blob: 3f96cb3ad0e8d9c6fbd4c618ced5645ef029f813 [file] [log] [blame]
/*
* Copyright (C) 2023 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// #define LOG_NDEBUG 0
#define LOG_TAG "C2SoftDav1dDec"
#include <android-base/properties.h>
#include <cutils/properties.h>
#include <thread>
#include <C2Debug.h>
#include <C2PlatformSupport.h>
#include <Codec2BufferUtils.h>
#include <Codec2CommonUtils.h>
#include <Codec2Mapper.h>
#include <SimpleC2Interface.h>
#include <log/log.h>
#include <media/stagefright/foundation/AUtils.h>
#include <media/stagefright/foundation/MediaDefs.h>
#include "C2SoftDav1dDec.h"
namespace android {
// The number of threads used for the dav1d decoder.
static const int NUM_THREADS_DAV1D_DEFAULT = 0;
static const char NUM_THREADS_DAV1D_PROPERTY[] = "debug.dav1d.numthreads";
// codecname set and passed in as a compile flag from Android.bp
constexpr char COMPONENT_NAME[] = CODECNAME;
constexpr size_t kMinInputBufferSize = 2 * 1024 * 1024;
class C2SoftDav1dDec::IntfImpl : public SimpleInterface<void>::BaseParams {
public:
explicit IntfImpl(const std::shared_ptr<C2ReflectorHelper>& helper)
: SimpleInterface<void>::BaseParams(helper, COMPONENT_NAME, C2Component::KIND_DECODER,
C2Component::DOMAIN_VIDEO, MEDIA_MIMETYPE_VIDEO_AV1) {
noPrivateBuffers();
noInputReferences();
noOutputReferences();
noInputLatency();
noTimeStretch();
addParameter(DefineParam(mAttrib, C2_PARAMKEY_COMPONENT_ATTRIBUTES)
.withConstValue(new C2ComponentAttributesSetting(
C2Component::ATTRIB_IS_TEMPORAL))
.build());
addParameter(DefineParam(mSize, C2_PARAMKEY_PICTURE_SIZE)
.withDefault(new C2StreamPictureSizeInfo::output(0u, 320, 240))
.withFields({
C2F(mSize, width).inRange(2, 4096),
C2F(mSize, height).inRange(2, 4096),
})
.withSetter(SizeSetter)
.build());
addParameter(DefineParam(mProfileLevel, C2_PARAMKEY_PROFILE_LEVEL)
.withDefault(new C2StreamProfileLevelInfo::input(
0u, C2Config::PROFILE_AV1_0, C2Config::LEVEL_AV1_2_1))
.withFields({C2F(mProfileLevel, profile)
.oneOf({C2Config::PROFILE_AV1_0,
C2Config::PROFILE_AV1_1}),
C2F(mProfileLevel, level)
.oneOf({
C2Config::LEVEL_AV1_2,
C2Config::LEVEL_AV1_2_1,
C2Config::LEVEL_AV1_2_2,
C2Config::LEVEL_AV1_2_3,
C2Config::LEVEL_AV1_3,
C2Config::LEVEL_AV1_3_1,
C2Config::LEVEL_AV1_3_2,
C2Config::LEVEL_AV1_3_3,
C2Config::LEVEL_AV1_4,
C2Config::LEVEL_AV1_4_1,
C2Config::LEVEL_AV1_4_2,
C2Config::LEVEL_AV1_4_3,
C2Config::LEVEL_AV1_5,
C2Config::LEVEL_AV1_5_1,
C2Config::LEVEL_AV1_5_2,
C2Config::LEVEL_AV1_5_3,
})})
.withSetter(ProfileLevelSetter, mSize)
.build());
mHdr10PlusInfoInput = C2StreamHdr10PlusInfo::input::AllocShared(0);
addParameter(DefineParam(mHdr10PlusInfoInput, C2_PARAMKEY_INPUT_HDR10_PLUS_INFO)
.withDefault(mHdr10PlusInfoInput)
.withFields({
C2F(mHdr10PlusInfoInput, m.value).any(),
})
.withSetter(Hdr10PlusInfoInputSetter)
.build());
mHdr10PlusInfoOutput = C2StreamHdr10PlusInfo::output::AllocShared(0);
addParameter(DefineParam(mHdr10PlusInfoOutput, C2_PARAMKEY_OUTPUT_HDR10_PLUS_INFO)
.withDefault(mHdr10PlusInfoOutput)
.withFields({
C2F(mHdr10PlusInfoOutput, m.value).any(),
})
.withSetter(Hdr10PlusInfoOutputSetter)
.build());
// default static info
C2HdrStaticMetadataStruct defaultStaticInfo{};
helper->addStructDescriptors<C2MasteringDisplayColorVolumeStruct, C2ColorXyStruct>();
addParameter(
DefineParam(mHdrStaticInfo, C2_PARAMKEY_HDR_STATIC_INFO)
.withDefault(new C2StreamHdrStaticInfo::output(0u, defaultStaticInfo))
.withFields({C2F(mHdrStaticInfo, mastering.red.x).inRange(0, 1),
C2F(mHdrStaticInfo, mastering.red.y).inRange(0, 1),
C2F(mHdrStaticInfo, mastering.green.x).inRange(0, 1),
C2F(mHdrStaticInfo, mastering.green.y).inRange(0, 1),
C2F(mHdrStaticInfo, mastering.blue.x).inRange(0, 1),
C2F(mHdrStaticInfo, mastering.blue.y).inRange(0, 1),
C2F(mHdrStaticInfo, mastering.white.x).inRange(0, 1),
C2F(mHdrStaticInfo, mastering.white.x).inRange(0, 1),
C2F(mHdrStaticInfo, mastering.maxLuminance).inRange(0, 65535),
C2F(mHdrStaticInfo, mastering.minLuminance).inRange(0, 6.5535),
C2F(mHdrStaticInfo, maxCll).inRange(0, 0XFFFF),
C2F(mHdrStaticInfo, maxFall).inRange(0, 0XFFFF)})
.withSetter(HdrStaticInfoSetter)
.build());
addParameter(DefineParam(mMaxSize, C2_PARAMKEY_MAX_PICTURE_SIZE)
.withDefault(new C2StreamMaxPictureSizeTuning::output(0u, 320, 240))
.withFields({
C2F(mSize, width).inRange(2, 2048, 2),
C2F(mSize, height).inRange(2, 2048, 2),
})
.withSetter(MaxPictureSizeSetter, mSize)
.build());
addParameter(
DefineParam(mMaxInputSize, C2_PARAMKEY_INPUT_MAX_BUFFER_SIZE)
