(P_FRAME) ||
layer.type_ == C2Config::picture_type_t(B_FRAME)) {
me.set().m.values[i].max = maxFrameQP;
me.set().m.values[i].min = minFrameQP;
}
}
ALOGV("PictureQuantizationSetter(exit): i = p = b = %d-%d",
minFrameQP, maxFrameQP);
return C2R::Ok();
}
std::shared_ptr<C2StreamColorAspectsInfo::output> getCodedColorAspects_l() {
return mCodedColorAspects;
}
std::shared_ptr<C2StreamPictureQuantizationTuning::output> getPictureQuantization_l() const {
return mPictureQuantization;
}
private:
std::shared_ptr<C2StreamUsageTuning::input> mUsage;
std::shared_ptr<C2StreamPictureSizeInfo::input> mSize;
std::shared_ptr<C2StreamFrameRateInfo::output> mFrameRate;
std::shared_ptr<C2StreamRequestSyncFrameTuning::output> mRequestSync;
std::shared_ptr<C2StreamBitrateInfo::output> mBitrate;
std::shared_ptr<C2StreamBitrateModeTuning::output> mBitrateMode;
std::shared_ptr<C2StreamComplexityTuning::output> mComplexity;
std::shared_ptr<C2StreamQualityTuning::output> mQuality;
std::shared_ptr<C2StreamProfileLevelInfo::output> mProfileLevel;
std::shared_ptr<C2StreamSyncFrameIntervalTuning::output> mSyncFramePeriod;
std::shared_ptr<C2StreamGopTuning::output> mGop;
std::shared_ptr<C2StreamColorAspectsInfo::input> mColorAspects;
std::shared_ptr<C2StreamColorAspectsInfo::output> mCodedColorAspects;
std::shared_ptr<C2StreamPictureQuantizationTuning::output> mPictureQuantization;
};
static size_t GetCPUCoreCount() {
long cpuCoreCount = 0;
#if defined(_SC_NPROCESSORS_ONLN)
cpuCoreCount = sysconf(_SC_NPROCESSORS_ONLN);
#else
// _SC_NPROC_ONLN must be defined...
cpuCoreCount = sysconf(_SC_NPROC_ONLN);
#endif
if (cpuCoreCount < 1)
cpuCoreCount = 1;
return (size_t)cpuCoreCount;
}
C2SoftHevcEnc::C2SoftHevcEnc(const char* name, c2_node_id_t id,
const std::shared_ptr<IntfImpl>& intfImpl)
: SimpleC2Component(
std::make_shared<SimpleInterface<IntfImpl>>(name, id, intfImpl)),
mIntf(intfImpl),
mIvVideoColorFormat(IV_YUV_420P),
mHevcEncProfile(1),
mHevcEncLevel(30),
mStarted(false),
mSpsPpsHeaderReceived(false),
mSignalledEos(false),
mSignalledError(false),
mCodecCtx(nullptr) {
// If dump is enabled, then create an empty file
GENERATE_FILE_NAMES();
CREATE_DUMP_FILE(mInFile);
CREATE_DUMP_FILE(mOutFile);
mTimeStart = mTimeEnd = systemTime();
}
C2SoftHevcEnc::~C2SoftHevcEnc() {
onRelease();
}
c2_status_t C2SoftHevcEnc::onInit() {
return C2_OK;
}
c2_status_t C2SoftHevcEnc::onStop() {
return C2_OK;
}
void C2SoftHevcEnc::onReset() {
releaseEncoder();
}
void C2SoftHevcEnc::onRelease() {
releaseEncoder();
}
c2_status_t C2SoftHevcEnc::onFlush_sm() {
return C2_OK;
}
static void fillEmptyWork(const std::unique_ptr<C2Work>& work) {
uint32_t flags = 0;
