| /* |
| * Copyright 2018 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| /* |
| * Test FlowGraph |
| * |
| * This file also tests a few different conversion techniques because |
| * sometimes that have caused compiler bugs. |
| */ |
| |
| #include <iostream> |
| |
| #include <gtest/gtest.h> |
| |
| #include "flowgraph/ClipToRange.h" |
| #include "flowgraph/Limiter.h" |
| #include "flowgraph/MonoBlend.h" |
| #include "flowgraph/MonoToMultiConverter.h" |
| #include "flowgraph/SourceFloat.h" |
| #include "flowgraph/RampLinear.h" |
| #include "flowgraph/SinkFloat.h" |
| #include "flowgraph/SinkI16.h" |
| #include "flowgraph/SinkI24.h" |
| #include "flowgraph/SinkI32.h" |
| #include "flowgraph/SourceI16.h" |
| #include "flowgraph/SourceI24.h" |
| |
| using namespace FLOWGRAPH_OUTER_NAMESPACE::flowgraph; |
| |
| constexpr int kBytesPerI24Packed = 3; |
| |
| constexpr int kNumSamples = 8; |
| constexpr std::array<float, kNumSamples> kInputFloat = { |
| 1.0f, 0.5f, -0.25f, -1.0f, |
| 0.0f, 53.9f, -87.2f, -1.02f}; |
| |
| // Corresponding PCM values as integers. |
| constexpr std::array<int16_t, kNumSamples> kExpectedI16 = { |
| INT16_MAX, 1 << 14, INT16_MIN / 4, INT16_MIN, |
| 0, INT16_MAX, INT16_MIN, INT16_MIN}; |
| |
| constexpr std::array<int32_t, kNumSamples> kExpectedI32 = { |
| INT32_MAX, 1 << 30, INT32_MIN / 4, INT32_MIN, |
| 0, INT32_MAX, INT32_MIN, INT32_MIN}; |
| |
| // =================================== FLOAT to I16 ============== |
| |
| // Simple test that tries to reproduce a Clang compiler bug. |
| __attribute__((noinline)) |
| void local_convert_float_to_int16(const float *input, |
| int16_t *output, |
| int count) { |
| for (int i = 0; i < count; i++) { |
| int32_t n = (int32_t) (*input++ * 32768.0f); |
| *output++ = std::min(INT16_MAX, std::max(INT16_MIN, n)); // clip |
| } |
| } |
| |
| TEST(test_flowgraph, local_convert_float_int16) { |
| std::array<int16_t, kNumSamples> output; |
| |
| // Do it inline, which will probably work even with the buggy compiler. |
| // This validates the expected data. |
| const float *in = kInputFloat.data(); |
| int16_t *out = output.data(); |
| output.fill(777); |
| for (int i = 0; i < kNumSamples; i++) { |
| int32_t n = (int32_t) (*in++ * 32768.0f); |
| *out++ = std::min(INT16_MAX, std::max(INT16_MIN, n)); // clip |
| } |
| for (int i = 0; i < kNumSamples; i++) { |
| EXPECT_EQ(kExpectedI16.at(i), output.at(i)) << ", i = " << i; |
| } |
| |
| // Convert audio signal using the function. |
| output.fill(777); |
| local_convert_float_to_int16(kInputFloat.data(), output.data(), kNumSamples); |
| for (int i = 0; i < kNumSamples; i++) { |
| EXPECT_EQ(kExpectedI16.at(i), output.at(i)) << ", i = " << i; |
| } |
| } |
| |
| TEST(test_flowgraph, module_sinki16) { |
| static constexpr int kNumSamples = 8; |
| std::array<int16_t, kNumSamples + 10> output; // larger than input |
| |
| SourceFloat sourceFloat{1}; |
| SinkI16 sinkI16{1}; |
| |
| sourceFloat.setData(kInputFloat.data(), kNumSamples); |
| sourceFloat.output.connect(&sinkI16.input); |
| |
| output.fill(777); |
| int32_t numRead = sinkI16.read(output.data(), output.size()); |
| ASSERT_EQ(kNumSamples, numRead); |
| for (int i = 0; i < numRead; i++) { |
