blob: f742a6d9c48e439dc3d5651467a064d911b18877 [file] [log] [blame]
/*
* Copyright (C) 2019 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "Camera3-OutputUtils"
#define ATRACE_TAG ATRACE_TAG_CAMERA
//#define LOG_NDEBUG 0
//#define LOG_NNDEBUG 0 // Per-frame verbose logging
#ifdef LOG_NNDEBUG
#define ALOGVV(...) ALOGV(__VA_ARGS__)
#else
#define ALOGVV(...) ((void)0)
#endif
// Convenience macros for transitioning to the error state
#define SET_ERR(fmt, ...) states.setErrIntf.setErrorState( \
"%s: " fmt, __FUNCTION__, \
##__VA_ARGS__)
#include <inttypes.h>
#include <utils/Log.h>
#include <utils/SortedVector.h>
#include <utils/Trace.h>
#include <android/hardware/camera2/ICameraDeviceCallbacks.h>
#include <android/hardware/camera/device/3.4/ICameraDeviceCallback.h>
#include <android/hardware/camera/device/3.5/ICameraDeviceCallback.h>
#include <android/hardware/camera/device/3.5/ICameraDeviceSession.h>
#include <camera/CameraUtils.h>
#include <camera_metadata_hidden.h>
#include "device3/Camera3OutputUtils.h"
#include "system/camera_metadata.h"
using namespace android::camera3;
using namespace android::hardware::camera;
namespace android {
namespace camera3 {
status_t fixupMonochromeTags(
CaptureOutputStates& states,
const CameraMetadata& deviceInfo,
CameraMetadata& resultMetadata) {
status_t res = OK;
if (!states.needFixupMonoChrome) {
return res;
}
// Remove tags that are not applicable to monochrome camera.
int32_t tagsToRemove[] = {
ANDROID_SENSOR_GREEN_SPLIT,
ANDROID_SENSOR_NEUTRAL_COLOR_POINT,
ANDROID_COLOR_CORRECTION_MODE,
ANDROID_COLOR_CORRECTION_TRANSFORM,
ANDROID_COLOR_CORRECTION_GAINS,
};
for (auto tag : tagsToRemove) {
res = resultMetadata.erase(tag);
if (res != OK) {
ALOGE("%s: Failed to remove tag %d for monochrome camera", __FUNCTION__, tag);
return res;
}
}
// ANDROID_SENSOR_DYNAMIC_BLACK_LEVEL
camera_metadata_entry blEntry = resultMetadata.find(ANDROID_SENSOR_DYNAMIC_BLACK_LEVEL);
for (size_t i = 1; i < blEntry.count; i++) {
blEntry.data.f[i] = blEntry.data.f[0];
}
// ANDROID_SENSOR_NOISE_PROFILE
camera_metadata_entry npEntry = resultMetadata.find(ANDROID_SENSOR_NOISE_PROFILE);
if (npEntry.count > 0 && npEntry.count % 2 == 0) {
double np[] = {npEntry.data.d[0], npEntry.data.d[1]};
res = resultMetadata.update(ANDROID_SENSOR_NOISE_PROFILE, np, 2);
if (res != OK) {
ALOGE("%s: Failed to update SENSOR_NOISE_PROFILE: %s (%d)",
__FUNCTION__, strerror(-res), res);
return res;
}
}
// ANDROID_STATISTICS_LENS_SHADING_MAP
camera_metadata_ro_entry lsSizeEntry = deviceInfo.find(ANDROID_LENS_INFO_SHADING_MAP_SIZE);
camera_metadata_entry lsEntry = resultMetadata.find(ANDROID_STATISTICS_LENS_SHADING_MAP);
if (lsSizeEntry.count == 2 && lsEntry.count > 0
&& (int32_t)lsEntry.count == 4 * lsSizeEntry.data.i32[0] * lsSizeEntry.data.i32[1]) {
for (int32_t i = 0; i < lsSizeEntry.data.i32[0] * lsSizeEntry.data.i32[1]; i++) {
lsEntry.data.f[4*i+1] = lsEntry.data.f[4*i];
lsEntry.data.f[4*i+2] = lsEntry.data.f[4*i];
lsEntry.data.f[4*i+3] = lsEntry.data.f[4*i];
}
}
// ANDROID_TONEMAP_CURVE_BLUE
// ANDROID_TONEMAP_CURVE_GREEN
// ANDROID_TONEMAP_CURVE_RED
camera_metadata_entry tcbEntry = resultMetadata.find(ANDROID_TONEMAP_CURVE_BLUE);
camera_metadata_entry tcgEntry = resultMetadata.find(ANDROID_TONEMAP_CURVE_GREEN);
camera_metadata_entry tcrEntry = resultMetadata.find(ANDROID_TONEMAP_CURVE_RED);
if (tcbEntry.count > 0
&& tcbEntry.count == tcgEntry.count
&& tcbEntry.count == tcrEntry.count) {
for (size_t i = 0; i < tcbEntry.count; i++) {
tcbEntry.data.f[i] = tcrEntry.data.f[i];
tcgEntry.data.f[i] = tcrEntry.data.f[i];
}
}
return res;
}
status_t fixupAutoframingTags(CameraMetadata& resultMetadata) {
status_t res = OK;
camera_metadata_entry autoframingEntry =
resultMetadata.find(ANDROID_CONTROL_AUTOFRAMING);
if (autoframingEntry.count == 0) {
const uint8_t defaultAutoframingEntry = ANDROID_CONTROL_AUTOFRAMING_OFF;
res = resultMetadata.update(ANDROID_CONTROL_AUTOFRAMING, &defaultAutoframingEntry, 1);
if (res != OK) {
ALOGE("%s: Failed to update ANDROID_CONTROL_AUTOFRAMING: %s (%d)",
__FUNCTION__, strerror(-res), res);
return res;
}
}
camera_metadata_entry autoframingStateEntry =
resultMetadata.find(ANDROID_CONTROL_AUTOFRAMING_STATE);
if (autoframingStateEntry.count == 0) {
const uint8_t defaultAutoframingStateEntry = ANDROID_CONTROL_AUTOFRAMING_STATE_INACTIVE;
res = resultMetadata.update(ANDROID_CONTROL_AUTOFRAMING_STATE,
&defaultAutoframingStateEntry, 1);
if (res != OK) {
ALOGE("%s: Failed to update ANDROID_CONTROL_AUTOFRAMING_STATE: %s (%d)",
__FUNCTION__, strerror(-res), res);
return res;
}
}
return res;
}
void correctMeteringRegions(camera_metadata_t *meta) {
if (meta == nullptr) return;
uint32_t meteringRegionKeys[] = {
ANDROID_CONTROL_AE_REGIONS,
ANDROID_CONTROL_AWB_REGIONS,
ANDROID_CONTROL_AF_REGIONS };
for (uint32_t key : meteringRegionKeys) {
camera_metadata_entry_t entry;
int res = find_camera_metadata_entry(meta, key, &entry);
if (res != OK) continue;
for (size_t i = 0; i < entry.count; i += 5) {
if (entry.data.i32[0] > entry.data.i32[2]) {
ALOGW("%s: Invalid metering region (%d): left: %d, right: %d",
__FUNCTION__, key, entry.data.i32[0], entry.data.i32[2]);
entry.data.i32[2] = entry.data.i32[0];
}
if (entry.data.i32[1] > entry.data.i32[3]) {
ALOGW("%s: Invalid metering region (%d): top: %d, bottom: %d",
__FUNCTION__, key, entry.data.i32[1], entry.data.i32[3]);
entry.data.i32[3] = entry.data.i32[1];
}
}
}
}
void insertResultLocked(CaptureOutputStates& states, CaptureResult *result, uint32_t frameNumber) {
if (result == nullptr) return;
camera_metadata_t *meta = const_cast<camera_metadata_t *>(
result->mMetadata.getAndLock());
set_camera_metadata_vendor_id(meta, states.vendorTagId);