if (work->input.flags & C2FrameData::FLAG_END_OF_STREAM) {
flags |= C2FrameData::FLAG_END_OF_STREAM;
ALOGV("Signalling EOS");
}
work->worklets.front()->output.flags = (C2FrameData::flags_t)flags;
work->worklets.front()->output.buffers.clear();
work->worklets.front()->output.ordinal = work->input.ordinal;
work->workletsProcessed = 1u;
}
static int getQpFromQuality(int quality) {
int qp;
#define MIN_QP 4
#define MAX_QP 50
/* Quality: 100 -> Qp : MIN_QP
* Quality: 0 -> Qp : MAX_QP
* Qp = ((MIN_QP - MAX_QP) * quality / 100) + MAX_QP;
*/
qp = ((MIN_QP - MAX_QP) * quality / 100) + MAX_QP;
qp = std::min(qp, MAX_QP);
qp = std::max(qp, MIN_QP);
return qp;
}
c2_status_t C2SoftHevcEnc::initEncParams() {
mCodecCtx = nullptr;
mNumCores = std::min(GetCPUCoreCount(), (size_t) CODEC_MAX_CORES);
memset(&mEncParams, 0, sizeof(ihevce_static_cfg_params_t));
// default configuration
IHEVCE_PLUGIN_STATUS_T err = ihevce_set_def_params(&mEncParams);
if (IHEVCE_EOK != err) {
ALOGE("HEVC default init failed : 0x%x", err);
return C2_CORRUPTED;
}
mBframes = 0;
if (mGop && mGop->flexCount() > 0) {
uint32_t syncInterval = 1;
uint32_t iInterval = 1;
uint32_t maxBframes = 0;
ParseGop(*mGop, &syncInterval, &iInterval, &maxBframes);
if (syncInterval > 0) {
ALOGD("Updating IDR interval from GOP: old %u new %u", mIDRInterval, syncInterval);
mIDRInterval = syncInterval;
}
if (iInterval > 0) {
ALOGD("Updating I interval from GOP: old %u new %u", mIInterval, iInterval);
mIInterval = iInterval;
}
if (mBframes != maxBframes) {
ALOGD("Updating max B frames from GOP: old %u new %u", mBframes, maxBframes);
mBframes = maxBframes;
}
}
ColorAspects sfAspects;
if (!C2Mapper::map(mColorAspects->primaries, &sfAspects.mPrimaries)) {
sfAspects.mPrimaries = android::ColorAspects::PrimariesUnspecified;
}
if (!C2Mapper::map(mColorAspects->range, &sfAspects.mRange)) {
sfAspects.mRange = android::ColorAspects::RangeUnspecified;
}
if (!C2Mapper::map(mColorAspects->matrix, &sfAspects.mMatrixCoeffs)) {
sfAspects.mMatrixCoeffs = android::ColorAspects::MatrixUnspecified;
}
if (!C2Mapper::map(mColorAspects->transfer, &sfAspects.mTransfer)) {
sfAspects.mTransfer = android::ColorAspects::TransferUnspecified;
}
int32_t primaries, transfer, matrixCoeffs;
bool range;
ColorUtils::convertCodecColorAspectsToIsoAspects(sfAspects,
&primaries,
&transfer,
&matrixCoeffs,
&range);
mEncParams.s_out_strm_prms.i4_vui_enable = 1;
mEncParams.s_vui_sei_prms.u1_colour_description_present_flag = 1;
mEncParams.s_vui_sei_prms.u1_colour_primaries = primaries;
mEncParams.s_vui_sei_prms.u1_transfer_characteristics = transfer;
mEncParams.s_vui_sei_prms.u1_matrix_coefficients = matrixCoeffs;