| EXPECT_EQ(kExpectedI16.at(i), output.at(i)) << ", i = " << i; |
| } |
| } |
| |
| // =================================== FLOAT to I32 ============== |
| // Simple test that tries to reproduce a Clang compiler bug. |
| __attribute__((noinline)) |
| static int32_t clamp32FromFloat(float f) |
| { |
| static const float scale = (float)(1UL << 31); |
| static const float limpos = 1.; |
| static const float limneg = -1.; |
| |
| if (f <= limneg) { |
| return INT32_MIN; |
| } else if (f >= limpos) { |
| return INT32_MAX; |
| } |
| f *= scale; |
| /* integer conversion is through truncation (though int to float is not). |
| * ensure that we round to nearest, ties away from 0. |
| */ |
| return f > 0 ? f + 0.5 : f - 0.5; |
| } |
| |
| void local_convert_float_to_int32(const float *input, |
| int32_t *output, |
| int count) { |
| for (int i = 0; i < count; i++) { |
| *output++ = clamp32FromFloat(*input++); |
| } |
| } |
| |
| TEST(test_flowgraph, simple_convert_float_int32) { |
| std::array<int32_t, kNumSamples> output; |
| |
| // Do it inline, which will probably work even with a buggy compiler. |
| // This validates the expected data. |
| const float *in = kInputFloat.data(); |
| output.fill(777); |
| int32_t *out = output.data(); |
| for (int i = 0; i < kNumSamples; i++) { |
| int64_t n = (int64_t) (*in++ * 2147483648.0f); |
| *out++ = (int32_t)std::min((int64_t)INT32_MAX, |
| std::max((int64_t)INT32_MIN, n)); // clip |
| } |
| for (int i = 0; i < kNumSamples; i++) { |
| EXPECT_EQ(kExpectedI32.at(i), output.at(i)) << ", i = " << i; |
| } |
| } |
| |
| TEST(test_flowgraph, local_convert_float_int32) { |
| std::array<int32_t, kNumSamples> output; |
| // Convert audio signal using the function. |
| output.fill(777); |
| local_convert_float_to_int32(kInputFloat.data(), output.data(), kNumSamples); |
| for (int i = 0; i < kNumSamples; i++) { |
| EXPECT_EQ(kExpectedI32.at(i), output.at(i)) << ", i = " << i; |
| } |
| } |
| |
| TEST(test_flowgraph, module_sinki32) { |
| std::array<int32_t, kNumSamples + 10> output; // larger than input |
| |
| SourceFloat sourceFloat{1}; |
| SinkI32 sinkI32{1}; |
| |
| sourceFloat.setData(kInputFloat.data(), kNumSamples); |
| sourceFloat.output.connect(&sinkI32.input); |
| |
| output.fill(777); |
| int32_t numRead = sinkI32.read(output.data(), output.size()); |
| ASSERT_EQ(kNumSamples, numRead); |
| for (int i = 0; i < numRead; i++) { |
| EXPECT_EQ(kExpectedI32.at(i), output.at(i)) << ", i = " << i; |
| } |
| } |
| |
| TEST(test_flowgraph, module_mono_to_stereo) { |
| static const float input[] = {1.0f, 2.0f, 3.0f}; |
| float output[100] = {}; |
| SourceFloat sourceFloat{1}; |
| MonoToMultiConverter monoToStereo{2}; |
| SinkFloat sinkFloat{2}; |
| |
| sourceFloat.setData(input, 3); |
| |
| sourceFloat.output.connect(&monoToStereo.input); |
| monoToStereo.output.connect(&sinkFloat.input); |
| |
| int32_t numRead = sinkFloat.read(output, 8); |
| ASSERT_EQ(3, numRead); |
| EXPECT_EQ(input[0], output[0]); |
| EXPECT_EQ(input[0], output[1]); |
| EXPECT_EQ(input[1], output[2]); |
| EXPECT_EQ(input[1], output[3]); |
| } |
| |
| TEST(test_flowgraph, module_ramp_linear) { |
| constexpr int singleNumOutput = 1; |
| constexpr int rampSize = 5; |
| constexpr int numOutput = 100; |