correctMeteringRegions(meta);
result->mMetadata.unlock(meta);
if (result->mMetadata.update(ANDROID_REQUEST_FRAME_COUNT,
(int32_t*)&frameNumber, 1) != OK) {
SET_ERR("Failed to set frame number %d in metadata", frameNumber);
return;
}
if (result->mMetadata.update(ANDROID_REQUEST_ID, &result->mResultExtras.requestId, 1) != OK) {
SET_ERR("Failed to set request ID in metadata for frame %d", frameNumber);
return;
}
// Update vendor tag id for physical metadata
for (auto& physicalMetadata : result->mPhysicalMetadatas) {
camera_metadata_t *pmeta = const_cast<camera_metadata_t *>(
physicalMetadata.mPhysicalCameraMetadata.getAndLock());
set_camera_metadata_vendor_id(pmeta, states.vendorTagId);
correctMeteringRegions(pmeta);
physicalMetadata.mPhysicalCameraMetadata.unlock(pmeta);
}
// Valid result, insert into queue
std::list<CaptureResult>::iterator queuedResult =
states.resultQueue.insert(states.resultQueue.end(), CaptureResult(*result));
ALOGV("%s: result requestId = %" PRId32 ", frameNumber = %" PRId64
", burstId = %" PRId32, __FUNCTION__,
queuedResult->mResultExtras.requestId,
queuedResult->mResultExtras.frameNumber,
queuedResult->mResultExtras.burstId);
states.resultSignal.notify_one();
}
void sendPartialCaptureResult(CaptureOutputStates& states,
const camera_metadata_t * partialResult,
const CaptureResultExtras &resultExtras, uint32_t frameNumber) {
ATRACE_CALL();
std::lock_guard<std::mutex> l(states.outputLock);
CaptureResult captureResult;
captureResult.mResultExtras = resultExtras;
captureResult.mMetadata = partialResult;
// Fix up result metadata for monochrome camera.
status_t res = fixupMonochromeTags(states, states.deviceInfo, captureResult.mMetadata);
if (res != OK) {
SET_ERR("Failed to override result metadata: %s (%d)", strerror(-res), res);
return;
}
// Update partial result by removing keys remapped by DistortionCorrection, ZoomRatio,
// and RotationAndCrop mappers.
std::set<uint32_t> keysToRemove;
auto iter = states.distortionMappers.find(states.cameraId.c_str());
if (iter != states.distortionMappers.end()) {
const auto& remappedKeys = iter->second.getRemappedKeys();
keysToRemove.insert(remappedKeys.begin(), remappedKeys.end());
}
const auto& remappedKeys = states.zoomRatioMappers[states.cameraId.c_str()].getRemappedKeys();
keysToRemove.insert(remappedKeys.begin(), remappedKeys.end());
auto mapper = states.rotateAndCropMappers.find(states.cameraId.c_str());
if (mapper != states.rotateAndCropMappers.end()) {
const auto& remappedKeys = iter->second.getRemappedKeys();
keysToRemove.insert(remappedKeys.begin(), remappedKeys.end());
}
for (uint32_t key : keysToRemove) {
captureResult.mMetadata.erase(key);
}
// Send partial result
if (captureResult.mMetadata.entryCount() > 0) {
insertResultLocked(states, &captureResult, frameNumber);
}
}
void sendCaptureResult(
CaptureOutputStates& states,
CameraMetadata &pendingMetadata,
CaptureResultExtras &resultExtras,
CameraMetadata &collectedPartialResult,
uint32_t frameNumber,
bool reprocess, bool zslStillCapture, bool rotateAndCropAuto,
const std::set<std::string>& cameraIdsWithZoom,
const std::vector<PhysicalCaptureResultInfo>& physicalMetadatas) {
ATRACE_CALL();
if (pendingMetadata.isEmpty())
return;
std::lock_guard<std::mutex> l(states.outputLock);
// TODO: need to track errors for tighter bounds on expected frame number
if (reprocess) {
if (frameNumber < states.nextReprocResultFrameNum) {
SET_ERR("Out-of-order reprocess capture result metadata submitted! "
"(got frame number %d, expecting %d)",
frameNumber, states.nextReprocResultFrameNum);
return;
}
states.nextReprocResultFrameNum = frameNumber + 1;
} else if (zslStillCapture) {
if (frameNumber < states.nextZslResultFrameNum) {
SET_ERR("Out-of-order ZSL still capture result metadata submitted! "
"(got frame number %d, expecting %d)",
frameNumber, states.nextZslResultFrameNum);
return;
}
states.nextZslResultFrameNum = frameNumber + 1;
} else {
if (frameNumber < states.nextResultFrameNum) {
SET_ERR("Out-of-order capture result metadata submitted! "
"(got frame number %d, expecting %d)",
frameNumber, states.nextResultFrameNum);
return;
}
states.nextResultFrameNum = frameNumber + 1;
}
CaptureResult captureResult;
captureResult.mResultExtras = resultExtras;
captureResult.mMetadata = pendingMetadata;
captureResult.mPhysicalMetadatas = physicalMetadatas;
// Append any previous partials to form a complete result
if (states.usePartialResult && !collectedPartialResult.isEmpty()) {
captureResult.mMetadata.append(collectedPartialResult);
}
captureResult.mMetadata.sort();
// Check that there's a timestamp in the result metadata
camera_metadata_entry timestamp = captureResult.mMetadata.find(ANDROID_SENSOR_TIMESTAMP);
if (timestamp.count == 0) {
SET_ERR("No timestamp provided by HAL for frame %d!",
frameNumber);
return;
}
nsecs_t sensorTimestamp = timestamp.data.i64[0];
for (auto& physicalMetadata : captureResult.mPhysicalMetadatas) {
camera_metadata_entry timestamp =
physicalMetadata.mPhysicalCameraMetadata.find(ANDROID_SENSOR_TIMESTAMP);
if (timestamp.count == 0) {
SET_ERR("No timestamp provided by HAL for physical camera %s frame %d!",
String8(physicalMetadata.mPhysicalCameraId).c_str(), frameNumber);
return;
}
}
// Fix up some result metadata to account for HAL-level distortion correction
status_t res = OK;
auto iter = states.distortionMappers.find(states.cameraId.c_str());
if (iter != states.distortionMappers.end()) {
res = iter->second.correctCaptureResult(&captureResult.mMetadata);
if (res != OK) {
SET_ERR("Unable to correct capture result metadata for frame %d: %s (%d)",
frameNumber, strerror(-res), res);
return;
}
}
// Fix up result metadata to account for zoom ratio availabilities between
// HAL and app.