.withDefault(new C2StreamMaxBufferSizeInfo::input(0u, kMinInputBufferSize))
.withFields({
C2F(mMaxInputSize, value).any(),
})
.calculatedAs(MaxInputSizeSetter, mMaxSize)
.build());
C2ChromaOffsetStruct locations[1] = {C2ChromaOffsetStruct::ITU_YUV_420_0()};
std::shared_ptr<C2StreamColorInfo::output> defaultColorInfo =
C2StreamColorInfo::output::AllocShared(1u, 0u, 8u /* bitDepth */, C2Color::YUV_420);
memcpy(defaultColorInfo->m.locations, locations, sizeof(locations));
defaultColorInfo = C2StreamColorInfo::output::AllocShared(
{C2ChromaOffsetStruct::ITU_YUV_420_0()}, 0u, 8u /* bitDepth */, C2Color::YUV_420);
helper->addStructDescriptors<C2ChromaOffsetStruct>();
addParameter(DefineParam(mColorInfo, C2_PARAMKEY_CODED_COLOR_INFO)
.withConstValue(defaultColorInfo)
.build());
addParameter(DefineParam(mDefaultColorAspects, C2_PARAMKEY_DEFAULT_COLOR_ASPECTS)
.withDefault(new C2StreamColorAspectsTuning::output(
0u, C2Color::RANGE_UNSPECIFIED, C2Color::PRIMARIES_UNSPECIFIED,
C2Color::TRANSFER_UNSPECIFIED, C2Color::MATRIX_UNSPECIFIED))
.withFields({C2F(mDefaultColorAspects, range)
.inRange(C2Color::RANGE_UNSPECIFIED,
C2Color::RANGE_OTHER),
C2F(mDefaultColorAspects, primaries)
.inRange(C2Color::PRIMARIES_UNSPECIFIED,
C2Color::PRIMARIES_OTHER),
C2F(mDefaultColorAspects, transfer)
.inRange(C2Color::TRANSFER_UNSPECIFIED,
C2Color::TRANSFER_OTHER),
C2F(mDefaultColorAspects, matrix)
.inRange(C2Color::MATRIX_UNSPECIFIED,
C2Color::MATRIX_OTHER)})
.withSetter(DefaultColorAspectsSetter)
.build());
addParameter(DefineParam(mCodedColorAspects, C2_PARAMKEY_VUI_COLOR_ASPECTS)
.withDefault(new C2StreamColorAspectsInfo::input(
0u, C2Color::RANGE_LIMITED, C2Color::PRIMARIES_UNSPECIFIED,
C2Color::TRANSFER_UNSPECIFIED, C2Color::MATRIX_UNSPECIFIED))
.withFields({C2F(mCodedColorAspects, range)
.inRange(C2Color::RANGE_UNSPECIFIED,
C2Color::RANGE_OTHER),
C2F(mCodedColorAspects, primaries)
.inRange(C2Color::PRIMARIES_UNSPECIFIED,
C2Color::PRIMARIES_OTHER),
C2F(mCodedColorAspects, transfer)
.inRange(C2Color::TRANSFER_UNSPECIFIED,
C2Color::TRANSFER_OTHER),
C2F(mCodedColorAspects, matrix)
.inRange(C2Color::MATRIX_UNSPECIFIED,
C2Color::MATRIX_OTHER)})
.withSetter(CodedColorAspectsSetter)
.build());
addParameter(
DefineParam(mColorAspects, C2_PARAMKEY_COLOR_ASPECTS)
.withDefault(new C2StreamColorAspectsInfo::output(
0u, C2Color::RANGE_UNSPECIFIED, C2Color::PRIMARIES_UNSPECIFIED,
C2Color::TRANSFER_UNSPECIFIED, C2Color::MATRIX_UNSPECIFIED))
.withFields(
{C2F(mColorAspects, range)
.inRange(C2Color::RANGE_UNSPECIFIED, C2Color::RANGE_OTHER),
C2F(mColorAspects, primaries)
.inRange(C2Color::PRIMARIES_UNSPECIFIED,
C2Color::PRIMARIES_OTHER),
C2F(mColorAspects, transfer)
.inRange(C2Color::TRANSFER_UNSPECIFIED,
C2Color::TRANSFER_OTHER),
C2F(mColorAspects, matrix)
.inRange(C2Color::MATRIX_UNSPECIFIED,
C2Color::MATRIX_OTHER)})
.withSetter(ColorAspectsSetter, mDefaultColorAspects, mCodedColorAspects)
.build());
std::vector<uint32_t> pixelFormats = {HAL_PIXEL_FORMAT_YCBCR_420_888};
if (isHalPixelFormatSupported((AHardwareBuffer_Format)HAL_PIXEL_FORMAT_YCBCR_P010)) {
pixelFormats.push_back(HAL_PIXEL_FORMAT_YCBCR_P010);
}
// If color format surface isn't added to supported formats, there is no way to know
// when the color-format is configured to surface. This is necessary to be able to
// choose 10-bit format while decoding 10-bit clips in surface mode.
pixelFormats.push_back(HAL_PIXEL_FORMAT_IMPLEMENTATION_DEFINED);
// TODO: support more formats?
addParameter(DefineParam(mPixelFormat, C2_PARAMKEY_PIXEL_FORMAT)
.withDefault(new C2StreamPixelFormatInfo::output(
0u, HAL_PIXEL_FORMAT_YCBCR_420_888))
.withFields({C2F(mPixelFormat, value).oneOf(pixelFormats)})
.withSetter((Setter<decltype(*mPixelFormat)>::StrictValueWithNoDeps))
.build());
}
static C2R SizeSetter(bool mayBlock, const C2P<C2StreamPictureSizeInfo::output>& oldMe,
C2P<C2StreamPictureSizeInfo::output>& me) {
(void)mayBlock;
C2R res = C2R::Ok();
if (!me.F(me.v.width).supportsAtAll(me.v.width)) {
res = res.plus(C2SettingResultBuilder::BadValue(me.F(me.v.width)));
me.set().width = oldMe.v.width;
}
if (!me.F(me.v.height).supportsAtAll(me.v.height)) {
res = res.plus(C2SettingResultBuilder::BadValue(me.F(me.v.height)));
me.set().height = oldMe.v.height;
}
return res;
}
static C2R MaxPictureSizeSetter(bool mayBlock, C2P<C2StreamMaxPictureSizeTuning::output>& me,
const C2P<C2StreamPictureSizeInfo::output>& size) {
(void)mayBlock;
// TODO: get max width/height from the size's field helpers vs.