| constexpr float value = 1.0f; |
| constexpr float initialTarget = 10.0f; |
| constexpr float finalTarget = 100.0f; |
| constexpr float tolerance = 0.0001f; // arbitrary |
| float output[numOutput] = {}; |
| RampLinear rampLinear{1}; |
| SinkFloat sinkFloat{1}; |
| |
| rampLinear.input.setValue(value); |
| rampLinear.setLengthInFrames(rampSize); |
| rampLinear.output.connect(&sinkFloat.input); |
| |
| // Check that the values go to the initial target instantly. |
| rampLinear.setTarget(initialTarget); |
| int32_t singleNumRead = sinkFloat.read(output, singleNumOutput); |
| ASSERT_EQ(singleNumRead, singleNumOutput); |
| EXPECT_NEAR(value * initialTarget, output[0], tolerance); |
| |
| // Now set target and check that the linear ramp works as expected. |
| rampLinear.setTarget(finalTarget); |
| int32_t numRead = sinkFloat.read(output, numOutput); |
| const float incrementSize = (finalTarget - initialTarget) / rampSize; |
| ASSERT_EQ(numOutput, numRead); |
| |
| int i = 0; |
| for (; i < rampSize; i++) { |
| float expected = value * (initialTarget + i * incrementSize); |
| EXPECT_NEAR(expected, output[i], tolerance); |
| } |
| for (; i < numOutput; i++) { |
| float expected = value * finalTarget; |
| EXPECT_NEAR(expected, output[i], tolerance); |
| } |
| } |
| |
| // It is easiest to represent packed 24-bit data as a byte array. |
| // This test will read from input, convert to float, then write |
| // back to output as bytes. |
| TEST(test_flowgraph, module_packed_24) { |
| static const uint8_t input[] = {0x01, 0x23, 0x45, |
| 0x67, 0x89, 0xAB, |
| 0xCD, 0xEF, 0x5A}; |
| uint8_t output[99] = {}; |
| SourceI24 sourceI24{1}; |
| SinkI24 sinkI24{1}; |
| |
| int numInputFrames = sizeof(input) / kBytesPerI24Packed; |
| sourceI24.setData(input, numInputFrames); |
| sourceI24.output.connect(&sinkI24.input); |
| |
| int32_t numRead = sinkI24.read(output, sizeof(output) / kBytesPerI24Packed); |
| ASSERT_EQ(numInputFrames, numRead); |
| for (size_t i = 0; i < sizeof(input); i++) { |
| EXPECT_EQ(input[i], output[i]); |
| } |
| } |
| |
| TEST(test_flowgraph, module_clip_to_range) { |
| constexpr float myMin = -2.0f; |
| constexpr float myMax = 1.5f; |
| |
| static const float input[] = {-9.7, 0.5f, -0.25, 1.0f, 12.3}; |
| static const float expected[] = {myMin, 0.5f, -0.25, 1.0f, myMax}; |
| float output[100]; |
| SourceFloat sourceFloat{1}; |
| ClipToRange clipper{1}; |
| SinkFloat sinkFloat{1}; |
| |
| int numInputFrames = sizeof(input) / sizeof(input[0]); |
| sourceFloat.setData(input, numInputFrames); |
| |
| clipper.setMinimum(myMin); |
| clipper.setMaximum(myMax); |
| |
| sourceFloat.output.connect(&clipper.input); |
| clipper.output.connect(&sinkFloat.input); |
| |
| int numOutputFrames = sizeof(output) / sizeof(output[0]); |
| int32_t numRead = sinkFloat.read(output, numOutputFrames); |
| ASSERT_EQ(numInputFrames, numRead); |
| constexpr float tolerance = 0.000001f; // arbitrary |
| for (int i = 0; i < numRead; i++) { |
| EXPECT_NEAR(expected[i], output[i], tolerance); |
| } |
| } |
| |
| TEST(test_flowgraph, module_mono_blend) { |
| // Two channel to two channel with 3 inputs and outputs. |
| constexpr int numChannels = 2; |
| constexpr int numFrames = 3; |
| |