bool zoomRatioIs1 = cameraIdsWithZoom.find(states.cameraId.c_str()) == cameraIdsWithZoom.end();
res = states.zoomRatioMappers[states.cameraId.c_str()].updateCaptureResult(
&captureResult.mMetadata, zoomRatioIs1);
if (res != OK) {
SET_ERR("Failed to update capture result zoom ratio metadata for frame %d: %s (%d)",
frameNumber, strerror(-res), res);
return;
}
// Fix up result metadata to account for rotateAndCrop in AUTO mode
if (rotateAndCropAuto) {
auto mapper = states.rotateAndCropMappers.find(states.cameraId.c_str());
if (mapper != states.rotateAndCropMappers.end()) {
res = mapper->second.updateCaptureResult(
&captureResult.mMetadata);
if (res != OK) {
SET_ERR("Unable to correct capture result rotate-and-crop for frame %d: %s (%d)",
frameNumber, strerror(-res), res);
return;
}
}
}
// Fix up autoframing metadata
res = fixupAutoframingTags(captureResult.mMetadata);
if (res != OK) {
SET_ERR("Failed to set autoframing defaults in result metadata: %s (%d)",
strerror(-res), res);
return;
}
for (auto& physicalMetadata : captureResult.mPhysicalMetadatas) {
res = fixupAutoframingTags(physicalMetadata.mPhysicalCameraMetadata);
if (res != OK) {
SET_ERR("Failed to set autoframing defaults in physical result metadata: %s (%d)",
strerror(-res), res);
return;
}
}
for (auto& physicalMetadata : captureResult.mPhysicalMetadatas) {
String8 cameraId8(physicalMetadata.mPhysicalCameraId);
auto mapper = states.distortionMappers.find(cameraId8.c_str());
if (mapper != states.distortionMappers.end()) {
res = mapper->second.correctCaptureResult(
&physicalMetadata.mPhysicalCameraMetadata);
if (res != OK) {
SET_ERR("Unable to correct physical capture result metadata for frame %d: %s (%d)",
frameNumber, strerror(-res), res);
return;
}
}
zoomRatioIs1 = cameraIdsWithZoom.find(cameraId8.c_str()) == cameraIdsWithZoom.end();
res = states.zoomRatioMappers[cameraId8.c_str()].updateCaptureResult(
&physicalMetadata.mPhysicalCameraMetadata, zoomRatioIs1);
if (res != OK) {
SET_ERR("Failed to update camera %s's physical zoom ratio metadata for "
"frame %d: %s(%d)", cameraId8.c_str(), frameNumber, strerror(-res), res);
return;
}
}
// Fix up result metadata for monochrome camera.
res = fixupMonochromeTags(states, states.deviceInfo, captureResult.mMetadata);
if (res != OK) {
SET_ERR("Failed to override result metadata: %s (%d)", strerror(-res), res);
return;
}
for (auto& physicalMetadata : captureResult.mPhysicalMetadatas) {
String8 cameraId8(physicalMetadata.mPhysicalCameraId);
res = fixupMonochromeTags(states,
states.physicalDeviceInfoMap.at(cameraId8.c_str()),
physicalMetadata.mPhysicalCameraMetadata);
if (res != OK) {
SET_ERR("Failed to override result metadata: %s (%d)", strerror(-res), res);
return;
}
}
std::unordered_map<std::string, CameraMetadata> monitoredPhysicalMetadata;
for (auto& m : physicalMetadatas) {
monitoredPhysicalMetadata.emplace(String8(m.mPhysicalCameraId).string(),
CameraMetadata(m.mPhysicalCameraMetadata));
}
states.tagMonitor.monitorMetadata(TagMonitor::RESULT,
frameNumber, sensorTimestamp, captureResult.mMetadata,
monitoredPhysicalMetadata);
insertResultLocked(states, &captureResult, frameNumber);
}
void removeInFlightMapEntryLocked(CaptureOutputStates& states, int idx) {
ATRACE_CALL();
InFlightRequestMap& inflightMap = states.inflightMap;
nsecs_t duration = inflightMap.valueAt(idx).maxExpectedDuration;
inflightMap.removeItemsAt(idx, 1);
states.inflightIntf.onInflightEntryRemovedLocked(duration);
}
void removeInFlightRequestIfReadyLocked(CaptureOutputStates& states, int idx) {
InFlightRequestMap& inflightMap = states.inflightMap;
const InFlightRequest &request = inflightMap.valueAt(idx);
const uint32_t frameNumber = inflightMap.keyAt(idx);
SessionStatsBuilder& sessionStatsBuilder = states.sessionStatsBuilder;
nsecs_t sensorTimestamp = request.sensorTimestamp;
nsecs_t shutterTimestamp = request.shutterTimestamp;
// Check if it's okay to remove the request from InFlightMap:
// In the case of a successful request:
// all input and output buffers, all result metadata, shutter callback
// arrived.