// hardcoding
me.set().width = c2_min(c2_max(me.v.width, size.v.width), 4096u);
me.set().height = c2_min(c2_max(me.v.height, size.v.height), 4096u);
return C2R::Ok();
}
static C2R MaxInputSizeSetter(bool mayBlock, C2P<C2StreamMaxBufferSizeInfo::input>& me,
const C2P<C2StreamMaxPictureSizeTuning::output>& maxSize) {
(void)mayBlock;
// assume compression ratio of 2, but enforce a floor
me.set().value =
c2_max((((maxSize.v.width + 63) / 64) * ((maxSize.v.height + 63) / 64) * 3072),
kMinInputBufferSize);
return C2R::Ok();
}
static C2R DefaultColorAspectsSetter(bool mayBlock,
C2P<C2StreamColorAspectsTuning::output>& me) {
(void)mayBlock;
if (me.v.range > C2Color::RANGE_OTHER) {
me.set().range = C2Color::RANGE_OTHER;
}
if (me.v.primaries > C2Color::PRIMARIES_OTHER) {
me.set().primaries = C2Color::PRIMARIES_OTHER;
}
if (me.v.transfer > C2Color::TRANSFER_OTHER) {
me.set().transfer = C2Color::TRANSFER_OTHER;
}
if (me.v.matrix > C2Color::MATRIX_OTHER) {
me.set().matrix = C2Color::MATRIX_OTHER;
}
return C2R::Ok();
}
static C2R CodedColorAspectsSetter(bool mayBlock, C2P<C2StreamColorAspectsInfo::input>& me) {
(void)mayBlock;
if (me.v.range > C2Color::RANGE_OTHER) {
me.set().range = C2Color::RANGE_OTHER;
}
if (me.v.primaries > C2Color::PRIMARIES_OTHER) {
me.set().primaries = C2Color::PRIMARIES_OTHER;
}
if (me.v.transfer > C2Color::TRANSFER_OTHER) {
me.set().transfer = C2Color::TRANSFER_OTHER;
}
if (me.v.matrix > C2Color::MATRIX_OTHER) {
me.set().matrix = C2Color::MATRIX_OTHER;
}
return C2R::Ok();
}
static C2R ColorAspectsSetter(bool mayBlock, C2P<C2StreamColorAspectsInfo::output>& me,
const C2P<C2StreamColorAspectsTuning::output>& def,
const C2P<C2StreamColorAspectsInfo::input>& coded) {
(void)mayBlock;
// take default values for all unspecified fields, and coded values for specified ones
me.set().range = coded.v.range == RANGE_UNSPECIFIED ? def.v.range : coded.v.range;
me.set().primaries =
coded.v.primaries == PRIMARIES_UNSPECIFIED ? def.v.primaries : coded.v.primaries;
me.set().transfer =
coded.v.transfer == TRANSFER_UNSPECIFIED ? def.v.transfer : coded.v.transfer;
me.set().matrix = coded.v.matrix == MATRIX_UNSPECIFIED ? def.v.matrix : coded.v.matrix;
return C2R::Ok();
}
static C2R ProfileLevelSetter(bool mayBlock, C2P<C2StreamProfileLevelInfo::input>& me,
const C2P<C2StreamPictureSizeInfo::output>& size) {
(void)mayBlock;
(void)size;
(void)me; // TODO: validate
return C2R::Ok();
}
std::shared_ptr<C2StreamColorAspectsTuning::output> getDefaultColorAspects_l() {
return mDefaultColorAspects;
}
std::shared_ptr<C2StreamColorAspectsInfo::output> getColorAspects_l() { return mColorAspects; }
static C2R Hdr10PlusInfoInputSetter(bool mayBlock, C2P<C2StreamHdr10PlusInfo::input>& me) {
(void)mayBlock;
(void)me; // TODO: validate
return C2R::Ok();
}
static C2R Hdr10PlusInfoOutputSetter(bool mayBlock, C2P<C2StreamHdr10PlusInfo::output>& me) {
(void)mayBlock;
(void)me; // TODO: validate
return C2R::Ok();
}
// unsafe getters
std::shared_ptr<C2StreamPixelFormatInfo::output> getPixelFormat_l() const {
return mPixelFormat;
}
static C2R HdrStaticInfoSetter(bool mayBlock, C2P<C2StreamHdrStaticInfo::output>& me) {
(void)mayBlock;
if (me.v.mastering.red.x > 1) {
me.set().mastering.red.x = 1;
}
if (me.v.mastering.red.y > 1) {
me.set().mastering.red.y = 1;
}
if (me.v.mastering.green.x > 1) {
me.set().mastering.green.x = 1;
}
if (me.v.mastering.green.y > 1) {
me.set().mastering.green.y = 1;
}
if (me.v.mastering.blue.x > 1) {
me.set().mastering.blue.x = 1;
}
if (me.v.mastering.blue.y > 1) {
me.set().mastering.blue.y = 1;
}
if (me.v.mastering.white.x > 1) {
me.set().mastering.white.x = 1;
}
if (me.v.mastering.white.y > 1) {
me.set().mastering.white.y = 1;
}
if (me.v.mastering.maxLuminance > 65535.0) {
me.set().mastering.maxLuminance = 65535.0;
}
if (me.v.mastering.minLuminance > 6.5535) {
me.set().mastering.minLuminance = 6.5535;
}
if (me.v.maxCll > 65535.0) {
me.set().maxCll = 65535.0;
}
if (me.v.maxFall > 65535.0) {
me.set().maxFall = 65535.0;
}
return C2R::Ok();
}
private:
std::shared_ptr<C2StreamProfileLevelInfo::input> mProfileLevel;
std::shared_ptr<C2StreamPictureSizeInfo::output> mSize;
std::shared_ptr<C2StreamMaxPictureSizeTuning::output> mMaxSize;
std::shared_ptr<C2StreamMaxBufferSizeInfo::input> mMaxInputSize;
std::shared_ptr<C2StreamColorInfo::output> mColorInfo;
std::shared_ptr<C2StreamPixelFormatInfo::output> mPixelFormat;
std::shared_ptr<C2StreamColorAspectsTuning::output> mDefaultColorAspects;
std::shared_ptr<C2StreamColorAspectsInfo::input> mCodedColorAspects;
std::shared_ptr<C2StreamColorAspectsInfo::output> mColorAspects;
std::shared_ptr<C2StreamHdr10PlusInfo::input> mHdr10PlusInfoInput;
std::shared_ptr<C2StreamHdr10PlusInfo::output> mHdr10PlusInfoOutput;
std::shared_ptr<C2StreamHdrStaticInfo::output> mHdrStaticInfo;
};
C2SoftDav1dDec::C2SoftDav1dDec(const char* name, c2_node_id_t id,
const std::shared_ptr<IntfImpl>& intfImpl)
: SimpleC2Component(std::make_shared<SimpleInterface<IntfImpl>>(name, id, intfImpl)),
mIntf(intfImpl) {
mTimeStart = mTimeEnd = systemTime();
}
C2SoftDav1dDec::~C2SoftDav1dDec() {
onRelease();
}
c2_status_t C2SoftDav1dDec::onInit() {
return initDecoder() ? C2_OK : C2_CORRUPTED;
}
c2_status_t C2SoftDav1dDec::onStop() {
// TODO: b/277797541 - investigate if the decoder needs to be flushed.
