blob: 721a12ae2ec9202cd139c02c599dc0d85478f76c [file] [log] [blame]
/*
* Copyright (C) 2012 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
//#define LOG_NDEBUG 0
#define LOG_TAG "C2SoftAacEnc"
#include <utils/Log.h>
#include <inttypes.h>
#include <C2PlatformSupport.h>
#include <SimpleC2Interface.h>
#include <media/stagefright/foundation/MediaDefs.h>
#include <media/stagefright/foundation/hexdump.h>
#include "C2SoftAacEnc.h"
namespace android {
namespace {
constexpr char COMPONENT_NAME[] = "c2.android.aac.encoder";
} // namespace
class C2SoftAacEnc::IntfImpl : public SimpleInterface<void>::BaseParams {
public:
explicit IntfImpl(const std::shared_ptr<C2ReflectorHelper> &helper)
: SimpleInterface<void>::BaseParams(
helper,
COMPONENT_NAME,
C2Component::KIND_ENCODER,
C2Component::DOMAIN_AUDIO,
MEDIA_MIMETYPE_AUDIO_AAC) {
noPrivateBuffers();
noInputReferences();
noOutputReferences();
noInputLatency();
noTimeStretch();
setDerivedInstance(this);
addParameter(
DefineParam(mAttrib, C2_PARAMKEY_COMPONENT_ATTRIBUTES)
.withConstValue(new C2ComponentAttributesSetting(
C2Component::ATTRIB_IS_TEMPORAL))
.build());
addParameter(
DefineParam(mSampleRate, C2_PARAMKEY_SAMPLE_RATE)
.withDefault(new C2StreamSampleRateInfo::input(0u, 44100))
.withFields({C2F(mSampleRate, value).oneOf({
8000, 11025, 12000, 16000, 22050, 24000, 32000, 44100, 48000
})})
.withSetter((Setter<decltype(*mSampleRate)>::StrictValueWithNoDeps))
.build());
addParameter(
DefineParam(mChannelCount, C2_PARAMKEY_CHANNEL_COUNT)
.withDefault(new C2StreamChannelCountInfo::input(0u, 1))
.withFields({C2F(mChannelCount, value).inRange(1, kMaxChannelCount)})
.withSetter(Setter<decltype(*mChannelCount)>::StrictValueWithNoDeps)
.build());
addParameter(
DefineParam(mBitrate, C2_PARAMKEY_BITRATE)
.withDefault(new C2StreamBitrateInfo::output(0u, 64000))
.withFields({C2F(mBitrate, value).inRange(8000, 960000)})
.withSetter(Setter<decltype(*mBitrate)>::NonStrictValueWithNoDeps)
.build());
addParameter(
DefineParam(mInputMaxBufSize, C2_PARAMKEY_INPUT_MAX_BUFFER_SIZE)
.withDefault(new C2StreamMaxBufferSizeInfo::input(0u, 8192))
.calculatedAs(MaxBufSizeCalculator, mChannelCount)
.build());
addParameter(
DefineParam(mProfileLevel, C2_PARAMKEY_PROFILE_LEVEL)
.withDefault(new C2StreamProfileLevelInfo::output(0u,
C2Config::PROFILE_AAC_LC, C2Config::LEVEL_UNUSED))
.withFields({
C2F(mProfileLevel, profile).oneOf({
C2Config::PROFILE_AAC_LC,
C2Config::PROFILE_AAC_HE,
C2Config::PROFILE_AAC_HE_PS,
C2Config::PROFILE_AAC_LD,
C2Config::PROFILE_AAC_ELD}),
C2F(mProfileLevel, level).oneOf({
C2Config::LEVEL_UNUSED
})
})
.withSetter(ProfileLevelSetter)
.build());
addParameter(
DefineParam(mSBRMode, C2_PARAMKEY_AAC_SBR_MODE)
.withDefault(new C2StreamAacSbrModeTuning::input(0u, AAC_SBR_AUTO))
.withFields({C2F(mSBRMode, value).oneOf({
C2Config::AAC_SBR_OFF,
C2Config::AAC_SBR_SINGLE_RATE,
C2Config::AAC_SBR_DUAL_RATE,
C2Config::AAC_SBR_AUTO })})
.withSetter(Setter<decltype(*mSBRMode)>::NonStrictValueWithNoDeps)
.build());
}
uint32_t getSampleRate() const { return mSampleRate->value; }
uint32_t getChannelCount() const { return mChannelCount->value; }
uint32_t getBitrate() const { return mBitrate->value; }
uint32_t getSBRMode() const { return mSBRMode->value; }
uint32_t getProfile() const { return mProfileLevel->profile; }