// In the case of an unsuccessful request:
// all input and output buffers, as well as request/result error notifications, arrived.
if (request.numBuffersLeft == 0 &&
(request.skipResultMetadata ||
(request.haveResultMetadata && shutterTimestamp != 0))) {
if (request.stillCapture) {
ATRACE_ASYNC_END("still capture", frameNumber);
}
ATRACE_ASYNC_END("frame capture", frameNumber);
// Validation check - if sensor timestamp matches shutter timestamp in the
// case of request having callback.
if (request.hasCallback && request.requestStatus == OK &&
sensorTimestamp != shutterTimestamp) {
SET_ERR("sensor timestamp (%" PRId64
") for frame %d doesn't match shutter timestamp (%" PRId64 ")",
sensorTimestamp, frameNumber, shutterTimestamp);
}
// for an unsuccessful request, it may have pending output buffers to
// return.
assert(request.requestStatus != OK ||
request.pendingOutputBuffers.size() == 0);
returnOutputBuffers(
states.useHalBufManager, states.listener,
request.pendingOutputBuffers.array(),
request.pendingOutputBuffers.size(), /*timestamp*/0, /*readoutTimestamp*/0,
/*requested*/true, request.requestTimeNs, states.sessionStatsBuilder,
/*timestampIncreasing*/true,
request.outputSurfaces, request.resultExtras,
request.errorBufStrategy, request.transform);
// Note down the just completed frame number
if (request.hasInputBuffer) {
states.lastCompletedReprocessFrameNumber = frameNumber;
} else if (request.zslCapture && request.stillCapture) {
states.lastCompletedZslFrameNumber = frameNumber;
} else {
states.lastCompletedRegularFrameNumber = frameNumber;
}
sessionStatsBuilder.incResultCounter(request.skipResultMetadata);
removeInFlightMapEntryLocked(states, idx);
ALOGVV("%s: removed frame %d from InFlightMap", __FUNCTION__, frameNumber);
}
states.inflightIntf.checkInflightMapLengthLocked();
}
// Erase the subset of physicalCameraIds that contains id
bool erasePhysicalCameraIdSet(
std::set<std::set<String8>>& physicalCameraIds, const String8& id) {
bool found = false;
for (auto iter = physicalCameraIds.begin(); iter != physicalCameraIds.end(); iter++) {
if (iter->count(id) == 1) {
physicalCameraIds.erase(iter);
found = true;
break;
}
}
return found;
}
const std::set<std::string>& getCameraIdsWithZoomLocked(
const InFlightRequestMap& inflightMap, const CameraMetadata& metadata,
const std::set<std::string>& cameraIdsWithZoom) {
camera_metadata_ro_entry overrideEntry =
metadata.find(ANDROID_CONTROL_SETTINGS_OVERRIDE);
camera_metadata_ro_entry frameNumberEntry =
metadata.find(ANDROID_CONTROL_SETTINGS_OVERRIDING_FRAME_NUMBER);
if (overrideEntry.count != 1
|| overrideEntry.data.i32[0] != ANDROID_CONTROL_SETTINGS_OVERRIDE_ZOOM
|| frameNumberEntry.count != 1) {
// No valid overriding frame number, skip
return cameraIdsWithZoom;
}
uint32_t overridingFrameNumber = frameNumberEntry.data.i32[0];
ssize_t idx = inflightMap.indexOfKey(overridingFrameNumber);
if (idx < 0) {
ALOGE("%s: Failed to find pending request #%d in inflight map",
__FUNCTION__, overridingFrameNumber);
return cameraIdsWithZoom;
}
const InFlightRequest &r = inflightMap.valueFor(overridingFrameNumber);
return r.cameraIdsWithZoom;
}
void processCaptureResult(CaptureOutputStates& states, const camera_capture_result *result) {
ATRACE_CALL();
status_t res;
uint32_t frameNumber = result->frame_number;
if (result->result == NULL && result->num_output_buffers == 0 &&
result->input_buffer == NULL) {
SET_ERR("No result data provided by HAL for frame %d",
frameNumber);
return;
}
if (!states.usePartialResult &&
result->result != NULL &&
result->partial_result != 1) {
SET_ERR("Result is malformed for frame %d: partial_result %u must be 1"
" if partial result is not supported",
frameNumber, result->partial_result);
return;
}
bool isPartialResult = false;
CameraMetadata collectedPartialResult;
bool hasInputBufferInRequest = false;
// Get shutter timestamp and resultExtras from list of in-flight requests,
// where it was added by the shutter notification for this frame. If the
// shutter timestamp isn't received yet, append the output buffers to the
// in-flight request and they will be returned when the shutter timestamp
// arrives. Update the in-flight status and remove the in-flight entry if
// all result data and shutter timestamp have been received.
nsecs_t shutterTimestamp = 0;
{
std::lock_guard<std::mutex> l(states.inflightLock);
ssize_t idx = states.inflightMap.indexOfKey(frameNumber);
if (idx == NAME_NOT_FOUND) {
SET_ERR("Unknown frame number for capture result: %d",
frameNumber);
return;
}
InFlightRequest &request = states.inflightMap.editValueAt(idx);
ALOGVV("%s: got InFlightRequest requestId = %" PRId32
", frameNumber = %" PRId64 ", burstId = %" PRId32
", partialResultCount = %d/%d, hasCallback = %d, num_output_buffers %d"
", usePartialResult = %d",
__FUNCTION__, request.resultExtras.requestId,
request.resultExtras.frameNumber, request.resultExtras.burstId,
result->partial_result, states.numPartialResults,
request.hasCallback, result->num_output_buffers,
states.usePartialResult);
// Always update the partial count to the latest one if it's not 0
// (buffers only). When framework aggregates adjacent partial results
// into one, the latest partial count will be used.