mSignalledError = false;
mSignalledOutputEos = false;
return C2_OK;
}
void C2SoftDav1dDec::onReset() {
(void)onStop();
c2_status_t err = onFlush_sm();
if (err != C2_OK) {
ALOGW("Failed to flush the av1 decoder. Trying to hard reset.");
destroyDecoder();
if (!initDecoder()) {
ALOGE("Hard reset failed.");
}
}
}
void C2SoftDav1dDec::flushDav1d() {
if (mDav1dCtx) {
Dav1dPicture p;
while (mDecodedPictures.size() > 0) {
p = mDecodedPictures.front();
mDecodedPictures.pop_front();
dav1d_picture_unref(&p);
}
int res = 0;
while (true) {
memset(&p, 0, sizeof(p));
if ((res = dav1d_get_picture(mDav1dCtx, &p)) < 0) {
if (res != DAV1D_ERR(EAGAIN)) {
ALOGE("Error decoding frame: %s\n", strerror(DAV1D_ERR(res)));
break;
} else {
res = 0;
break;
}
} else {
dav1d_picture_unref(&p);
}
}
dav1d_flush(mDav1dCtx);
}
}
void C2SoftDav1dDec::onRelease() {
destroyDecoder();
}
c2_status_t C2SoftDav1dDec::onFlush_sm() {
flushDav1d();
mSignalledError = false;
mSignalledOutputEos = false;
return C2_OK;
}
static int GetCPUCoreCount() {
int cpuCoreCount = 1;
#if defined(_SC_NPROCESSORS_ONLN)
cpuCoreCount = sysconf(_SC_NPROCESSORS_ONLN);
#else
// _SC_NPROC_ONLN must be defined...
cpuCoreCount = sysconf(_SC_NPROC_ONLN);
#endif
CHECK(cpuCoreCount >= 1);
ALOGV("Number of CPU cores: %d", cpuCoreCount);
return cpuCoreCount;
}
bool C2SoftDav1dDec::initDecoder() {
#ifdef FILE_DUMP_ENABLE
mC2SoftDav1dDump.initDumping();
#endif
mSignalledError = false;
mSignalledOutputEos = false;
mHalPixelFormat = HAL_PIXEL_FORMAT_YV12;
{
IntfImpl::Lock lock = mIntf->lock();
mPixelFormatInfo = mIntf->getPixelFormat_l();
}
const char* version = dav1d_version();
Dav1dSettings lib_settings;
dav1d_default_settings(&lib_settings);
int cpu_count = GetCPUCoreCount();
lib_settings.n_threads = std::max(cpu_count / 2, 1); // use up to half the cores by default.
int32_t numThreads =
android::base::GetIntProperty(NUM_THREADS_DAV1D_PROPERTY, NUM_THREADS_DAV1D_DEFAULT);
if (numThreads > 0) lib_settings.n_threads = numThreads;
int res = 0;
if ((res = dav1d_open(&mDav1dCtx, &lib_settings))) {
ALOGE("dav1d_open failed. status: %d.", res);
return false;
} else {
ALOGD("dav1d_open succeeded(n_threads=%d,version=%s).", lib_settings.n_threads, version);
}
return true;
}
void C2SoftDav1dDec::destroyDecoder() {
if (mDav1dCtx) {
Dav1dPicture p;
while (mDecodedPictures.size() > 0) {
memset(&p, 0, sizeof(p));
p = mDecodedPictures.front();
mDecodedPictures.pop_front();
dav1d_picture_unref(&p);
}
dav1d_close(&mDav1dCtx);
mDav1dCtx = nullptr;
mOutputBufferIndex = 0;
mInputBufferIndex = 0;
}
#ifdef FILE_DUMP_ENABLE
mC2SoftDav1dDump.destroyDumping();
#endif
}
void fillEmptyWork(const std::unique_ptr<C2Work>& work) {
uint32_t flags = 0;
if (work->input.flags & C2FrameData::FLAG_END_OF_STREAM) {
flags |= C2FrameData::FLAG_END_OF_STREAM;
ALOGV("signalling end_of_stream.");
}
work->worklets.front()->output.flags = (C2FrameData::flags_t)flags;
work->worklets.front()->output.buffers.clear();
work->worklets.front()->output.ordinal = work->input.ordinal;
work->workletsProcessed = 1u;
}
void C2SoftDav1dDec::finishWork(uint64_t index, const std::unique_ptr<C2Work>& work,
const std::shared_ptr<C2GraphicBlock>& block) {
std::shared_ptr<C2Buffer> buffer = createGraphicBuffer(block, C2Rect(mWidth, mHeight));
{
IntfImpl::Lock lock = mIntf->lock();
buffer->setInfo(mIntf->getColorAspects_l());
}
auto fillWork = [buffer, index](const std::unique_ptr<C2Work>& work) {
uint32_t flags = 0;
if ((work->input.flags & C2FrameData::FLAG_END_OF_STREAM) &&
(c2_cntr64_t(index) == work->input.ordinal.frameIndex)) {
flags |= C2FrameData::FLAG_END_OF_STREAM;
ALOGV("signalling end_of_stream.");
}
work->worklets.front()->output.flags = (C2FrameData::flags_t)flags;
work->worklets.front()->output.buffers.clear();
work->worklets.front()->output.buffers.push_back(buffer);
work->worklets.front()->output.ordinal = work->input.ordinal;
work->workletsProcessed = 1u;
};
if (work && c2_cntr64_t(index) == work->input.ordinal.frameIndex) {
fillWork(work);
} else {
finish(index, fillWork);
}
}
static void freeCallback(const uint8_t */*data*/, void */*cookie*/) {
return;
}
void C2SoftDav1dDec::process(const std::unique_ptr<C2Work>& work,
const std::shared_ptr<C2BlockPool>& pool) {
work->result = C2_OK;
work->workletsProcessed = 0u;
work->worklets.front()->output.configUpdate.clear();
work->worklets.front()->output.flags = work->input.flags;
if (mSignalledError || mSignalledOutputEos) {
work->result = C2_BAD_VALUE;
return;
}
size_t inOffset = 0u;
size_t inSize = 0u;
C2ReadView rView = mDummyReadView;
if (!work->input.buffers.empty()) {
rView = work->input.buffers[0]->data().linearBlocks().front().map().get();
inSize = rView.capacity();
if (inSize && rView.error()) {
ALOGE("read view map failed %d", rView.error());
work->result = C2_CORRUPTED;
return;
}
}
bool codecConfig = ((work->input.flags & C2FrameData::FLAG_CODEC_CONFIG) != 0);
bool end_of_stream = ((work->input.flags & C2FrameData::FLAG_END_OF_STREAM) != 0);
if (codecConfig) {
fillEmptyWork(work);
return;
}
int64_t in_frameIndex = work->input.ordinal.frameIndex.peekll();
if (inSize) {
mInputBufferIndex = in_frameIndex;
uint8_t* bitstream = const_cast<uint8_t*>(rView.data() + inOffset);
mTimeStart = systemTime();
nsecs_t delay = mTimeStart - mTimeEnd;
// Send the bitstream data (inputBuffer) to dav1d.