static C2R ProfileLevelSetter(bool mayBlock, C2P<C2StreamProfileLevelInfo::output> &me) {
(void)mayBlock;
(void)me; // TODO: validate
return C2R::Ok();
}
static C2R MaxBufSizeCalculator(
bool mayBlock,
C2P<C2StreamMaxBufferSizeInfo::input> &me,
const C2P<C2StreamChannelCountInfo::input> &channelCount) {
(void)mayBlock;
me.set().value = 1024 * sizeof(short) * channelCount.v.value;
return C2R::Ok();
}
private:
std::shared_ptr<C2StreamSampleRateInfo::input> mSampleRate;
std::shared_ptr<C2StreamChannelCountInfo::input> mChannelCount;
std::shared_ptr<C2StreamBitrateInfo::output> mBitrate;
std::shared_ptr<C2StreamMaxBufferSizeInfo::input> mInputMaxBufSize;
std::shared_ptr<C2StreamProfileLevelInfo::output> mProfileLevel;
std::shared_ptr<C2StreamAacSbrModeTuning::input> mSBRMode;
};
C2SoftAacEnc::C2SoftAacEnc(
const char *name,
c2_node_id_t id,
const std::shared_ptr<IntfImpl> &intfImpl)
: SimpleC2Component(std::make_shared<SimpleInterface<IntfImpl>>(name, id, intfImpl)),
mIntf(intfImpl),
mAACEncoder(nullptr),
mNumBytesPerInputFrame(0u),
mOutBufferSize(0u),
mSentCodecSpecificData(false),
mInputSize(0),
mSignalledError(false),
mOutIndex(0u),
mRemainderLen(0u) {
}
C2SoftAacEnc::~C2SoftAacEnc() {
onReset();
}
c2_status_t C2SoftAacEnc::onInit() {
status_t err = initEncoder();
return err == OK ? C2_OK : C2_CORRUPTED;
}
status_t C2SoftAacEnc::initEncoder() {
if (AACENC_OK != aacEncOpen(&mAACEncoder, 0, 0)) {
ALOGE("Failed to init AAC encoder");
return UNKNOWN_ERROR;
}
return setAudioParams();
}
c2_status_t C2SoftAacEnc::onStop() {
mSentCodecSpecificData = false;
mInputSize = 0u;
mNextFrameTimestampUs.reset();
mLastFrameEndTimestampUs.reset();
mSignalledError = false;
mRemainderLen = 0;
return C2_OK;
}
void C2SoftAacEnc::onReset() {
(void)onStop();
aacEncClose(&mAACEncoder);
}
void C2SoftAacEnc::onRelease() {
// no-op
}
c2_status_t C2SoftAacEnc::onFlush_sm() {
if (mAACEncoder != nullptr) {
/* encoder's internal input buffer needs to be reset during flush */
if (AACENC_OK != aacEncoder_SetParam(mAACEncoder, AACENC_CONTROL_STATE, AACENC_INIT_ALL)) {
ALOGE("Failed to reset AAC encoder");
}
}
mSentCodecSpecificData = false;
mInputSize = 0u;
mNextFrameTimestampUs.reset();
mLastFrameEndTimestampUs.reset();
mRemainderLen = 0;
return C2_OK;
}
static CHANNEL_MODE getChannelMode(uint32_t nChannels) {
CHANNEL_MODE chMode = MODE_INVALID;
switch (nChannels) {
case 1: chMode = MODE_1; break;
case 2: chMode = MODE_2; break;
case 3: chMode = MODE_1_2; break;
case 4: chMode = MODE_1_2_1; break;
case 5: chMode = MODE_1_2_2; break;
case 6: chMode = MODE_1_2_2_1; break;
default: chMode = MODE_INVALID;
}
return chMode;
}
static AUDIO_OBJECT_TYPE getAOTFromProfile(uint32_t profile) {
if (profile == C2Config::PROFILE_AAC_LC) {
return AOT_AAC_LC;
} else if (profile == C2Config::PROFILE_AAC_HE) {
return AOT_SBR;
} else if (profile == C2Config::PROFILE_AAC_HE_PS) {
return AOT_PS;
} else if (profile == C2Config::PROFILE_AAC_LD) {
return AOT_ER_AAC_LD;
} else if (profile == C2Config::PROFILE_AAC_ELD) {
return AOT_ER_AAC_ELD;
} else {
ALOGW("Unsupported AAC profile - defaulting to AAC-LC");
return AOT_AAC_LC;
}
}
status_t C2SoftAacEnc::setAudioParams() {
// We call this whenever sample rate, number of channels, bitrate or SBR mode change
// in reponse to setParameter calls.