if (result->partial_result != 0)
request.resultExtras.partialResultCount = result->partial_result;
if (result->result != nullptr) {
camera_metadata_ro_entry entry;
auto ret = find_camera_metadata_ro_entry(result->result,
ANDROID_LOGICAL_MULTI_CAMERA_ACTIVE_PHYSICAL_ID, &entry);
if ((ret == OK) && (entry.count > 0)) {
std::string physicalId(reinterpret_cast<const char *>(entry.data.u8));
if (!states.activePhysicalId.empty() && physicalId != states.activePhysicalId) {
states.listener->notifyPhysicalCameraChange(physicalId);
}
states.activePhysicalId = physicalId;
if (!states.legacyClient && !states.overrideToPortrait) {
auto deviceInfo = states.physicalDeviceInfoMap.find(physicalId);
if (deviceInfo != states.physicalDeviceInfoMap.end()) {
auto orientation = deviceInfo->second.find(ANDROID_SENSOR_ORIENTATION);
if (orientation.count > 0) {
int32_t transform;
ret = CameraUtils::getRotationTransform(deviceInfo->second,
OutputConfiguration::MIRROR_MODE_AUTO, &transform);
if (ret == OK) {
// It is possible for camera providers to return the capture
// results after the processed frames. In such scenario, we will
// not be able to set the output transformation before the frames
// return back to the consumer for the current capture request
// but we could still try and configure it for any future requests
// that are still in flight. The assumption is that the physical
// device id remains the same for the duration of the pending queue.
for (size_t i = 0; i < states.inflightMap.size(); i++) {
auto &r = states.inflightMap.editValueAt(i);
if (r.requestTimeNs >= request.requestTimeNs) {
r.transform = transform;
}
}
} else {
ALOGE("%s: Failed to calculate current stream transformation: %s "
"(%d)", __FUNCTION__, strerror(-ret), ret);
}
} else {
ALOGE("%s: Physical device orientation absent!", __FUNCTION__);
}
} else {
ALOGE("%s: Physical device not found in device info map found!",
__FUNCTION__);
}
}
}
}
// Check if this result carries only partial metadata
if (states.usePartialResult && result->result != NULL) {
if (result->partial_result > states.numPartialResults || result->partial_result < 1) {
SET_ERR("Result is malformed for frame %d: partial_result %u must be in"
" the range of [1, %d] when metadata is included in the result",
frameNumber, result->partial_result, states.numPartialResults);
return;
}
isPartialResult = (result->partial_result < states.numPartialResults);
if (isPartialResult && result->num_physcam_metadata) {
SET_ERR("Result is malformed for frame %d: partial_result not allowed for"
" physical camera result", frameNumber);
return;
}
if (isPartialResult) {
request.collectedPartialResult.append(result->result);
}
if (isPartialResult && request.hasCallback) {
// Send partial capture result
sendPartialCaptureResult(states, result->result, request.resultExtras,
frameNumber);
}
}
shutterTimestamp = request.shutterTimestamp;
hasInputBufferInRequest = request.hasInputBuffer;
// Did we get the (final) result metadata for this capture?
if (result->result != NULL && !isPartialResult) {
if (request.physicalCameraIds.size() != result->num_physcam_metadata) {
SET_ERR("Expected physical Camera metadata count %d not equal to actual count %d",
request.physicalCameraIds.size(), result->num_physcam_metadata);
return;
}
if (request.haveResultMetadata) {
SET_ERR("Called multiple times with metadata for frame %d",
frameNumber);
return;
}
for (uint32_t i = 0; i < result->num_physcam_metadata; i++) {
String8 physicalId(result->physcam_ids[i]);
bool validPhysicalCameraMetadata =
erasePhysicalCameraIdSet(request.physicalCameraIds, physicalId);
if (!validPhysicalCameraMetadata) {
SET_ERR("Unexpected total result for frame %d camera %s",
frameNumber, physicalId.c_str());
return;
}
}
if (states.usePartialResult &&
!request.collectedPartialResult.isEmpty()) {
collectedPartialResult.acquire(
request.collectedPartialResult);
}
request.haveResultMetadata = true;
request.errorBufStrategy = ERROR_BUF_RETURN_NOTIFY;
}
uint32_t numBuffersReturned = result->num_output_buffers;
if (result->input_buffer != NULL) {
if (hasInputBufferInRequest) {
numBuffersReturned += 1;
} else {
ALOGW("%s: Input buffer should be NULL if there is no input"
" buffer sent in the request",
__FUNCTION__);
}
}
request.numBuffersLeft -= numBuffersReturned;
if (request.numBuffersLeft < 0) {
SET_ERR("Too many buffers returned for frame %d",
frameNumber);
return;
}
camera_metadata_ro_entry_t entry;
res = find_camera_metadata_ro_entry(result->result,
ANDROID_SENSOR_TIMESTAMP, &entry);
if (res == OK && entry.count == 1) {
request.sensorTimestamp = entry.data.i64[0];
}
// If shutter event isn't received yet, do not return the pending output
// buffers.
request.pendingOutputBuffers.appendArray(result->output_buffers,
result->num_output_buffers);
if (shutterTimestamp != 0) {
returnAndRemovePendingOutputBuffers(
states.useHalBufManager, states.listener,
request, states.sessionStatsBuilder);
}
if (result->result != NULL && !isPartialResult) {
for (uint32_t i = 0; i < result->num_physcam_metadata; i++) {
CameraMetadata physicalMetadata;
physicalMetadata.append(result->physcam_metadata[i]);
request.physicalMetadatas.push_back({String16(result->physcam_ids[i]),
physicalMetadata});
}
if (shutterTimestamp == 0) {
request.pendingMetadata = result->result;
request.collectedPartialResult = collectedPartialResult;
} else if (request.hasCallback) {
CameraMetadata metadata;
metadata = result->result;
auto cameraIdsWithZoom = getCameraIdsWithZoomLocked(
states.inflightMap, metadata, request.cameraIdsWithZoom);
sendCaptureResult(states, metadata, request.resultExtras,
collectedPartialResult, frameNumber,
hasInputBufferInRequest, request.zslCapture && request.stillCapture,
request.rotateAndCropAuto, cameraIdsWithZoom,
request.physicalMetadatas);
}
}
removeInFlightRequestIfReadyLocked(states, idx);
} // scope for states.inFlightLock
if (result->input_buffer != NULL) {
if (hasInputBufferInRequest) {
Camera3Stream *stream =
Camera3Stream::cast(result->input_buffer->stream);
res = stream->returnInputBuffer(*(result->input_buffer));
// Note: stream may be deallocated at this point, if this buffer was the
// last reference to it.