| static const float input[] = {-0.7, 0.5, -0.25, 1.25, 1000, 2000}; |
| static const float expected[] = {-0.1, -0.1, 0.5, 0.5, 1500, 1500}; |
| float output[100]; |
| SourceFloat sourceFloat{numChannels}; |
| MonoBlend monoBlend{numChannels}; |
| SinkFloat sinkFloat{numChannels}; |
| |
| sourceFloat.setData(input, numFrames); |
| |
| sourceFloat.output.connect(&monoBlend.input); |
| monoBlend.output.connect(&sinkFloat.input); |
| |
| int32_t numRead = sinkFloat.read(output, numFrames); |
| ASSERT_EQ(numRead, numFrames); |
| constexpr float tolerance = 0.000001f; // arbitrary |
| for (int i = 0; i < numRead; i++) { |
| EXPECT_NEAR(expected[i], output[i], tolerance); |
| } |
| } |
| |
| TEST(test_flowgraph, module_limiter) { |
| constexpr int kNumSamples = 101; |
| constexpr float kLastSample = 3.0f; |
| constexpr float kFirstSample = -kLastSample; |
| constexpr float kDeltaBetweenSamples = (kLastSample - kFirstSample) / (kNumSamples - 1); |
| constexpr float kTolerance = 0.00001f; |
| |
| float input[kNumSamples]; |
| float output[kNumSamples]; |
| SourceFloat sourceFloat{1}; |
| Limiter limiter{1}; |
| SinkFloat sinkFloat{1}; |
| |
| for (int i = 0; i < kNumSamples; i++) { |
| input[i] = kFirstSample + i * kDeltaBetweenSamples; |
| } |
| |
| const int numInputFrames = std::size(input); |
| sourceFloat.setData(input, numInputFrames); |
| |
| sourceFloat.output.connect(&limiter.input); |
| limiter.output.connect(&sinkFloat.input); |
| |
| const int numOutputFrames = std::size(output); |
| int32_t numRead = sinkFloat.read(output, numOutputFrames); |
| ASSERT_EQ(numInputFrames, numRead); |
| |
| for (int i = 0; i < numRead; i++) { |
| // limiter must be symmetric wrt 0. |
| EXPECT_NEAR(output[i], -output[kNumSamples - i - 1], kTolerance); |
| if (i > 0) { |
| EXPECT_GE(output[i], output[i - 1]); // limiter must be monotonic |
| } |
| if (input[i] == 0.f) { |
| EXPECT_EQ(0.f, output[i]); |
| } else if (input[i] > 0.0f) { |
| EXPECT_GE(output[i], 0.0f); |
| EXPECT_LE(output[i], M_SQRT2); // limiter actually limits |
| EXPECT_LE(output[i], input[i]); // a limiter, gain <= 1 |
| } else { |
| EXPECT_LE(output[i], 0.0f); |
| EXPECT_GE(output[i], -M_SQRT2); // limiter actually limits |
| EXPECT_GE(output[i], input[i]); // a limiter, gain <= 1 |
| } |
| if (-1.f <= input[i] && input[i] <= 1.f) { |
| EXPECT_EQ(input[i], output[i]); |
| } |
| } |
| } |
| |
| TEST(test_flowgraph, module_limiter_nan) { |
| constexpr int kArbitraryOutputSize = 100; |
| static const float input[] = {NAN, 0.5f, NAN, NAN, -10.0f, NAN}; |
| static const float expected[] = {0.0f, 0.5f, 0.5f, 0.5f, -M_SQRT2, -M_SQRT2}; |
| constexpr float tolerance = 0.00001f; |
| float output[kArbitraryOutputSize]; |
| SourceFloat sourceFloat{1}; |
| Limiter limiter{1}; |
| SinkFloat sinkFloat{1}; |
| |
| const int numInputFrames = std::size(input); |
| sourceFloat.setData(input, numInputFrames); |
| |
| sourceFloat.output.connect(&limiter.input); |
| limiter.output.connect(&sinkFloat.input); |
| |
| const int numOutputFrames = std::size(output); |
| int32_t numRead = sinkFloat.read(output, numOutputFrames); |
| ASSERT_EQ(numInputFrames, numRead); |
| |
| for (int i = 0; i < numRead; i++) { |
| EXPECT_NEAR(expected[i], output[i], tolerance); |
| } |
| } |