if (mDav1dCtx) {
int i_ret = 0;
Dav1dSequenceHeader seq;
int res = dav1d_parse_sequence_header(&seq, bitstream, inSize);
if (res == 0) {
ALOGV("dav1d found a sequenceHeader (%dx%d) for in_frameIndex=%ld.", seq.max_width,
seq.max_height, (long)in_frameIndex);
}
Dav1dData data;
res = dav1d_data_wrap(&data, bitstream, inSize, freeCallback, nullptr);
if (res != 0) {
ALOGE("Decoder wrap error %s!", strerror(DAV1D_ERR(res)));
i_ret = -1;
} else {
data.m.timestamp = in_frameIndex;
// ALOGV("inSize=%ld, in_frameIndex=%ld, timestamp=%ld",
// inSize, frameIndex, data.m.timestamp);
// Dump the bitstream data (inputBuffer) if dumping is enabled.
#ifdef FILE_DUMP_ENABLE
mC2SoftDav1dDump.dumpInput(ptr, new_Size);
#endif
bool b_draining = false;
do {
res = dav1d_send_data(mDav1dCtx, &data);
if (res < 0 && res != DAV1D_ERR(EAGAIN)) {
ALOGE("Decoder feed error %s!", strerror(DAV1D_ERR(res)));
/* bitstream decoding errors (typically DAV1D_ERR(EINVAL), are assumed
* to be recoverable. Other errors returned from this function are
* either unexpected, or considered critical failures.
*/
i_ret = res == DAV1D_ERR(EINVAL) ? 0 : -1;
break;
}
bool b_output_error = false;
do {
Dav1dPicture img;
memset(&img, 0, sizeof(img));
res = dav1d_get_picture(mDav1dCtx, &img);
if (res == 0) {
mDecodedPictures.push_back(img);
if (!end_of_stream) break;
} else if (res == DAV1D_ERR(EAGAIN)) {
/* the decoder needs more data to be able to output something.
* if there is more data pending, continue the loop below or
* otherwise break */
if (data.sz != 0) res = 0;
break;
} else {
ALOGE("warning! Decoder error %d!", res);
b_output_error = true;
break;
}
} while (res == 0);
if (b_output_error) break;
/* on drain, we must ignore the 1st EAGAIN */
if (!b_draining && (res == DAV1D_ERR(EAGAIN) || res == 0) &&
(end_of_stream)) {
b_draining = true;
res = 0;
}
} while (res == 0 && ((data.sz != 0) || b_draining));
if (data.sz > 0) {
ALOGE("unexpected data.sz=%zu after dav1d_send_data", data.sz);
dav1d_data_unref(&data);
}
}
mTimeEnd = systemTime();
nsecs_t decodeTime = mTimeEnd - mTimeStart;
// ALOGV("decodeTime=%4" PRId64 " delay=%4" PRId64 "\n", decodeTime, delay);
if (i_ret != 0) {
ALOGE("av1 decoder failed to decode frame. status: %d.", i_ret);
work->result = C2_CORRUPTED;
work->workletsProcessed = 1u;
mSignalledError = true;
return;
}
}
}
(void)outputBuffer(pool, work);
if (end_of_stream) {
drainInternal(DRAIN_COMPONENT_WITH_EOS, pool, work);
mSignalledOutputEos = true;
} else if (!inSize) {
fillEmptyWork(work);
}
}
void C2SoftDav1dDec::getHDRStaticParams(Dav1dPicture* picture,
const std::unique_ptr<C2Work>& work) {
C2StreamHdrStaticMetadataInfo::output hdrStaticMetadataInfo{};
bool infoPresent = false;
if (picture != nullptr) {
if (picture->mastering_display != nullptr) {
hdrStaticMetadataInfo.mastering.red.x =
picture->mastering_display->primaries[0][0] / 65536.0;
hdrStaticMetadataInfo.mastering.red.y =
picture->mastering_display->primaries[0][1] / 65536.0;
hdrStaticMetadataInfo.mastering.green.x =
picture->mastering_display->primaries[1][0] / 65536.0;
hdrStaticMetadataInfo.mastering.green.y =
picture->mastering_display->primaries[1][1] / 65536.0;
hdrStaticMetadataInfo.mastering.blue.x =
picture->mastering_display->primaries[2][0] / 65536.0;
hdrStaticMetadataInfo.mastering.blue.y =
picture->mastering_display->primaries[2][1] / 65536.0;
hdrStaticMetadataInfo.mastering.white.x =
picture->mastering_display->white_point[0] / 65536.0;
hdrStaticMetadataInfo.mastering.white.y =
picture->mastering_display->white_point[1] / 65536.0;
hdrStaticMetadataInfo.mastering.maxLuminance =
picture->mastering_display->max_luminance / 256.0;
hdrStaticMetadataInfo.mastering.minLuminance =
picture->mastering_display->min_luminance / 16384.0;
infoPresent = true;
}
if (picture->content_light != nullptr) {
hdrStaticMetadataInfo.maxCll = picture->content_light->max_content_light_level;
hdrStaticMetadataInfo.maxFall = picture->content_light->max_frame_average_light_level;
infoPresent = true;
}
}
// if (infoPresent) {
// ALOGD("received a hdrStaticMetadataInfo (mastering.red=%f,%f mastering.green=%f,%f
// mastering.blue=%f,%f mastering.white=%f,%f mastering.maxLuminance=%f
// mastering.minLuminance=%f maxCll=%f maxFall=%f) at mOutputBufferIndex=%d.",
// hdrStaticMetadataInfo.mastering.red.x,hdrStaticMetadataInfo.mastering.red.y,