int32_t sbrRatio = 0;
uint32_t sbrMode = mIntf->getSBRMode();
if (sbrMode == AAC_SBR_SINGLE_RATE) sbrRatio = 1;
else if (sbrMode == AAC_SBR_DUAL_RATE) sbrRatio = 2;
ALOGV("setAudioParams: %u Hz, %u channels, %u bps, %i sbr mode, %i sbr ratio",
mIntf->getSampleRate(), mIntf->getChannelCount(), mIntf->getBitrate(),
sbrMode, sbrRatio);
uint32_t aacProfile = mIntf->getProfile();
if (AACENC_OK != aacEncoder_SetParam(mAACEncoder, AACENC_AOT, getAOTFromProfile(aacProfile))) {
ALOGE("Failed to set AAC encoder parameters");
return UNKNOWN_ERROR;
}
if (AACENC_OK != aacEncoder_SetParam(mAACEncoder, AACENC_SAMPLERATE, mIntf->getSampleRate())) {
ALOGE("Failed to set AAC encoder parameters");
return UNKNOWN_ERROR;
}
if (AACENC_OK != aacEncoder_SetParam(mAACEncoder, AACENC_BITRATE, mIntf->getBitrate())) {
ALOGE("Failed to set AAC encoder parameters");
return UNKNOWN_ERROR;
}
if (AACENC_OK != aacEncoder_SetParam(mAACEncoder, AACENC_CHANNELMODE,
getChannelMode(mIntf->getChannelCount()))) {
ALOGE("Failed to set AAC encoder parameters");
return UNKNOWN_ERROR;
}
if (AACENC_OK != aacEncoder_SetParam(mAACEncoder, AACENC_TRANSMUX, TT_MP4_RAW)) {
ALOGE("Failed to set AAC encoder parameters");
return UNKNOWN_ERROR;
}
if (sbrMode != C2Config::AAC_SBR_AUTO && aacProfile == C2Config::PROFILE_AAC_ELD) {
int aacSbrMode = sbrMode != C2Config::AAC_SBR_OFF;
if (AACENC_OK != aacEncoder_SetParam(mAACEncoder, AACENC_SBR_MODE, aacSbrMode)) {
ALOGE("Failed to set AAC encoder parameters");
return UNKNOWN_ERROR;
}
}
/* SBR ratio parameter configurations:
0: Default configuration wherein SBR ratio is configured depending on audio object type by
the FDK.