mEncParams.s_vui_sei_prms.u1_video_full_range_flag = range;
// update configuration
mEncParams.s_src_prms.i4_width = mSize->width;
mEncParams.s_src_prms.i4_height = mSize->height;
mEncParams.s_src_prms.i4_frm_rate_denom = 1000;
mEncParams.s_src_prms.i4_frm_rate_num =
mFrameRate->value * mEncParams.s_src_prms.i4_frm_rate_denom;
mEncParams.s_tgt_lyr_prms.as_tgt_params[0].i4_quality_preset = IHEVCE_QUALITY_P5;
mEncParams.s_tgt_lyr_prms.as_tgt_params[0].ai4_tgt_bitrate[0] =
mBitrate->value;
mEncParams.s_tgt_lyr_prms.as_tgt_params[0].ai4_peak_bitrate[0] =
mBitrate->value << 1;
mEncParams.s_tgt_lyr_prms.as_tgt_params[0].i4_codec_level = mHevcEncLevel;
mEncParams.s_coding_tools_prms.i4_max_i_open_gop_period = mIDRInterval;
mEncParams.s_coding_tools_prms.i4_max_cra_open_gop_period = mIInterval;
mIvVideoColorFormat = IV_YUV_420P;
mEncParams.s_multi_thrd_prms.i4_max_num_cores = mNumCores;
mEncParams.s_out_strm_prms.i4_codec_profile = mHevcEncProfile;
mEncParams.s_lap_prms.i4_rc_look_ahead_pics = DEFAULT_RC_LOOKAHEAD;
if (mBframes == 0) {
mEncParams.s_coding_tools_prms.i4_max_temporal_layers = 0;
} else if (mBframes <= 2) {
mEncParams.s_coding_tools_prms.i4_max_temporal_layers = 1;
} else if (mBframes <= 6) {
mEncParams.s_coding_tools_prms.i4_max_temporal_layers = 2;
} else {
mEncParams.s_coding_tools_prms.i4_max_temporal_layers = 3;
}
// we resolved out-of-bound and unspecified values in PictureQuantizationSetter()
// so we can start with defaults that are overridden as needed.
int32_t maxFrameQP = mEncParams.s_config_prms.i4_max_frame_qp;
int32_t minFrameQP = mEncParams.s_config_prms.i4_min_frame_qp;
for (size_t i = 0; i < mQpBounds->flexCount(); ++i) {
const C2PictureQuantizationStruct &layer = mQpBounds->m.values[i];
// no need to loop, hevc library takes same range for I/P/B picture type
if (layer.type_ == C2Config::picture_type_t(I_FRAME) ||
layer.type_ == C2Config::picture_type_t(P_FRAME) ||
layer.type_ == C2Config::picture_type_t(B_FRAME)) {
maxFrameQP = layer.max;
minFrameQP = layer.min;
break;
}
}
mEncParams.s_config_prms.i4_max_frame_qp = maxFrameQP;
mEncParams.s_config_prms.i4_min_frame_qp = minFrameQP;
ALOGV("MaxFrameQp: %d MinFrameQp: %d", maxFrameQP, minFrameQP);
mEncParams.s_tgt_lyr_prms.as_tgt_params[0].ai4_frame_qp[0] =
std::clamp(kDefaultInitQP, minFrameQP, maxFrameQP);
switch (mBitrateMode->value) {
case C2Config::BITRATE_IGNORE: {
mEncParams.s_config_prms.i4_rate_control_mode = 3;
// ensure initial qp values are within our newly configured bounds
int32_t frameQp = getQpFromQuality(mQuality->value);
mEncParams.s_tgt_lyr_prms.as_tgt_params[0].ai4_frame_qp[0] =
std::clamp(frameQp, minFrameQP, maxFrameQP);