// hdrStaticMetadataInfo.mastering.green.x,hdrStaticMetadataInfo.mastering.green.y,
// hdrStaticMetadataInfo.mastering.blue.x,hdrStaticMetadataInfo.mastering.blue.y,
// hdrStaticMetadataInfo.mastering.white.x,hdrStaticMetadataInfo.mastering.white.y,
// hdrStaticMetadataInfo.mastering.maxLuminance,hdrStaticMetadataInfo.mastering.minLuminance,
// hdrStaticMetadataInfo.maxCll,
// hdrStaticMetadataInfo.maxFall,
// mOutputBufferIndex);
// }
// config if static info has changed
if (infoPresent && !(hdrStaticMetadataInfo == mHdrStaticMetadataInfo)) {
mHdrStaticMetadataInfo = hdrStaticMetadataInfo;
work->worklets.front()->output.configUpdate.push_back(
C2Param::Copy(mHdrStaticMetadataInfo));
}
}
void C2SoftDav1dDec::getHDR10PlusInfoData(Dav1dPicture* picture,
const std::unique_ptr<C2Work>& work) {
if (picture != nullptr) {
if (picture->itut_t35 != nullptr) {
std::vector<uint8_t> payload;
size_t payloadSize = picture->itut_t35->payload_size;
if (payloadSize > 0) {
payload.push_back(picture->itut_t35->country_code);
if (picture->itut_t35->country_code == 0xFF) {
payload.push_back(picture->itut_t35->country_code_extension_byte);
}
payload.insert(payload.end(), picture->itut_t35->payload,
picture->itut_t35->payload + picture->itut_t35->payload_size);
}
std::unique_ptr<C2StreamHdr10PlusInfo::output> hdr10PlusInfo =
C2StreamHdr10PlusInfo::output::AllocUnique(payload.size());
if (!hdr10PlusInfo) {
ALOGE("Hdr10PlusInfo allocation failed");
mSignalledError = true;
work->result = C2_NO_MEMORY;
return;
}
memcpy(hdr10PlusInfo->m.value, payload.data(), payload.size());
// ALOGD("Received a hdr10PlusInfo from picture->itut_t32
// (payload_size=%ld,country_code=%d) at mOutputBufferIndex=%d.",
// picture->itut_t35->payload_size,
// picture->itut_t35->country_code,
// mOutputBufferIndex);
// config if hdr10Plus info has changed
if (nullptr == mHdr10PlusInfo || !(*hdr10PlusInfo == *mHdr10PlusInfo)) {
mHdr10PlusInfo = std::move(hdr10PlusInfo);
work->worklets.front()->output.configUpdate.push_back(std::move(mHdr10PlusInfo));
}
}
}
}
void C2SoftDav1dDec::getVuiParams(Dav1dPicture* picture) {
VuiColorAspects vuiColorAspects;
if (picture) {
vuiColorAspects.primaries = picture->seq_hdr->pri;
vuiColorAspects.transfer = picture->seq_hdr->trc;
vuiColorAspects.coeffs = picture->seq_hdr->mtrx;
vuiColorAspects.fullRange = picture->seq_hdr->color_range;
// ALOGD("Received a vuiColorAspects from dav1d
// (primaries = % d, transfer = % d, coeffs = % d, fullRange = % d)
// at mOutputBufferIndex = % d,
// out_frameIndex = % ld.",
// vuiColorAspects.primaries,
// vuiColorAspects.transfer, vuiColorAspects.coeffs, vuiColorAspects.fullRange,
// mOutputBufferIndex, picture->m.timestamp);
}
// convert vui aspects to C2 values if changed
if (!(vuiColorAspects == mBitstreamColorAspects)) {
mBitstreamColorAspects = vuiColorAspects;
ColorAspects sfAspects;
C2StreamColorAspectsInfo::input codedAspects = {0u};
ColorUtils::convertIsoColorAspectsToCodecAspects(
vuiColorAspects.primaries, vuiColorAspects.transfer, vuiColorAspects.coeffs,
vuiColorAspects.fullRange, sfAspects);
if (!C2Mapper::map(sfAspects.mPrimaries, &codedAspects.primaries)) {
codedAspects.primaries = C2Color::PRIMARIES_UNSPECIFIED;
}
if (!C2Mapper::map(sfAspects.mRange, &codedAspects.range)) {
codedAspects.range = C2Color::RANGE_UNSPECIFIED;
}
if (!C2Mapper::map(sfAspects.mMatrixCoeffs, &codedAspects.matrix)) {
codedAspects.matrix = C2Color::MATRIX_UNSPECIFIED;
}
if (!C2Mapper::map(sfAspects.mTransfer, &codedAspects.transfer)) {
codedAspects.transfer = C2Color::TRANSFER_UNSPECIFIED;
}
std::vector<std::unique_ptr<C2SettingResult>> failures;
mIntf->config({&codedAspects}, C2_MAY_BLOCK, &failures);
}
}
void C2SoftDav1dDec::setError(const std::unique_ptr<C2Work>& work, c2_status_t error) {
mSignalledError = true;
work->result = error;
work->workletsProcessed = 1u;
}
bool C2SoftDav1dDec::allocTmpFrameBuffer(size_t size) {
if (size > mTmpFrameBufferSize) {
mTmpFrameBuffer = std::make_unique<uint16_t[]>(size);
if (mTmpFrameBuffer == nullptr) {
mTmpFrameBufferSize = 0;
return false;
}
mTmpFrameBufferSize = size;
}
return true;
}
bool C2SoftDav1dDec::outputBuffer(const std::shared_ptr<C2BlockPool>& pool,
const std::unique_ptr<C2Work>& work) {
if (!(work && pool)) return false;
if (mDav1dCtx == nullptr) return false;
// Get a decoded picture from dav1d if it is enabled.