if (res != OK) {
ALOGE("%s: RequestThread: Can't return input buffer for frame %d to"
" its stream:%s (%d)", __FUNCTION__,
frameNumber, strerror(-res), res);
}
} else {
ALOGW("%s: Input buffer should be NULL if there is no input"
" buffer sent in the request, skipping input buffer return.",
__FUNCTION__);
}
}
}
void returnOutputBuffers(
bool useHalBufManager,
sp<NotificationListener> listener,
const camera_stream_buffer_t *outputBuffers, size_t numBuffers,
nsecs_t timestamp, nsecs_t readoutTimestamp, bool requested,
nsecs_t requestTimeNs, SessionStatsBuilder& sessionStatsBuilder,
bool timestampIncreasing, const SurfaceMap& outputSurfaces,
const CaptureResultExtras &inResultExtras,
ERROR_BUF_STRATEGY errorBufStrategy, int32_t transform) {
for (size_t i = 0; i < numBuffers; i++)
{
Camera3StreamInterface *stream = Camera3Stream::cast(outputBuffers[i].stream);
int streamId = stream->getId();
// Call notify(ERROR_BUFFER) if necessary.
if (outputBuffers[i].status == CAMERA_BUFFER_STATUS_ERROR &&
errorBufStrategy == ERROR_BUF_RETURN_NOTIFY) {
if (listener != nullptr) {
CaptureResultExtras extras = inResultExtras;
extras.errorStreamId = streamId;
listener->notifyError(
hardware::camera2::ICameraDeviceCallbacks::ERROR_CAMERA_BUFFER,
extras);
}
}
if (outputBuffers[i].buffer == nullptr) {
if (!useHalBufManager) {
// With HAL buffer management API, HAL sometimes will have to return buffers that
// has not got a output buffer handle filled yet. This is though illegal if HAL
// buffer management API is not being used.
ALOGE("%s: cannot return a null buffer!", __FUNCTION__);
} else {
if (requested) {
sessionStatsBuilder.incCounter(streamId, /*dropped*/true, 0);
}
}
continue;
}
const auto& it = outputSurfaces.find(streamId);
status_t res = OK;
// Do not return the buffer if the buffer status is error, and the error
// buffer strategy is CACHE.
if (outputBuffers[i].status != CAMERA_BUFFER_STATUS_ERROR ||
errorBufStrategy != ERROR_BUF_CACHE) {
if (it != outputSurfaces.end()) {
res = stream->returnBuffer(
outputBuffers[i], timestamp, readoutTimestamp, timestampIncreasing,
it->second, inResultExtras.frameNumber, transform);
} else {
res = stream->returnBuffer(
outputBuffers[i], timestamp, readoutTimestamp, timestampIncreasing,
std::vector<size_t> (), inResultExtras.frameNumber, transform);
}
}
// Note: stream may be deallocated at this point, if this buffer was
// the last reference to it.
bool dropped = false;
if (res == NO_INIT || res == DEAD_OBJECT) {
ALOGV("Can't return buffer to its stream: %s (%d)", strerror(-res), res);
sessionStatsBuilder.stopCounter(streamId);
} else if (res != OK) {
ALOGE("Can't return buffer to its stream: %s (%d)", strerror(-res), res);
dropped = true;
} else {
if (outputBuffers[i].status == CAMERA_BUFFER_STATUS_ERROR || timestamp == 0) {
dropped = true;
}
}
if (requested) {
nsecs_t bufferTimeNs = systemTime();
int32_t captureLatencyMs = ns2ms(bufferTimeNs - requestTimeNs);
sessionStatsBuilder.incCounter(streamId, dropped, captureLatencyMs);
}
// Long processing consumers can cause returnBuffer timeout for shared stream
// If that happens, cancel the buffer and send a buffer error to client
if (it != outputSurfaces.end() && res == TIMED_OUT &&
outputBuffers[i].status == CAMERA_BUFFER_STATUS_OK) {
// cancel the buffer
camera_stream_buffer_t sb = outputBuffers[i];
sb.status = CAMERA_BUFFER_STATUS_ERROR;
stream->returnBuffer(sb, /*timestamp*/0, /*readoutTimestamp*/0,
timestampIncreasing, std::vector<size_t> (),
inResultExtras.frameNumber, transform);
if (listener != nullptr) {
CaptureResultExtras extras = inResultExtras;
extras.errorStreamId = streamId;
listener->notifyError(
hardware::camera2::ICameraDeviceCallbacks::ERROR_CAMERA_BUFFER,
extras);
}
}
}
}
void returnAndRemovePendingOutputBuffers(bool useHalBufManager,
sp<NotificationListener> listener, InFlightRequest& request,
SessionStatsBuilder& sessionStatsBuilder) {
bool timestampIncreasing =
!((request.zslCapture && request.stillCapture) || request.hasInputBuffer);
nsecs_t readoutTimestamp = request.resultExtras.hasReadoutTimestamp ?
request.resultExtras.readoutTimestamp : 0;
returnOutputBuffers(useHalBufManager, listener,
request.pendingOutputBuffers.array(),
request.pendingOutputBuffers.size(),
request.shutterTimestamp, readoutTimestamp,
/*requested*/true, request.requestTimeNs, sessionStatsBuilder, timestampIncreasing,
request.outputSurfaces, request.resultExtras,
request.errorBufStrategy, request.transform);
// Remove error buffers that are not cached.
for (auto iter = request.pendingOutputBuffers.begin();
iter != request.pendingOutputBuffers.end(); ) {
if (request.errorBufStrategy != ERROR_BUF_CACHE ||
iter->status != CAMERA_BUFFER_STATUS_ERROR) {
iter = request.pendingOutputBuffers.erase(iter);
} else {
iter++;
}
}
}
void notifyShutter(CaptureOutputStates& states, const camera_shutter_msg_t &msg) {
ATRACE_CALL();
ssize_t idx;
// Set timestamp for the request in the in-flight tracking
// and get the request ID to send upstream
{
std::lock_guard<std::mutex> l(states.inflightLock);
InFlightRequestMap& inflightMap = states.inflightMap;
idx = inflightMap.indexOfKey(msg.frame_number);
if (idx >= 0) {
InFlightRequest &r = inflightMap.editValueAt(idx);
// Verify ordering of shutter notifications
{
std::lock_guard<std::mutex> l(states.outputLock);
// TODO: need to track errors for tighter bounds on expected frame number.