1: Downsampled SBR (default for ELD)
2: Dualrate SBR (default for HE-AAC)
*/
if (AACENC_OK != aacEncoder_SetParam(mAACEncoder, AACENC_SBR_RATIO, sbrRatio)) {
ALOGE("Failed to set AAC encoder parameters");
return UNKNOWN_ERROR;
}
return OK;
}
static void MaybeLogTimestampWarning(
long long lastFrameEndTimestampUs, long long inputTimestampUs) {
using Clock = std::chrono::steady_clock;
thread_local Clock::time_point sLastLogTimestamp{};
thread_local int32_t sOverlapCount = -1;
if (Clock::now() - sLastLogTimestamp > std::chrono::minutes(1) || sOverlapCount < 0) {
AString countMessage = "";
if (sOverlapCount > 0) {
countMessage = AStringPrintf(
"(%d overlapping timestamp detected since last log)", sOverlapCount);
}
ALOGI("Correcting overlapping timestamp: last frame ended at %lldus but "
"current frame is starting at %lldus. Using the last frame's end timestamp %s",
lastFrameEndTimestampUs, inputTimestampUs, countMessage.c_str());
sLastLogTimestamp = Clock::now();
sOverlapCount = 0;
} else {
ALOGV("Correcting overlapping timestamp: last frame ended at %lldus but "
"current frame is starting at %lldus. Using the last frame's end timestamp",
lastFrameEndTimestampUs, inputTimestampUs);
++sOverlapCount;
}
}
void C2SoftAacEnc::process(
const std::unique_ptr<C2Work> &work,
const std::shared_ptr<C2BlockPool> &pool) {
// Initialize output work
work->result = C2_OK;
work->workletsProcessed = 1u;
work->worklets.front()->output.flags = work->input.flags;
if (mSignalledError) {
return;
}
bool eos = (work->input.flags & C2FrameData::FLAG_END_OF_STREAM) != 0;
uint32_t sampleRate = mIntf->getSampleRate();
uint32_t channelCount = mIntf->getChannelCount();
if (!mSentCodecSpecificData) {
// The very first thing we want to output is the codec specific
// data.
if (AACENC_OK != aacEncEncode(mAACEncoder, nullptr, nullptr, nullptr, nullptr)) {
ALOGE("Unable to initialize encoder for profile / sample-rate / bit-rate / channels");
mSignalledError = true;
work->result = C2_CORRUPTED;
return;
}
uint32_t bitrate = mIntf->getBitrate();
uint32_t actualBitRate = aacEncoder_GetParam(mAACEncoder, AACENC_BITRATE);
if (bitrate != actualBitRate) {
ALOGW("Requested bitrate %u unsupported, using %u", bitrate, actualBitRate);
}
AACENC_InfoStruct encInfo;
if (AACENC_OK != aacEncInfo(mAACEncoder, &encInfo)) {
ALOGE("Failed to get AAC encoder info");
mSignalledError = true;
work->result = C2_CORRUPTED;
return;
}
std::unique_ptr<C2StreamInitDataInfo::output> csd =
C2StreamInitDataInfo::output::AllocUnique(encInfo.confSize, 0u);
if (!csd) {
ALOGE("CSD allocation failed");
mSignalledError = true;
work->result = C2_NO_MEMORY;
return;
}
memcpy(csd->m.value, encInfo.confBuf, encInfo.confSize);
ALOGV("put csd");
#if defined(LOG_NDEBUG) && !LOG_NDEBUG
hexdump(csd->m.value, csd->flexCount());
#endif
work->worklets.front()->output.configUpdate.push_back(std::move(csd));
mOutBufferSize = encInfo.maxOutBufBytes;
mNumBytesPerInputFrame = encInfo.frameLength * channelCount * sizeof(int16_t);
mSentCodecSpecificData = true;
}
uint8_t temp[1];
C2ReadView view = mDummyReadView;
const uint8_t *data = temp;
size_t capacity = 0u;
if (!work->input.buffers.empty()) {
view = work->input.buffers[0]->data().linearBlocks().front().map().get();
data = view.data();
capacity = view.capacity();
}
c2_cntr64_t inputTimestampUs = work->input.ordinal.timestamp;
if (inputTimestampUs < mLastFrameEndTimestampUs.value_or(inputTimestampUs)) {
MaybeLogTimestampWarning(mLastFrameEndTimestampUs->peekll(), inputTimestampUs.peekll());