Dav1dPicture img;
memset(&img, 0, sizeof(img));
int res = 0;
if (mDecodedPictures.size() > 0) {
img = mDecodedPictures.front();
mDecodedPictures.pop_front();
// ALOGD("Got a picture(out_frameIndex=%ld,timestamp=%ld) from the deque for
// outputBuffer.",img.m.timestamp,img.m.timestamp);
} else {
res = dav1d_get_picture(mDav1dCtx, &img);
if (res == 0) {
// ALOGD("Got a picture(out_frameIndex=%ld,timestamp=%ld) from dav1d for
// outputBuffer.",img.m.timestamp,img.m.timestamp);
} else {
ALOGE("failed to get a picture from dav1d for outputBuffer.");
}
}
if (res == DAV1D_ERR(EAGAIN)) {
ALOGD("Not enough data to output a picture.");
return false;
}
if (res != 0) {
ALOGE("The AV1 decoder failed to get a picture (res=%s).", strerror(DAV1D_ERR(res)));
return false;
}
const int width = img.p.w;
const int height = img.p.h;
if (width != mWidth || height != mHeight) {
mWidth = width;
mHeight = height;
C2StreamPictureSizeInfo::output size(0u, mWidth, mHeight);
std::vector<std::unique_ptr<C2SettingResult>> failures;
c2_status_t err = mIntf->config({&size}, C2_MAY_BLOCK, &failures);
if (err == C2_OK) {
work->worklets.front()->output.configUpdate.push_back(C2Param::Copy(size));
} else {
ALOGE("Config update size failed");
mSignalledError = true;
work->result = C2_CORRUPTED;
work->workletsProcessed = 1u;
return false;
}
}
getVuiParams(&img);
getHDRStaticParams(&img, work);
getHDR10PlusInfoData(&img, work);
// out_frameIndex that the decoded picture returns from dav1d.
int64_t out_frameIndex = img.m.timestamp;
const bool isMonochrome = img.p.layout == DAV1D_PIXEL_LAYOUT_I400;
int bitdepth = img.p.bpc;
std::shared_ptr<C2GraphicBlock> block;
uint32_t format = HAL_PIXEL_FORMAT_YV12;
std::shared_ptr<C2StreamColorAspectsInfo::output> codedColorAspects;
if (bitdepth == 10 && mPixelFormatInfo->value != HAL_PIXEL_FORMAT_YCBCR_420_888) {
IntfImpl::Lock lock = mIntf->lock();
codedColorAspects = mIntf->getColorAspects_l();
bool allowRGBA1010102 = false;
if (codedColorAspects->primaries == C2Color::PRIMARIES_BT2020 &&
codedColorAspects->matrix == C2Color::MATRIX_BT2020 &&
codedColorAspects->transfer == C2Color::TRANSFER_ST2084) {
allowRGBA1010102 = true;
}
format = getHalPixelFormatForBitDepth10(allowRGBA1010102);
}
if (mHalPixelFormat != format) {
C2StreamPixelFormatInfo::output pixelFormat(0u, format);
std::vector<std::unique_ptr<C2SettingResult>> failures;
c2_status_t err = mIntf->config({&pixelFormat}, C2_MAY_BLOCK, &failures);
if (err == C2_OK) {
work->worklets.front()->output.configUpdate.push_back(C2Param::Copy(pixelFormat));
} else {
ALOGE("Config update pixelFormat failed");
mSignalledError = true;
work->workletsProcessed = 1u;
work->result = C2_CORRUPTED;
return UNKNOWN_ERROR;
}
mHalPixelFormat = format;
}
C2MemoryUsage usage = {C2MemoryUsage::CPU_READ, C2MemoryUsage::CPU_WRITE};
// We always create a graphic block that is width aligned to 16 and height
// aligned to 2. We set the correct "crop" value of the image in the call to
// createGraphicBuffer() by setting the correct image dimensions.
c2_status_t err =
pool->fetchGraphicBlock(align(mWidth, 16), align(mHeight, 2), format, usage, &block);
if (err != C2_OK) {
ALOGE("fetchGraphicBlock for Output failed with status %d", err);
work->result = err;
return false;
}
C2GraphicView wView = block->map().get();
if (wView.error()) {
ALOGE("graphic view map failed %d", wView.error());
work->result = C2_CORRUPTED;
return false;
}
// ALOGV("provided (%dx%d) required (%dx%d), out frameindex %d", block->width(),
// block->height(), mWidth, mHeight, (int)out_frameIndex);
mOutputBufferIndex = out_frameIndex;
uint8_t* dstY = const_cast<uint8_t*>(wView.data()[C2PlanarLayout::PLANE_Y]);
uint8_t* dstU = const_cast<uint8_t*>(wView.data()[C2PlanarLayout::PLANE_U]);
uint8_t* dstV = const_cast<uint8_t*>(wView.data()[C2PlanarLayout::PLANE_V]);
C2PlanarLayout layout = wView.layout();
size_t dstYStride = layout.planes[C2PlanarLayout::PLANE_Y].rowInc;
size_t dstUStride = layout.planes[C2PlanarLayout::PLANE_U].rowInc;
size_t dstVStride = layout.planes[C2PlanarLayout::PLANE_V].rowInc;
CONV_FORMAT_T convFormat;
switch (img.p.layout) {
case DAV1D_PIXEL_LAYOUT_I444:
convFormat = CONV_FORMAT_I444;
break;
case DAV1D_PIXEL_LAYOUT_I422:
convFormat = CONV_FORMAT_I422;
break;
default:
convFormat = CONV_FORMAT_I420;
break;
}
if (bitdepth == 10) {
// TODO: b/277797541 - Investigate if we can ask DAV1D to output the required format during
// decompression to avoid color conversion.