if (r.hasInputBuffer) {
if (msg.frame_number < states.nextReprocShutterFrameNum) {
SET_ERR("Reprocess shutter notification out-of-order. Expected "
"notification for frame %d, got frame %d",
states.nextReprocShutterFrameNum, msg.frame_number);
return;
}
states.nextReprocShutterFrameNum = msg.frame_number + 1;
} else if (r.zslCapture && r.stillCapture) {
if (msg.frame_number < states.nextZslShutterFrameNum) {
SET_ERR("ZSL still capture shutter notification out-of-order. Expected "
"notification for frame %d, got frame %d",
states.nextZslShutterFrameNum, msg.frame_number);
return;
}
states.nextZslShutterFrameNum = msg.frame_number + 1;
} else {
if (msg.frame_number < states.nextShutterFrameNum) {
SET_ERR("Shutter notification out-of-order. Expected "
"notification for frame %d, got frame %d",
states.nextShutterFrameNum, msg.frame_number);
return;
}
states.nextShutterFrameNum = msg.frame_number + 1;
}
}
r.shutterTimestamp = msg.timestamp;
if (msg.readout_timestamp_valid) {
r.resultExtras.hasReadoutTimestamp = true;
r.resultExtras.readoutTimestamp = msg.readout_timestamp;
}
if (r.minExpectedDuration != states.minFrameDuration ||
r.isFixedFps != states.isFixedFps) {
for (size_t i = 0; i < states.outputStreams.size(); i++) {
auto outputStream = states.outputStreams[i];
outputStream->onMinDurationChanged(r.minExpectedDuration, r.isFixedFps);
}
states.minFrameDuration = r.minExpectedDuration;
states.isFixedFps = r.isFixedFps;
}
if (r.hasCallback) {
ALOGVV("Camera %s: %s: Shutter fired for frame %d (id %d) at %" PRId64,
states.cameraId.string(), __FUNCTION__,
msg.frame_number, r.resultExtras.requestId, msg.timestamp);
// Call listener, if any
if (states.listener != nullptr) {
r.resultExtras.lastCompletedRegularFrameNumber =
states.lastCompletedRegularFrameNumber;
r.resultExtras.lastCompletedReprocessFrameNumber =
states.lastCompletedReprocessFrameNumber;
r.resultExtras.lastCompletedZslFrameNumber =
states.lastCompletedZslFrameNumber;
states.listener->notifyShutter(r.resultExtras, msg.timestamp);
}
// send pending result and buffers
const auto& cameraIdsWithZoom = getCameraIdsWithZoomLocked(
inflightMap, r.pendingMetadata, r.cameraIdsWithZoom);
sendCaptureResult(states,
r.pendingMetadata, r.resultExtras,
r.collectedPartialResult, msg.frame_number,
r.hasInputBuffer, r.zslCapture && r.stillCapture,
r.rotateAndCropAuto, cameraIdsWithZoom, r.physicalMetadatas);
}
returnAndRemovePendingOutputBuffers(
states.useHalBufManager, states.listener, r, states.sessionStatsBuilder);
removeInFlightRequestIfReadyLocked(states, idx);
}
}
if (idx < 0) {
SET_ERR("Shutter notification for non-existent frame number %d",
msg.frame_number);
}
}
void notifyError(CaptureOutputStates& states, const camera_error_msg_t &msg) {
ATRACE_CALL();
// Map camera HAL error codes to ICameraDeviceCallback error codes
// Index into this with the HAL error code
static const int32_t halErrorMap[CAMERA_MSG_NUM_ERRORS] = {
// 0 = Unused error code
hardware::camera2::ICameraDeviceCallbacks::ERROR_CAMERA_INVALID_ERROR,
// 1 = CAMERA_MSG_ERROR_DEVICE
hardware::camera2::ICameraDeviceCallbacks::ERROR_CAMERA_DEVICE,
// 2 = CAMERA_MSG_ERROR_REQUEST
hardware::camera2::ICameraDeviceCallbacks::ERROR_CAMERA_REQUEST,
// 3 = CAMERA_MSG_ERROR_RESULT
hardware::camera2::ICameraDeviceCallbacks::ERROR_CAMERA_RESULT,
// 4 = CAMERA_MSG_ERROR_BUFFER
hardware::camera2::ICameraDeviceCallbacks::ERROR_CAMERA_BUFFER
};
int32_t errorCode =
((msg.error_code >= 0) &&
(msg.error_code < CAMERA_MSG_NUM_ERRORS)) ?
halErrorMap[msg.error_code] :
hardware::camera2::ICameraDeviceCallbacks::ERROR_CAMERA_INVALID_ERROR;
int streamId = 0;
String16 physicalCameraId;
if (msg.error_stream != nullptr) {
Camera3Stream *stream =
Camera3Stream::cast(msg.error_stream);
streamId = stream->getId();
physicalCameraId = String16(stream->physicalCameraId());
}
ALOGV("Camera %s: %s: HAL error, frame %d, stream %d: %d",
states.cameraId.string(), __FUNCTION__, msg.frame_number,
streamId, msg.error_code);
CaptureResultExtras resultExtras;
switch (errorCode) {
case hardware::camera2::ICameraDeviceCallbacks::ERROR_CAMERA_DEVICE:
// SET_ERR calls into listener to notify application
SET_ERR("Camera HAL reported serious device error");
break;
case hardware::camera2::ICameraDeviceCallbacks::ERROR_CAMERA_REQUEST:
case hardware::camera2::ICameraDeviceCallbacks::ERROR_CAMERA_RESULT:
{
std::lock_guard<std::mutex> l(states.inflightLock);
ssize_t idx = states.inflightMap.indexOfKey(msg.frame_number);
if (idx >= 0) {
InFlightRequest &r = states.inflightMap.editValueAt(idx);
r.requestStatus = msg.error_code;
resultExtras = r.resultExtras;
bool physicalDeviceResultError = false;
if (hardware::camera2::ICameraDeviceCallbacks::ERROR_CAMERA_RESULT ==
errorCode) {
if (physicalCameraId.size() > 0) {
String8 cameraId(physicalCameraId);
bool validPhysicalCameraId =
erasePhysicalCameraIdSet(r.physicalCameraIds, cameraId);
if (!validPhysicalCameraId) {
ALOGE("%s: Reported result failure for physical camera device: %s "
" which is not part of the respective request!",
__FUNCTION__, cameraId.string());
break;
}
resultExtras.errorPhysicalCameraId = physicalCameraId;
physicalDeviceResultError = true;
}
}
if (!physicalDeviceResultError) {
r.skipResultMetadata = true;
if (hardware::camera2::ICameraDeviceCallbacks::ERROR_CAMERA_RESULT
== errorCode) {
r.errorBufStrategy = ERROR_BUF_RETURN_NOTIFY;
} else {
// errorCode is ERROR_CAMERA_REQUEST
r.errorBufStrategy = ERROR_BUF_RETURN;
}
// Check whether the buffers returned. If they returned,
// remove inflight request.