break;
}
case C2Config::BITRATE_CONST:
mEncParams.s_config_prms.i4_rate_control_mode = 5;
break;
case C2Config::BITRATE_VARIABLE:
[[fallthrough]];
default:
mEncParams.s_config_prms.i4_rate_control_mode = 2;
break;
break;
}
if (mComplexity->value == 10) {
mEncParams.s_tgt_lyr_prms.as_tgt_params[0].i4_quality_preset = IHEVCE_QUALITY_P0;
} else if (mComplexity->value >= 8) {
mEncParams.s_tgt_lyr_prms.as_tgt_params[0].i4_quality_preset = IHEVCE_QUALITY_P2;
} else if (mComplexity->value >= 7) {
mEncParams.s_tgt_lyr_prms.as_tgt_params[0].i4_quality_preset = IHEVCE_QUALITY_P3;
} else if (mComplexity->value >= 5) {
mEncParams.s_tgt_lyr_prms.as_tgt_params[0].i4_quality_preset = IHEVCE_QUALITY_P4;
} else {
mEncParams.s_tgt_lyr_prms.as_tgt_params[0].i4_quality_preset = IHEVCE_QUALITY_P5;
}
return C2_OK;
}
c2_status_t C2SoftHevcEnc::releaseEncoder() {
mSpsPpsHeaderReceived = false;
mSignalledEos = false;
mSignalledError = false;
mStarted = false;
if (mCodecCtx) {
IHEVCE_PLUGIN_STATUS_T err = ihevce_close(mCodecCtx);
if (IHEVCE_EOK != err) return C2_CORRUPTED;
mCodecCtx = nullptr;
}
return C2_OK;
}
c2_status_t C2SoftHevcEnc::drain(uint32_t drainMode,
const std::shared_ptr<C2BlockPool>& pool) {
return drainInternal(drainMode, pool, nullptr);
}
c2_status_t C2SoftHevcEnc::initEncoder() {
CHECK(!mCodecCtx);
{
IntfImpl::Lock lock = mIntf->lock();
mSize = mIntf->getSize_l();
mBitrateMode = mIntf->getBitrateMode_l();
mBitrate = mIntf->getBitrate_l();
mFrameRate = mIntf->getFrameRate_l();
mHevcEncProfile = mIntf->getProfile_l();
mHevcEncLevel = mIntf->getLevel_l();
mIDRInterval = mIntf->getSyncFramePeriod_l();
mIInterval = mIntf->getSyncFramePeriod_l();
mComplexity = mIntf->getComplexity_l();
mQuality = mIntf->getQuality_l();
mGop = mIntf->getGop_l();
mRequestSync = mIntf->getRequestSync_l();
mColorAspects = mIntf->getCodedColorAspects_l();
mQpBounds = mIntf->getPictureQuantization_l();;
}
c2_status_t status = initEncParams();
if (C2_OK != status) {
ALOGE("Failed to initialize encoder params : 0x%x", status);
mSignalledError = true;
return status;
}
IHEVCE_PLUGIN_STATUS_T err = IHEVCE_EOK;
err = ihevce_init(&mEncParams, &mCodecCtx);
if (IHEVCE_EOK != err) {
ALOGE("HEVC encoder init failed : 0x%x", err);
return C2_CORRUPTED;
}
mStarted = true;
return C2_OK;
}
c2_status_t C2SoftHevcEnc::setEncodeArgs(ihevce_inp_buf_t* ps_encode_ip,
const C2GraphicView* const input,
uint64_t workIndex) {
ihevce_static_cfg_params_t* params = &mEncParams;
memset(ps_encode_ip, 0, sizeof(*ps_encode_ip));
if (!input) {
return C2_OK;
}
if (input->width() < mSize->width ||
input->height() < mSize->height) {
/* Expect width height to be configured */