const uint16_t* srcY = (const uint16_t*)img.data[0];
const uint16_t* srcU = (const uint16_t*)img.data[1];
const uint16_t* srcV = (const uint16_t*)img.data[2];
size_t srcYStride = img.stride[0] / 2;
size_t srcUStride = img.stride[1] / 2;
size_t srcVStride = img.stride[1] / 2;
if (format == HAL_PIXEL_FORMAT_RGBA_1010102) {
if (isMonochrome) {
const size_t tmpSize = mWidth;
const bool needFill = tmpSize > mTmpFrameBufferSize;
if (!allocTmpFrameBuffer(tmpSize)) {
ALOGE("Error allocating temp conversion buffer (%zu bytes)", tmpSize);
setError(work, C2_NO_MEMORY);
return false;
}
srcU = srcV = mTmpFrameBuffer.get();
srcUStride = srcVStride = 0;
if (needFill) {
std::fill_n(mTmpFrameBuffer.get(), tmpSize, 512);
}
}
convertPlanar16ToY410OrRGBA1010102(
dstY, srcY, srcU, srcV, srcYStride, srcUStride, srcVStride,
dstYStride, mWidth, mHeight,
std::static_pointer_cast<const C2ColorAspectsStruct>(codedColorAspects),
convFormat);
} else if (format == HAL_PIXEL_FORMAT_YCBCR_P010) {
dstYStride /= 2;
dstUStride /= 2;
dstVStride /= 2;
size_t tmpSize = 0;
if ((img.p.layout == DAV1D_PIXEL_LAYOUT_I444) ||
(img.p.layout == DAV1D_PIXEL_LAYOUT_I422)) {
tmpSize = dstYStride * mHeight + dstUStride * align(mHeight, 2);
if (!allocTmpFrameBuffer(tmpSize)) {
ALOGE("Error allocating temp conversion buffer (%zu bytes)", tmpSize);
setError(work, C2_NO_MEMORY);
return false;
}
}
convertPlanar16ToP010((uint16_t*)dstY, (uint16_t*)dstU, srcY, srcU, srcV, srcYStride,
srcUStride, srcVStride, dstYStride, dstUStride, dstVStride,
mWidth, mHeight, isMonochrome, convFormat, mTmpFrameBuffer.get(),
tmpSize);
} else {
size_t tmpSize = 0;
if (img.p.layout == DAV1D_PIXEL_LAYOUT_I444) {
tmpSize = dstYStride * mHeight + dstUStride * align(mHeight, 2);
if (!allocTmpFrameBuffer(tmpSize)) {
ALOGE("Error allocating temp conversion buffer (%zu bytes)", tmpSize);
setError(work, C2_NO_MEMORY);
return false;
}
}
convertPlanar16ToYV12(dstY, dstU, dstV, srcY, srcU, srcV, srcYStride, srcUStride,
srcVStride, dstYStride, dstUStride, dstVStride, mWidth, mHeight,
isMonochrome, convFormat, mTmpFrameBuffer.get(), tmpSize);
}
// if(mOutputBufferIndex % 100 == 0)
ALOGV("output a 10bit picture %dx%d from dav1d "
"(mInputBufferIndex=%d,mOutputBufferIndex=%d,format=%d).",
mWidth, mHeight, mInputBufferIndex, mOutputBufferIndex, format);
// Dump the output buffer if dumping is enabled (debug only).
#ifdef FILE_DUMP_ENABLE
mC2SoftDav1dDump.dumpOutput<uint16_t>(srcY, srcU, srcV, srcYStride, srcUStride, srcVStride,
mWidth, mHeight);
#endif
} else {
const uint8_t* srcY = (const uint8_t*)img.data[0];
const uint8_t* srcU = (const uint8_t*)img.data[1];
const uint8_t* srcV = (const uint8_t*)img.data[2];
size_t srcYStride = img.stride[0];
size_t srcUStride = img.stride[1];
size_t srcVStride = img.stride[1];
// if(mOutputBufferIndex % 100 == 0)
ALOGV("output a 8bit picture %dx%d from dav1d "
"(mInputBufferIndex=%d,mOutputBufferIndex=%d,format=%d).",
mWidth, mHeight, mInputBufferIndex, mOutputBufferIndex, format);
// Dump the output buffer is dumping is enabled (debug only)
#ifdef FILE_DUMP_ENABLE
mC2SoftDav1dDump.dumpOutput<uint8_t>(srcY, srcU, srcV, srcYStride, srcUStride, srcVStride,
mWidth, mHeight);
#endif
convertPlanar8ToYV12(dstY, dstU, dstV, srcY, srcU, srcV, srcYStride, srcUStride, srcVStride,
dstYStride, dstUStride, dstVStride, mWidth, mHeight, isMonochrome,
convFormat);
}
dav1d_picture_unref(&img);
finishWork(out_frameIndex, work, std::move(block));
block = nullptr;
return true;
}
c2_status_t C2SoftDav1dDec::drainInternal(uint32_t drainMode,
const std::shared_ptr<C2BlockPool>& pool,
const std::unique_ptr<C2Work>& work) {
if (drainMode == NO_DRAIN) {
ALOGW("drain with NO_DRAIN: no-op");
return C2_OK;
}
if (drainMode == DRAIN_CHAIN) {
ALOGW("DRAIN_CHAIN not supported");
return C2_OMITTED;
}
while (outputBuffer(pool, work)) {
}
if (drainMode == DRAIN_COMPONENT_WITH_EOS && work && work->workletsProcessed == 0u) {
fillEmptyWork(work);
}
return C2_OK;
}
c2_status_t C2SoftDav1dDec::drain(uint32_t drainMode, const std::shared_ptr<C2BlockPool>& pool) {
return drainInternal(drainMode, pool, nullptr);
}
class C2SoftDav1dFactory : public C2ComponentFactory {
public:
C2SoftDav1dFactory()
: mHelper(std::static_pointer_cast<C2ReflectorHelper>(
GetCodec2PlatformComponentStore()->getParamReflector())) {}
virtual c2_status_t createComponent(c2_node_id_t id,
std::shared_ptr<C2Component>* const component,
std::function<void(C2Component*)> deleter) override {
*component = std::shared_ptr<C2Component>(
new C2SoftDav1dDec(COMPONENT_NAME, id,
std::make_shared<C2SoftDav1dDec::IntfImpl>(mHelper)),
deleter);
return C2_OK;
}
virtual c2_status_t createInterface(
c2_node_id_t id, std::shared_ptr<C2ComponentInterface>* const interface,
std::function<void(C2ComponentInterface*)> deleter) override {
*interface = std::shared_ptr<C2ComponentInterface>(
new SimpleInterface<C2SoftDav1dDec::IntfImpl>(
COMPONENT_NAME, id, std::make_shared<C2SoftDav1dDec::IntfImpl>(mHelper)),
deleter);
return C2_OK;
}
virtual ~C2SoftDav1dFactory() override = default;
private:
std::shared_ptr<C2ReflectorHelper> mHelper;
};
} // namespace android
__attribute__((cfi_canonical_jump_table)) extern "C" ::C2ComponentFactory* CreateCodec2Factory() {
ALOGV("in %s", __func__);
return new ::android::C2SoftDav1dFactory();
}
__attribute__((cfi_canonical_jump_table)) extern "C" void DestroyCodec2Factory(
::C2ComponentFactory* factory) {
ALOGV("in %s", __func__);
delete factory;
}