inputTimestampUs = *mLastFrameEndTimestampUs;
}
if (capacity > 0) {
if (!mNextFrameTimestampUs) {
mNextFrameTimestampUs = work->input.ordinal.timestamp;
}
mLastFrameEndTimestampUs = inputTimestampUs
+ (capacity / sizeof(int16_t) * 1000000ll / channelCount / sampleRate);
}
size_t numFrames =
(mRemainderLen + capacity + mInputSize + (eos ? mNumBytesPerInputFrame - 1 : 0))
/ mNumBytesPerInputFrame;
ALOGV("capacity = %zu; mInputSize = %zu; numFrames = %zu "
"mNumBytesPerInputFrame = %u inputTS = %lld remaining = %zu",
capacity, mInputSize, numFrames, mNumBytesPerInputFrame, inputTimestampUs.peekll(),
mRemainderLen);
std::shared_ptr<C2LinearBlock> block;
std::unique_ptr<C2WriteView> wView;
uint8_t *outPtr = temp;
size_t outAvailable = 0u;
uint64_t inputIndex = work->input.ordinal.frameIndex.peeku();
size_t bytesPerSample = channelCount * sizeof(int16_t);
AACENC_InArgs inargs;
AACENC_OutArgs outargs;
memset(&inargs, 0, sizeof(inargs));
memset(&outargs, 0, sizeof(outargs));
inargs.numInSamples = capacity / sizeof(int16_t);
void* inBuffer[] = { (unsigned char *)data };
INT inBufferIds[] = { IN_AUDIO_DATA };
INT inBufferSize[] = { (INT)capacity };
INT inBufferElSize[] = { sizeof(int16_t) };
AACENC_BufDesc inBufDesc;
inBufDesc.numBufs = sizeof(inBuffer) / sizeof(void*);
inBufDesc.bufs = (void**)&inBuffer;
inBufDesc.bufferIdentifiers = inBufferIds;
inBufDesc.bufSizes = inBufferSize;
inBufDesc.bufElSizes = inBufferElSize;
void* outBuffer[] = { outPtr };
INT outBufferIds[] = { OUT_BITSTREAM_DATA };
INT outBufferSize[] = { 0 };
INT outBufferElSize[] = { sizeof(UCHAR) };
AACENC_BufDesc outBufDesc;
outBufDesc.numBufs = sizeof(outBuffer) / sizeof(void*);
outBufDesc.bufs = (void**)&outBuffer;
outBufDesc.bufferIdentifiers = outBufferIds;
outBufDesc.bufSizes = outBufferSize;
outBufDesc.bufElSizes = outBufferElSize;
AACENC_ERROR encoderErr = AACENC_OK;
class FillWork {
public:
FillWork(uint32_t flags, C2WorkOrdinalStruct ordinal,
const std::shared_ptr<C2Buffer> &buffer)
: mFlags(flags), mOrdinal(ordinal), mBuffer(buffer) {
}
~FillWork() = default;
void operator()(const std::unique_ptr<C2Work> &work) {
work->worklets.front()->output.flags = (C2FrameData::flags_t)mFlags;
work->worklets.front()->output.buffers.clear();
work->worklets.front()->output.ordinal = mOrdinal;
work->workletsProcessed = 1u;
work->result = C2_OK;
if (mBuffer) {
work->worklets.front()->output.buffers.push_back(mBuffer);
}
ALOGV("timestamp = %lld, index = %lld, w/%s buffer",
mOrdinal.timestamp.peekll(),
mOrdinal.frameIndex.peekll(),
mBuffer ? "" : "o");
}
private:
const uint32_t mFlags;
const C2WorkOrdinalStruct mOrdinal;
const std::shared_ptr<C2Buffer> mBuffer;
};
struct OutputBuffer {
std::shared_ptr<C2Buffer> buffer;
c2_cntr64_t timestampUs;
};
std::list<OutputBuffer> outputBuffers;
if (mRemainderLen > 0) {
size_t offset = 0;
for (; mRemainderLen < bytesPerSample && offset < capacity; ++offset) {
mRemainder[mRemainderLen++] = data[offset];
}
data += offset;
capacity -= offset;
if (mRemainderLen == bytesPerSample) {
inBuffer[0] = mRemainder;
inBufferSize[0] = bytesPerSample;
inargs.numInSamples = channelCount;
mRemainderLen = 0;
ALOGV("Processing remainder");
} else {
// We have exhausted the input already
inargs.numInSamples = 0;
}
}
while (encoderErr == AACENC_OK && inargs.numInSamples >= channelCount) {
if (numFrames && !block) {
C2MemoryUsage usage = { C2MemoryUsage::CPU_READ, C2MemoryUsage::CPU_WRITE };
// TODO: error handling, proper usage, etc.