ALOGW("unexpected Capacity Aspect %d(%d) x %d(%d)", input->width(),
mSize->width, input->height(), mSize->height);
return C2_BAD_VALUE;
}
const C2PlanarLayout& layout = input->layout();
uint8_t* yPlane =
const_cast<uint8_t *>(input->data()[C2PlanarLayout::PLANE_Y]);
uint8_t* uPlane =
const_cast<uint8_t *>(input->data()[C2PlanarLayout::PLANE_U]);
uint8_t* vPlane =
const_cast<uint8_t *>(input->data()[C2PlanarLayout::PLANE_V]);
int32_t yStride = layout.planes[C2PlanarLayout::PLANE_Y].rowInc;
int32_t uStride = layout.planes[C2PlanarLayout::PLANE_U].rowInc;
int32_t vStride = layout.planes[C2PlanarLayout::PLANE_V].rowInc;
const uint32_t width = mSize->width;
const uint32_t height = mSize->height;
// width and height must be even
if (width & 1u || height & 1u) {
ALOGW("height(%u) and width(%u) must both be even", height, width);
return C2_BAD_VALUE;
}
size_t yPlaneSize = width * height;
switch (layout.type) {
case C2PlanarLayout::TYPE_RGB:
[[fallthrough]];
case C2PlanarLayout::TYPE_RGBA: {
MemoryBlock conversionBuffer =
mConversionBuffers.fetch(yPlaneSize * 3 / 2);
mConversionBuffersInUse.emplace(conversionBuffer.data(),
conversionBuffer);
yPlane = conversionBuffer.data();
uPlane = yPlane + yPlaneSize;
vPlane = uPlane + yPlaneSize / 4;
yStride = width;
uStride = vStride = yStride / 2;
ConvertRGBToPlanarYUV(yPlane, yStride, height,
conversionBuffer.size(), *input,
mColorAspects->matrix, mColorAspects->range);
break;
}
case C2PlanarLayout::TYPE_YUV: {
if (!IsYUV420(*input)) {
ALOGE("input is not YUV420");
return C2_BAD_VALUE;
}
if (layout.planes[layout.PLANE_Y].colInc == 1 &&
layout.planes[layout.PLANE_U].colInc == 1 &&
layout.planes[layout.PLANE_V].colInc == 1 &&
uStride == vStride && yStride == 2 * vStride) {
// I420 compatible - already set up above
break;
}
// copy to I420
yStride = width;
uStride = vStride = yStride / 2;
MemoryBlock conversionBuffer =
mConversionBuffers.fetch(yPlaneSize * 3 / 2);
mConversionBuffersInUse.emplace(conversionBuffer.data(),
conversionBuffer);
MediaImage2 img =
CreateYUV420PlanarMediaImage2(width, height, yStride, height);
status_t err = ImageCopy(conversionBuffer.data(), &img, *input);
if (err != OK) {
ALOGE("Buffer conversion failed: %d", err);
return C2_BAD_VALUE;
}
yPlane = conversionBuffer.data();
uPlane = yPlane + yPlaneSize;
vPlane = uPlane + yPlaneSize / 4;
break;
}
case C2PlanarLayout::TYPE_YUVA:
ALOGE("YUVA plane type is not supported");
return C2_BAD_VALUE;
default:
ALOGE("Unrecognized plane type: %d", layout.type);
return C2_BAD_VALUE;
}
switch (mIvVideoColorFormat) {
case IV_YUV_420P: {
// input buffer is supposed to be const but Ittiam API wants bare
// pointer.