removeInFlightRequestIfReadyLocked(states, idx);
}
} else {
resultExtras.frameNumber = msg.frame_number;
ALOGE("Camera %s: %s: cannot find in-flight request on "
"frame %" PRId64 " error", states.cameraId.string(), __FUNCTION__,
resultExtras.frameNumber);
}
}
resultExtras.errorStreamId = streamId;
if (states.listener != nullptr) {
states.listener->notifyError(errorCode, resultExtras);
} else {
ALOGE("Camera %s: %s: no listener available",
states.cameraId.string(), __FUNCTION__);
}
break;
case hardware::camera2::ICameraDeviceCallbacks::ERROR_CAMERA_BUFFER:
// Do not depend on HAL ERROR_CAMERA_BUFFER to send buffer error
// callback to the app. Rather, use STATUS_ERROR of image buffers.
break;
default:
// SET_ERR calls notifyError
SET_ERR("Unknown error message from HAL: %d", msg.error_code);
break;
}
}
void notify(CaptureOutputStates& states, const camera_notify_msg *msg) {
switch (msg->type) {
case CAMERA_MSG_ERROR: {
notifyError(states, msg->message.error);
break;
}
case CAMERA_MSG_SHUTTER: {
notifyShutter(states, msg->message.shutter);
break;
}
default:
SET_ERR("Unknown notify message from HAL: %d",
msg->type);
}
}
void flushInflightRequests(FlushInflightReqStates& states) {
ATRACE_CALL();
{ // First return buffers cached in inFlightMap
std::lock_guard<std::mutex> l(states.inflightLock);
for (size_t idx = 0; idx < states.inflightMap.size(); idx++) {
const InFlightRequest &request = states.inflightMap.valueAt(idx);
returnOutputBuffers(
states.useHalBufManager, states.listener,
request.pendingOutputBuffers.array(),
request.pendingOutputBuffers.size(), /*timestamp*/0, /*readoutTimestamp*/0,
/*requested*/true, request.requestTimeNs, states.sessionStatsBuilder,
/*timestampIncreasing*/true, request.outputSurfaces, request.resultExtras,
request.errorBufStrategy);
ALOGW("%s: Frame %d | Timestamp: %" PRId64 ", metadata"
" arrived: %s, buffers left: %d.\n", __FUNCTION__,
states.inflightMap.keyAt(idx), request.shutterTimestamp,
request.haveResultMetadata ? "true" : "false",
request.numBuffersLeft);
}
states.inflightMap.clear();
states.inflightIntf.onInflightMapFlushedLocked();
}
// Then return all inflight buffers not returned by HAL
std::vector<std::pair<int32_t, int32_t>> inflightKeys;
states.flushBufferIntf.getInflightBufferKeys(&inflightKeys);
// Inflight buffers for HAL buffer manager
std::vector<uint64_t> inflightRequestBufferKeys;
states.flushBufferIntf.getInflightRequestBufferKeys(&inflightRequestBufferKeys);
// (streamId, frameNumber, buffer_handle_t*) tuple for all inflight buffers.
// frameNumber will be -1 for buffers from HAL buffer manager
std::vector<std::tuple<int32_t, int32_t, buffer_handle_t*>> inflightBuffers;
inflightBuffers.reserve(inflightKeys.size() + inflightRequestBufferKeys.size());
for (auto& pair : inflightKeys) {
int32_t frameNumber = pair.first;
int32_t streamId = pair.second;
buffer_handle_t* buffer;
status_t res = states.bufferRecordsIntf.popInflightBuffer(frameNumber, streamId, &buffer);
if (res != OK) {
ALOGE("%s: Frame %d: No in-flight buffer for stream %d",
__FUNCTION__, frameNumber, streamId);
continue;
}
inflightBuffers.push_back(std::make_tuple(streamId, frameNumber, buffer));
}
for (auto& bufferId : inflightRequestBufferKeys) {
int32_t streamId = -1;
buffer_handle_t* buffer = nullptr;
status_t res = states.bufferRecordsIntf.popInflightRequestBuffer(
bufferId, &buffer, &streamId);
if (res != OK) {
ALOGE("%s: cannot find in-flight buffer %" PRIu64, __FUNCTION__, bufferId);
continue;
}
inflightBuffers.push_back(std::make_tuple(streamId, /*frameNumber*/-1, buffer));
}
std::vector<sp<Camera3StreamInterface>> streams = states.flushBufferIntf.getAllStreams();
for (auto& tuple : inflightBuffers) {
status_t res = OK;
int32_t streamId = std::get<0>(tuple);
int32_t frameNumber = std::get<1>(tuple);
buffer_handle_t* buffer = std::get<2>(tuple);
camera_stream_buffer_t streamBuffer;
streamBuffer.buffer = buffer;
streamBuffer.status = CAMERA_BUFFER_STATUS_ERROR;
streamBuffer.acquire_fence = -1;
streamBuffer.release_fence = -1;
for (auto& stream : streams) {
if (streamId == stream->getId()) {
// Return buffer to deleted stream
camera_stream* halStream = stream->asHalStream();
streamBuffer.stream = halStream;
switch (halStream->stream_type) {
case CAMERA_STREAM_OUTPUT:
res = stream->returnBuffer(streamBuffer, /*timestamp*/ 0,
/*readoutTimestamp*/0, /*timestampIncreasing*/true,
std::vector<size_t> (), frameNumber);
if (res != OK) {
ALOGE("%s: Can't return output buffer for frame %d to"
" stream %d: %s (%d)", __FUNCTION__,
frameNumber, streamId, strerror(-res), res);
}
break;
case CAMERA_STREAM_INPUT:
res = stream->returnInputBuffer(streamBuffer);
if (res != OK) {
ALOGE("%s: Can't return input buffer for frame %d to"
" stream %d: %s (%d)", __FUNCTION__,
frameNumber, streamId, strerror(-res), res);
}
break;
default: // Bi-direcitonal stream is deprecated
ALOGE("%s: stream %d has unknown stream type %d",
__FUNCTION__, streamId, halStream->stream_type);
break;
}
break;
}
}
}
}
} // camera3
} // namespace android