c2_status_t err = pool->fetchLinearBlock(mOutBufferSize, usage, &block);
if (err != C2_OK) {
ALOGE("fetchLinearBlock failed : err = %d", err);
work->result = C2_NO_MEMORY;
return;
}
wView.reset(new C2WriteView(block->map().get()));
outPtr = wView->data();
outAvailable = wView->size();
--numFrames;
}
memset(&outargs, 0, sizeof(outargs));
outBuffer[0] = outPtr;
outBufferSize[0] = outAvailable;
encoderErr = aacEncEncode(mAACEncoder,
&inBufDesc,
&outBufDesc,
&inargs,
&outargs);
if (encoderErr == AACENC_OK) {
if (outargs.numOutBytes > 0) {
mInputSize = 0;
int consumed = (capacity / sizeof(int16_t)) - inargs.numInSamples
+ outargs.numInSamples;
ALOGV("consumed = %d, capacity = %zu, inSamples = %d, outSamples = %d",
consumed, capacity, inargs.numInSamples, outargs.numInSamples);
c2_cntr64_t currentFrameTimestampUs = *mNextFrameTimestampUs;
mNextFrameTimestampUs = inputTimestampUs
+ (consumed * 1000000ll / channelCount / sampleRate);
std::shared_ptr<C2Buffer> buffer = createLinearBuffer(block, 0, outargs.numOutBytes);
#if 0
hexdump(outPtr, std::min(outargs.numOutBytes, 256));
#endif
outPtr = temp;
outAvailable = 0;
block.reset();
outputBuffers.push_back({buffer, currentFrameTimestampUs});
} else {
mInputSize += outargs.numInSamples * sizeof(int16_t);
}
if (inBuffer[0] == mRemainder) {
inBuffer[0] = const_cast<uint8_t *>(data);
inBufferSize[0] = capacity;
inargs.numInSamples = capacity / sizeof(int16_t);
} else if (outargs.numInSamples > 0) {
inBuffer[0] = (int16_t *)inBuffer[0] + outargs.numInSamples;
inBufferSize[0] -= outargs.numInSamples * sizeof(int16_t);
inargs.numInSamples -= outargs.numInSamples;
}
} else {
// In case of error in encode call, discard remaining input bytes.
inBuffer[0] = nullptr;
inBufferSize[0] = 0;
inargs.numInSamples = 0;
}
ALOGV("encoderErr = %d mInputSize = %zu "
"inargs.numInSamples = %d, mNextFrameTimestampUs = %lld",
encoderErr, mInputSize, inargs.numInSamples, mNextFrameTimestampUs->peekll());
}
if (eos && inBufferSize[0] > 0) {
if (numFrames && !block) {
C2MemoryUsage usage = { C2MemoryUsage::CPU_READ, C2MemoryUsage::CPU_WRITE };
// TODO: error handling, proper usage, etc.
c2_status_t err = pool->fetchLinearBlock(mOutBufferSize, usage, &block);
if (err != C2_OK) {
ALOGE("fetchLinearBlock failed : err = %d", err);
work->result = C2_NO_MEMORY;
return;
}
wView.reset(new C2WriteView(block->map().get()));
outPtr = wView->data();
outAvailable = wView->size();
--numFrames;
}
memset(&outargs, 0, sizeof(outargs));
outBuffer[0] = outPtr;
outBufferSize[0] = outAvailable;
// Flush
inargs.numInSamples = -1;
(void)aacEncEncode(mAACEncoder,
&inBufDesc,
&outBufDesc,
&inargs,
&outargs);
// after flush, discard remaining input bytes.