ps_encode_ip->apv_inp_planes[0] = yPlane;
ps_encode_ip->apv_inp_planes[1] = uPlane;
ps_encode_ip->apv_inp_planes[2] = vPlane;
ps_encode_ip->ai4_inp_strd[0] = yStride;
ps_encode_ip->ai4_inp_strd[1] = uStride;
ps_encode_ip->ai4_inp_strd[2] = vStride;
ps_encode_ip->ai4_inp_size[0] = yStride * height;
ps_encode_ip->ai4_inp_size[1] = uStride * height >> 1;
ps_encode_ip->ai4_inp_size[2] = vStride * height >> 1;
break;
}
case IV_YUV_422ILE: {
// TODO
break;
}
case IV_YUV_420SP_UV:
case IV_YUV_420SP_VU:
default: {
ps_encode_ip->apv_inp_planes[0] = yPlane;
ps_encode_ip->apv_inp_planes[1] = uPlane;
ps_encode_ip->apv_inp_planes[2] = nullptr;
ps_encode_ip->ai4_inp_strd[0] = yStride;
ps_encode_ip->ai4_inp_strd[1] = uStride;
ps_encode_ip->ai4_inp_strd[2] = 0;
ps_encode_ip->ai4_inp_size[0] = yStride * height;
ps_encode_ip->ai4_inp_size[1] = uStride * height >> 1;
ps_encode_ip->ai4_inp_size[2] = 0;
break;
}
}
ps_encode_ip->i4_curr_bitrate =
params->s_tgt_lyr_prms.as_tgt_params[0].ai4_tgt_bitrate[0];
ps_encode_ip->i4_curr_peak_bitrate =
params->s_tgt_lyr_prms.as_tgt_params[0].ai4_peak_bitrate[0];
ps_encode_ip->i4_curr_rate_factor = params->s_config_prms.i4_rate_factor;
ps_encode_ip->u8_pts = workIndex;
return C2_OK;
}
void C2SoftHevcEnc::finishWork(uint64_t index,
const std::unique_ptr<C2Work>& work,
const std::shared_ptr<C2BlockPool>& pool,
ihevce_out_buf_t* ps_encode_op) {
std::shared_ptr<C2LinearBlock> block;
C2MemoryUsage usage = {C2MemoryUsage::CPU_READ, C2MemoryUsage::CPU_WRITE};
c2_status_t status =
pool->fetchLinearBlock(ps_encode_op->i4_bytes_generated, usage, &block);
if (C2_OK != status) {
ALOGE("fetchLinearBlock for Output failed with status 0x%x", status);
mSignalledError = true;
work->result = status;
work->workletsProcessed = 1u;
return;
}
C2WriteView wView = block->map().get();
if (C2_OK != wView.error()) {
ALOGE("write view map failed with status 0x%x", wView.error());
mSignalledError = true;
work->result = wView.error();
work->workletsProcessed = 1u;
return;
}
memcpy(wView.data(), ps_encode_op->pu1_output_buf,
ps_encode_op->i4_bytes_generated);
std::shared_ptr<C2Buffer> buffer =
createLinearBuffer(block, 0, ps_encode_op->i4_bytes_generated);
DUMP_TO_FILE(mOutFile, ps_encode_op->pu1_output_buf,
ps_encode_op->i4_bytes_generated);
if (ps_encode_op->i4_is_key_frame) {
ALOGV("IDR frame produced");
buffer->setInfo(std::make_shared<C2StreamPictureTypeMaskInfo::output>(
0u /* stream id */, C2Config::SYNC_FRAME));
}
auto fillWork = [buffer](const std::unique_ptr<C2Work>& work) {
work->worklets.front()->output.flags = (C2FrameData::flags_t)0;
work->worklets.front()->output.buffers.clear();
work->worklets.front()->output.buffers.push_back(buffer);
work->worklets.front()->output.ordinal = work->input.ordinal;
work->workletsProcessed = 1u;
};
if (work && c2_cntr64_t(index) == work->input.ordinal.frameIndex) {
fillWork(work);
if (mSignalledEos) {
work->worklets.front()->output.flags =
C2FrameData::FLAG_END_OF_STREAM;
}
} else {
finish(index, fillWork);
}
}
c2_status_t C2SoftHevcEnc::drainInternal(
uint32_t drainMode,
const std::shared_ptr<C2BlockPool> &pool,
const std::unique_ptr<C2Work> &work) {
if (drainMode == NO_DRAIN) {
ALOGW("drain with NO_DRAIN: no-op");
return C2_OK;
}
if (drainMode == DRAIN_CHAIN) {
ALOGW("DRAIN_CHAIN not supported");
return C2_OMITTED;
}
while (true) {
ihevce_out_buf_t s_encode_op{};
memset(&s_encode_op, 0, sizeof(s_encode_op));
ihevce_encode(mCodecCtx, nullptr, &s_encode_op);
if (s_encode_op.i4_bytes_generated) {
finishWork(s_encode_op.u8_pts, work, pool, &s_encode_op);
} else {
if (work->workletsProcessed != 1u) fillEmptyWork(work);
break;
}
}
return C2_OK;
}
void C2SoftHevcEnc::process(const std::unique_ptr<C2Work>& work,
const std::shared_ptr<C2BlockPool>& pool) {
// Initialize output work
work->result = C2_OK;
work->workletsProcessed = 0u;
work->worklets.front()->output.flags = work->input.flags;
if (mSignalledError || mSignalledEos) {
work->result = C2_BAD_VALUE;
ALOGD("Signalled Error / Signalled Eos");
return;
}
c2_status_t status = C2_OK;
// Initialize encoder if not already initialized
if (!mStarted) {
status = initEncoder();
if (C2_OK != status) {
ALOGE("Failed to initialize encoder : 0x%x", status);
mSignalledError = true;
work->result = status;
work->workletsProcessed = 1u;
return;
}
}
std::shared_ptr<C2GraphicView> view;
std::shared_ptr<C2Buffer> inputBuffer = nullptr;
bool eos = ((work->input.flags & C2FrameData::FLAG_END_OF_STREAM) != 0);
if (eos) mSignalledEos = true;
if (!work->input.buffers.empty()) {
inputBuffer = work->input.buffers[0];
view = std::make_shared<C2GraphicView>(
inputBuffer->data().graphicBlocks().front().map().get());
if (view->error() != C2_OK) {
ALOGE("graphic view map err = %d", view->error());
mSignalledError = true;
work->result = C2_CORRUPTED;
work->workletsProcessed = 1u;
return;
}
//(b/232396154)
//workaround for incorrect crop size in view when using surface mode
view->setCrop_be(C2Rect(mSize->width, mSize->height));
}
IHEVCE_PLUGIN_STATUS_T err = IHEVCE_EOK;
if (!mSpsPpsHeaderReceived) {
ihevce_out_buf_t s_header_op{};
err = ihevce_encode_header(mCodecCtx, &s_header_op);
if (err == IHEVCE_EOK && s_header_op.i4_bytes_generated) {
std::unique_ptr<C2StreamInitDataInfo::output> csd =
C2StreamInitDataInfo::output::AllocUnique(
s_header_op.i4_bytes_generated, 0u);
if (!csd) {
ALOGE("CSD allocation failed");
mSignalledError = true;
work->result = C2_NO_MEMORY;
work->workletsProcessed = 1u;
return;
}
memcpy(csd->m.value, s_header_op.pu1_output_buf,
s_header_op.i4_bytes_generated);
DUMP_TO_FILE(mOutFile, csd->m.value, csd->flexCount());
work->worklets.front()->output.configUpdate.push_back(
std::move(csd));
mSpsPpsHeaderReceived = true;
}
if (!inputBuffer) {
work->workletsProcessed = 1u;
return;
}
}
// handle dynamic bitrate change
{
IntfImpl::Lock lock = mIntf->lock();
std::shared_ptr<C2StreamBitrateInfo::output> bitrate = mIntf->getBitrate_l();
lock.unlock();
if (bitrate != mBitrate) {
mBitrate = bitrate;
mEncParams.s_tgt_lyr_prms.as_tgt_params[0].ai4_tgt_bitrate[0] =
mBitrate->value;
mEncParams.s_tgt_lyr_prms.as_tgt_params[0].ai4_peak_bitrate[0] =
mBitrate->value << 1;
}
}