inBuffer[0] = nullptr;
inBufferSize[0] = 0;
}
if (inBufferSize[0] > 0) {
if (inBufferSize[0] > kRemainderBufSize) {
ALOGE("Remaining bytes %d greater than remainder buffer size %zu", inBufferSize[0],
kRemainderBufSize);
work->result = C2_CORRUPTED;
return;
}
for (size_t i = 0; i < inBufferSize[0]; ++i) {
mRemainder[i] = static_cast<uint8_t *>(inBuffer[0])[i];
}
mRemainderLen = inBufferSize[0];
}
while (outputBuffers.size() > 1) {
const OutputBuffer& front = outputBuffers.front();
C2WorkOrdinalStruct ordinal = work->input.ordinal;
ordinal.frameIndex = mOutIndex++;
ordinal.timestamp = front.timestampUs;
cloneAndSend(
inputIndex,
work,
FillWork(C2FrameData::FLAG_INCOMPLETE, ordinal, front.buffer));
outputBuffers.pop_front();
}
std::shared_ptr<C2Buffer> buffer;
C2WorkOrdinalStruct ordinal = work->input.ordinal;
ordinal.frameIndex = mOutIndex++;
if (!outputBuffers.empty()) {
ordinal.timestamp = outputBuffers.front().timestampUs;
buffer = outputBuffers.front().buffer;
}
// Mark the end of frame
FillWork((C2FrameData::flags_t)(eos ? C2FrameData::FLAG_END_OF_STREAM : 0),
ordinal, buffer)(work);
}
c2_status_t C2SoftAacEnc::drain(
uint32_t drainMode,
const std::shared_ptr<C2BlockPool> &pool) {
switch (drainMode) {
case DRAIN_COMPONENT_NO_EOS:
[[fallthrough]];
case NO_DRAIN:
// no-op
return C2_OK;
case DRAIN_CHAIN:
return C2_OMITTED;
case DRAIN_COMPONENT_WITH_EOS:
break;
default:
return C2_BAD_VALUE;
}
(void)pool;
mSentCodecSpecificData = false;
mInputSize = 0u;
mNextFrameTimestampUs.reset();
mLastFrameEndTimestampUs.reset();
// TODO: we don't have any pending work at this time to drain.
return C2_OK;
}
class C2SoftAacEncFactory : public C2ComponentFactory {
public:
C2SoftAacEncFactory() : mHelper(std::static_pointer_cast<C2ReflectorHelper>(
GetCodec2PlatformComponentStore()->getParamReflector())) {
}
virtual c2_status_t createComponent(
c2_node_id_t id,
std::shared_ptr<C2Component>* const component,
std::function<void(C2Component*)> deleter) override {
*component = std::shared_ptr<C2Component>(
new C2SoftAacEnc(COMPONENT_NAME,
id,
std::make_shared<C2SoftAacEnc::IntfImpl>(mHelper)),
deleter);
return C2_OK;
}
virtual c2_status_t createInterface(
c2_node_id_t id, std::shared_ptr<C2ComponentInterface>* const interface,
std::function<void(C2ComponentInterface*)> deleter) override {
*interface = std::shared_ptr<C2ComponentInterface>(
new SimpleInterface<C2SoftAacEnc::IntfImpl>(
COMPONENT_NAME, id, std::make_shared<C2SoftAacEnc::IntfImpl>(mHelper)),
deleter);
return C2_OK;
}
virtual ~C2SoftAacEncFactory() override = default;
private:
std::shared_ptr<C2ReflectorHelper> mHelper;
};
} // namespace android
__attribute__((cfi_canonical_jump_table))
extern "C" ::C2ComponentFactory* CreateCodec2Factory() {
ALOGV("in %s", __func__);
return new ::android::C2SoftAacEncFactory();
}
__attribute__((cfi_canonical_jump_table))
extern "C" void DestroyCodec2Factory(::C2ComponentFactory* factory) {
ALOGV("in %s", __func__);
delete factory;
}