ihevce_inp_buf_t s_encode_ip{};
ihevce_out_buf_t s_encode_op{};
uint64_t workIndex = work->input.ordinal.frameIndex.peekull();
status = setEncodeArgs(&s_encode_ip, view.get(), workIndex);
if (C2_OK != status) {
ALOGE("setEncodeArgs failed : 0x%x", status);
mSignalledError = true;
work->result = status;
work->workletsProcessed = 1u;
return;
}
// handle request key frame
{
IntfImpl::Lock lock = mIntf->lock();
std::shared_ptr<C2StreamRequestSyncFrameTuning::output> requestSync;
requestSync = mIntf->getRequestSync_l();
lock.unlock();
if (requestSync != mRequestSync) {
// we can handle IDR immediately
if (requestSync->value) {
// unset request
C2StreamRequestSyncFrameTuning::output clearSync(0u, C2_FALSE);
std::vector<std::unique_ptr<C2SettingResult>> failures;
mIntf->config({ &clearSync }, C2_MAY_BLOCK, &failures);
ALOGV("Got sync request");
//Force this as an IDR frame
s_encode_ip.i4_force_idr_flag = 1;
}
mRequestSync = requestSync;
}
}
nsecs_t timeDelay = 0;
nsecs_t timeTaken = 0;
memset(&s_encode_op, 0, sizeof(s_encode_op));
mTimeStart = systemTime();
timeDelay = mTimeStart - mTimeEnd;
if (inputBuffer) {
err = ihevce_encode(mCodecCtx, &s_encode_ip, &s_encode_op);
if (IHEVCE_EOK != err) {
ALOGE("Encode Frame failed : 0x%x", err);
mSignalledError = true;
work->result = C2_CORRUPTED;
work->workletsProcessed = 1u;
return;
}
} else if (!eos) {
fillEmptyWork(work);
}
/* Compute time taken for decode() */
mTimeEnd = systemTime();
timeTaken = mTimeEnd - mTimeStart;
ALOGV("timeTaken=%6" PRId64 " delay=%6" PRId64 " numBytes=%6d", timeTaken,
timeDelay, s_encode_op.i4_bytes_generated);
if (s_encode_op.i4_bytes_generated) {
finishWork(s_encode_op.u8_pts, work, pool, &s_encode_op);
}
if (eos) {
drainInternal(DRAIN_COMPONENT_WITH_EOS, pool, work);
}
}
class C2SoftHevcEncFactory : public C2ComponentFactory {
public:
C2SoftHevcEncFactory()
: mHelper(std::static_pointer_cast<C2ReflectorHelper>(
GetCodec2PlatformComponentStore()->getParamReflector())) {}
c2_status_t createComponent(
c2_node_id_t id,
std::shared_ptr<C2Component>* const component,
std::function<void(C2Component*)> deleter) override {
*component = std::shared_ptr<C2Component>(
new C2SoftHevcEnc(
COMPONENT_NAME, id,
std::make_shared<C2SoftHevcEnc::IntfImpl>(mHelper)),
deleter);
return C2_OK;
}
c2_status_t createInterface(
c2_node_id_t id,
std::shared_ptr<C2ComponentInterface>* const interface,
std::function<void(C2ComponentInterface*)> deleter) override {
*interface = std::shared_ptr<C2ComponentInterface>(
new SimpleInterface<C2SoftHevcEnc::IntfImpl>(
COMPONENT_NAME, id,
std::make_shared<C2SoftHevcEnc::IntfImpl>(mHelper)),
deleter);
return C2_OK;
}
~C2SoftHevcEncFactory() override = default;
private:
std::shared_ptr<C2ReflectorHelper> mHelper;
};
} // namespace android
__attribute__((cfi_canonical_jump_table))
extern "C" ::C2ComponentFactory* CreateCodec2Factory() {
ALOGV("in %s", __func__);
return new ::android::C2SoftHevcEncFactory();
}
__attribute__((cfi_canonical_jump_table))
extern "C" void DestroyCodec2Factory(::C2ComponentFactory* factory) {
ALOGV("in %s", __func__);
delete factory;
}